CONNECTION 1 NC NC 20 NO CONNECTION
LOGIC 2 VDD 19 GROUND
SERIAL 3 18 DATA OUT
OUT 0 4 17 OUT 7
OUT 1 5 16 OUT 6
OUT 2 6 17 OUT 9
OUT 3 7 14 OUT 4
REGISTER 8 OLR CLEAR
OUTPUT 9 OE ST 12 STROBE
GROUND 10 777

Note that the A6B595KA (DIP) and the A6B595KLW (SOIC) are electrically identical and share a common terminal number assignment.

Dwg. PP-029-12

ABSOLUTE MAXIMUM RATINGS

Output Voltage, V _O 50 V
Output Drain Current,
Continuous, I _O 150 mA*
Peak, I _{OM} 500 mA†
Single-Pulse Avalanche Energy,
E _{AS}
Logic Supply Voltage, V _{DD} 7.0 V
Input Voltage Range,
V ₁ 0.3 V to +7.0 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range,
T_A 40°C to +125°C
Storage Temperature Range,
T_S 55°C to +150°C

- * Each output, all outputs on.
- † Pulse duration 100 µs, duty cycle 2%.

Caution: These CMOS devices have input static protection (Class 3) but are still susceptible to damage if exposed to extremely high static electrical charges.

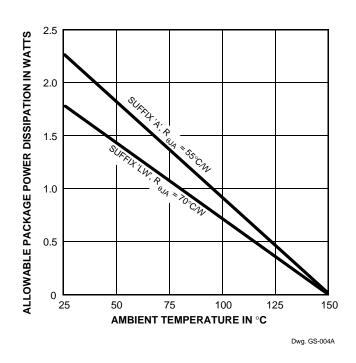
The A6B595KA and A6B595KLW combine an 8-bit CMOS shift register and accompanying data latches, control circuitry, and DMOS power driver outputs. Power driver applications include relays, solenoids, and other medium-current or high-voltage peripheral power loads.

The serial-data input, CMOS shift register and latches allow direct interfacing with microprocessor-based systems. Serial-data input rates are over 5 MHz. Use with TTL may require appropriate pull-up resistors to ensure an input logic high.

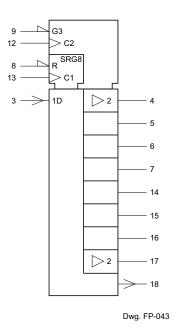
A CMOS serial-data output enables cascade connections in applications requiring additional drive lines. Similar devices with reduced $r_{DS(on)}$ are available as the A6595KA and A6595KLW.

The A6B595 DMOS open-drain outputs are capable of sinking up to 500 mA. All of the output drivers are disabled (the DMOS sink drivers turned off) by the OUTPUT ENABLE input high.

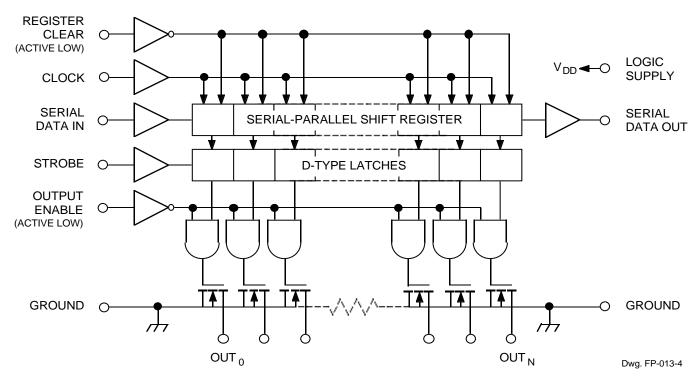
The A6B595KA is furnished in a 20-pin dual in-line plastic package. The A6B595KLW is furnished in a wide-body, small-outline plastic package (SOIC) with gull-wing leads. Copper lead frames, reduced supply current requirements, and low on-state resistance allow both devices to sink 150 mA from all outputs continuously, to ambient temperatures over 85°C. The Pb (lead) free versions (suffix -T) have 100% matte tin leadframe plating.


FEATURES

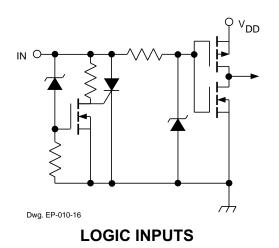
- 50 V Minimum Output Clamp Voltage
- 150 mA Output Current (all outputs simultaneously)
- 5 Ω Typical $r_{DS(on)}$
- Low Power Consumption
- Replacements for TPIC6B595N and TPIC6B595DW

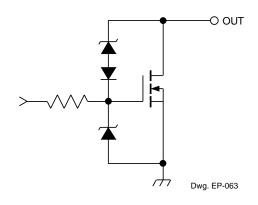

Part Number	Pb-free*	Pb-free* Package Packing			
A6B595KA-T	Yes	20-pin DIP	18 per tube	55	25
A6B595KLW-T	Yes	20-pin SOIC	37 per tube	70	17
A6B595KLWTR-T	Yes	20-pin SOIC	1000 per reel	70	17

Pb-based variants are being phased out of the product line. The variants cited in this footnote are in production but have been determined to be LAST TIME BUY. This classification indicates that sale of this device is currently restricted to existing customer applications. The variants should not be purchased for new design applications because obsolescence in the near future is probable. Samples are no longer available. Status change: October 31, 2006. Deadline for receipt fo LAST TIME BUY orders: April 27, 2007. These variants include: A6B595KA, A6B595KLW, and A6B595KLWTR.

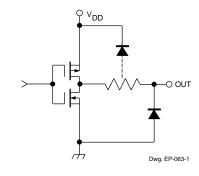


LOGIC SYMBOL




FUNCTIONAL BLOCK DIAGRAM

Grounds (terminals 10, 11, and 19) must be connected together externally.



DMOS POWER DRIVER OUTPUT

RECOMMENDED OPERATING CONDITIONS

over operating temperature range

SERIAL DATA OUT

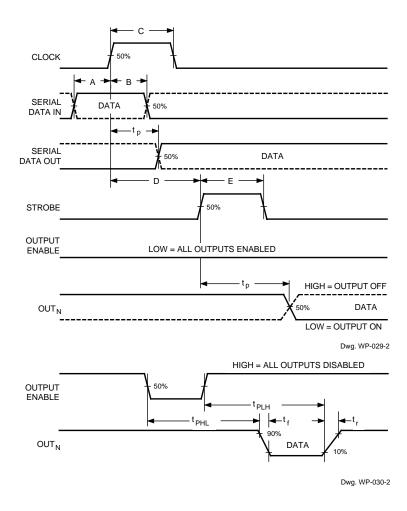
TRUTH TABLE

Data	Clock	SI	Shift Register Contents Serial Data				Latch Contents				Output	Output Contents										
Input	Input	I ₀	l ₁	l ₂		I ₆	l ₇		Strobe	I ₀	l ₁	l ₂		l ₆	l ₇	Enable	l ₀	l ₁	l ₂		l ₆	l ₇
Н	۲	Н	R ₀	R ₁		R ₅	R ₆	R ₆														
L	۲	L	R ₀	R ₁		R ₅	R ₆	R ₆														
Х		R ₀	R ₁	R ₂		R ₆	R ₇	R ₇														
		Х	Χ	Χ		Χ	Х	Х		R ₀	R ₁	R ₂		R ₆	R ₇							
		P ₀	P ₁	P ₂		P ₆	P ₇	P ₇	7	P ₀	P ₁	P ₂		P ₆	P ₇	L	P ₀	P ₁	P ₂		P ₆	P ₇
										Х	Х	Х		Х	Х	Н	Н	Н	Н		Н	Н

L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{DD} = 5 V, t_{ir} = $t_{if} \le$ 10 ns (unless otherwise specified).

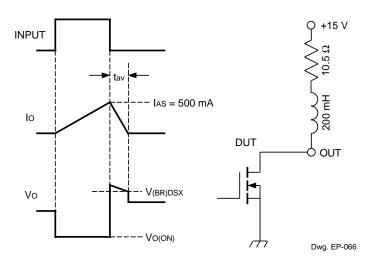
			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Output Breakdown Voltage	$V_{(BR)DSX}$	I _O = 1 mA	50	_	_	V
Off-State Output	I _{DSX}	V _O = 40 V, V _{DD} = 5.5 V	_	0.1	5.0	μА
Current		V _O = 40 V, V _{DD} = 5.5 V, T _A = 125°C	_	0.15	8.0	μА
Static Drain-Source	r _{DS(on)}	I _O = 100 mA, V _{DD} = 4.5 V	_	4.2	5.7	Ω
On-State Resistance		I _O = 100 mA, V _{DD} = 4.5 V, T _A = 125°C	_	6.8	9.5	Ω
		I _O = 350 mA, V _{DD} = 4.5 V (see note)	_	5.5	8.0	Ω
Nominal Output Current	I _{ON}	V _{DS(on)} = 0.5 V, T _A = 85°C	_	90	—	mA
Logic Input Current	I _{IH}	V _I = V _{DD} = 5.5 V	_	_	1.0	μΑ
	I _{IL}	V _I = 0, V _{DD} = 5.5 V	_	_	-1.0	μΑ
SERIAL-DATA	V _{OH}	I _{OH} = -20 μA, V _{DD} = 4.5 V	4.4	4.49	_	V
Output Voltage		I _{OH} = -4 mA, V _{DD} = 4.5 V	4.0	4.2	_	V
	V _{OL}	I _{OL} = 20 μA, V _{DD} = 4.5 V		0.005	0.1	V
		I _{OL} = 4 mA, V _{DD} = 4.5 V	_	0.3	0.5	V
Prop. Delay Time	t _{PLH}	I _O = 100 mA, C _L = 30 pF	_	150	_	ns
	t _{PHL}	I _O = 100 mA, C _L = 30 pF	_	90	_	ns
Output Rise Time	t _r	I _O = 100 mA, C _L = 30 pF	_	200	_	ns
Output Fall Time	t _f	I _O = 100 mA, C _L = 30 pF		200	_	ns
Supply Current	I _{DD(OFF)}	V _{DD} = 5.5 V, Outputs OFF	_	20	100	μΑ
	I _{DD(ON)}	V _{DD} = 5.5 V, Outputs ON	_	150	300	μΑ
	I _{DD(fclk)}	f_{clk} = 5 MHz, C_L = 30 pF, Outputs OFF	_	0.4	5.0	mA


Typical Data is at $V_{DD} = 5 \text{ V}$ and is for design information only.

NOTE — Pulse test, duration $\leq 100 \,\mu s$, duty cycle $\leq 2\%$.

TIMING REQUIREMENTS and SPECIFICATIONS

(Logic Levels are V_{DD} and Ground)


A. Data Active Time Before Clock Pulse	
(Data Set-Up Time), t _{su(D)}	. 20 ns
B. Data Active Time After Clock Pulse	
(Data Hold Time), t _{h(D)}	. 20 ns
C. Clock Pulse Width, t _{w(CLK)}	. 40 ns
D. Time Between Clock Activation	
and Strobe, t _{su(ST)}	. 50 ns
E. Strobe Pulse Width, t _{w(ST)}	. 50 ns
F. Output Enable Pulse Width, $t_{w(OE)}$	4.5 μs
NOTE – Timing is representative of a 12.5 MHz clock.	
Higher speeds are attainable.	

Serial data present at the input is transferred to the shift register on the rising edge of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT.

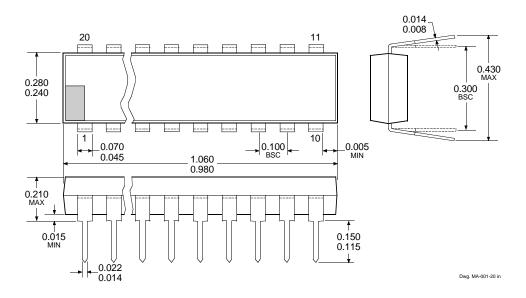
Information present at any register is transferred to the respective latch on the rising edge of the STROBE input pulse (serial-to-parallel conversion).

When the OUTPUT ENABLE input is high, the output source drivers are disabled (OFF). The information stored in the latches is not affected by the OUTPUT ENABLE input. With the OUTPUT ENABLE input low, the outputs are controlled by the state of their respective latches.

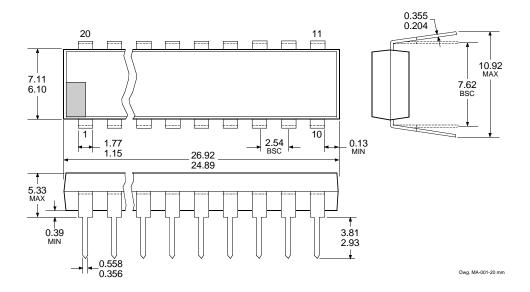
TEST CIRCUITS

 $E_{AS} = I_{AS} \times V_{(BR)DSX} \times t_{AV}/2$

Single-Pulse Avalanche Energy Test Circuit and Waveforms


TERMINAL DESCRIPTIONS

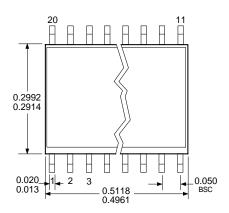
Terminal No.	Terminal Name	Function
1	NC	No internal connection.
2	LOGIC SUPPLY	(V _{DD}) The logic supply voltage (typically 5 V).
3	SERIAL DATA IN	Serial-data input to the shift-register.
4-7	OUT ₀₋₃	Current-sinking, open-drain DMOS output terminals.
8	CLEAR	When (active) low, the registers are cleared (set low).
9	OUTPUT ENABLE	When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
10	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₃).
11	GROUND	Reference terminal for output voltage measurements (OUT ₀₋₇).
12	STROBE	Data strobe input terminal; shift register data is latched on rising edge.
13	CLOCK	Clock input terminal for data shift on rising edge.
14-17	OUT ₄₋₇	Current-sinking, open-drain DMOS output terminals.
18	SERIAL DATA OUT	CMOS serial-data output to the following shift register.
19	GROUND	Reference terminal for input voltage measurements.
20	NC	No internal connection.

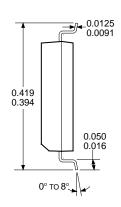

NOTE — Grounds (terminals 10, 11, and 19) must be connected together externally.

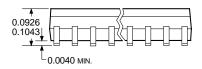
A6B595KA

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)

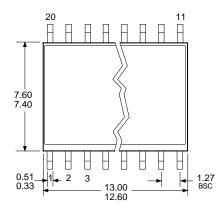


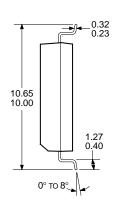

- NOTES:1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative
 - 3. Lead thickness is measured at seating plane or below.

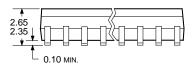


A6B595KLW

Dimensions in Inches (for reference only)

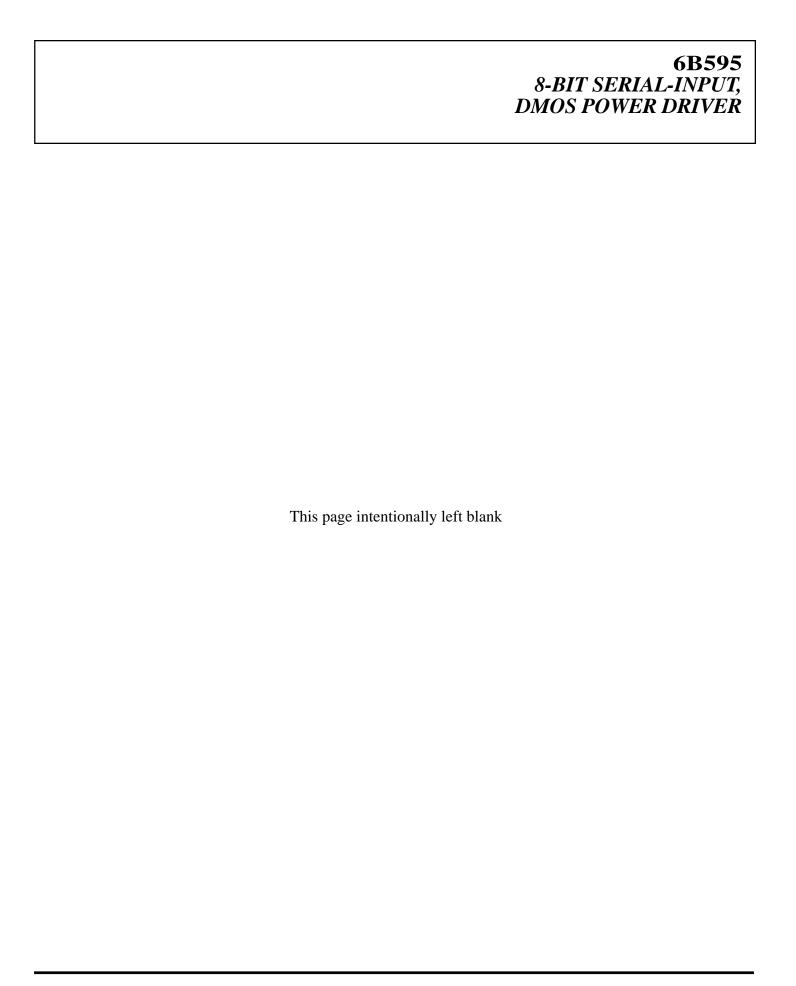






Dwg. MA-008-20 in

Dimensions in Millimeters (controlling dimensions)



Dwa. MA-008-20 mm

- NOTES:1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.

This page intentionally left blank

www.allegromicro.com

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

