General Description

The MIC7300 is a high-performance CMOS operational amplifier featuring rail-to-rail input and output with strong output drive capability. It is able to source and sink in excess of 80 mA into large capacitive loads.
The input common-mode range extends beyond the rails by 300 mV , and the output voltage typically swings to within $150 \mu \mathrm{~V}$ of both rails when driving a $100 \mathrm{k} \Omega$ load.
The amplifier operates from 2.2 V to 10 V and is fully specified at $2.2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V . Gain bandwidth and slew rate are 500 kHz and $0.5 \mathrm{~V} / \mathrm{us}$, respectively.
The MIC7300 is available in Micrel's IttyBitty ${ }^{\text {TM }}$ SOT-23-5 package for space-conscious circuits and in high-power MM8 ${ }^{\text {TM }} 8$-lead MSOP for improved heat dissipation in higher power applications.

Pin Configurations

SOT-23-5 (M5)

Features

- Small footprint SOT-23-5 and power MSOP-8 packages
- >80mA peak output sink and source with 5V supply
- Drives large capacitive loads (6000pF with 10 V supply)
- Guaranteed $2.2 \mathrm{~V}, 3 \mathrm{~V}, 5 \mathrm{~V}$, and 10 V performance
- 500 kHz gain-bandwidth product
- 0.01% total harmonic distortion at $1 \mathrm{kHz}(10 \mathrm{~V}, 2 \mathrm{k} \Omega)$
- 1 mA typical power supply current at 5 V

Applications

- Battery-powered instrumentation
- PCMCIA, USB peripherals
- Portable computers and PDAs

Ordering Information

Part Number			
Standard	Pb-free	Temp. Range	Package
MIC7300BM5	MIC7300YM5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23-5
MIC7300BMM	MIC7300YMM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-8

Functional Configuration

SOT-23-5 (M5)

Pin Description

Pin Number SOT-23-5	Pin Number MSOP-8	Pin Name	Pin Function
1	4	OUT	Amplifier Output
2	$5-8$	V-	Negative Supply: Negative supply for split supply application or ground for single supply application.
3	3	IN +	Noninverting Input
4	2	IN-	Inverting Input
5	1	V+	Positive Supply

IttyBitty and MM8 are trademarks of Micrel, Inc.
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131•USA• tel + 1 (408) 944-0800•fax + 1 (408) 474-1000 • http://www.micrel.com

Absolute Maximum Ratings (Note 1)

Supply Voltage ($\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}_{-}}$).. 12 V
Differential Input Voltage ($\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}$) $\pm 12 \mathrm{~V}$
I/O Pin Voltage ($\mathrm{V}_{\mathrm{IN}^{N}}, \mathrm{~V}_{\text {OUT }}$), Note 3

Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$..................................... $+150^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec.) $260^{\circ} \mathrm{C}$
ESD, Note 6

Operating Ratings (Note 2)

Supply Voltage $\left(\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}}\right)$ 2.2V to 10 V
Junction Temperature (T_{J}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance, Note 5SOT-23-5 (θ_{JA})$260^{\circ} \mathrm{C} / \mathrm{W}$
MSOP-8 ($\theta_{\text {JA }}$) $85^{\circ} \mathrm{C} / \mathrm{W}$
Max. Power Dissipation Note 4

DC Electrical Characteristics (2.2V)

$\mathrm{V}_{\mathrm{V}_{+}}=+2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}_{+} / 2} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$; $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7 ; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.0	9	mV
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift			1.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.5		pA
I_{OS}	Input Offset Current			0.25		pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			>1		T Ω
CMRR	Common-Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.2 \mathrm{~V}$, Note 9	45	65		dB
V_{CM}	Input Common-Mode Voltage	input low, CMRR $\geq 45 \mathrm{~dB}$		-0.3	0.0	V
		input high, CMRR $\geq 45 \mathrm{~dB}$	2.2	2.5		V
\pm PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{V}_{+}}=\left\|\mathrm{V}_{\mathrm{V}_{-}}\right\|=1.1 \mathrm{~V}$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$	55	75		dB
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF
V_{O}	Output Swing	output high, $R_{L}=100 \mathrm{k}$, specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		0.15	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.15	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		10	$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		10	$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $R_{L}=600 \Omega$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		33	$\begin{aligned} & 110 \\ & 165 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=600 \Omega$		33	$\begin{aligned} & 110 \\ & 165 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	sinking or sourcing, Note 8	20	40		mA
$\mathrm{I}_{\text {S }}$	Supply Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{+} / 2$		0.7	2.0	mA

AC Electrical Characteristics (2.2V)

$\mathrm{V}_{\mathrm{V}_{+}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
SR	Slew Rate			0.5		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product			0.55		MHz
ϕ_{m}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		80		\circ
		$\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$		40		\circ
G_{m}				10		dB

DC Electrical Characteristics (3.0V)
$\mathrm{V}_{\mathrm{V}_{+}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.0	9	mV
$\mathrm{TCV}_{\mathrm{OS}}$	Input Offset Voltage Average Drift			1.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.5		pA
I_{OS}	Input Offset Current			0.25		pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			>1		$\mathrm{T} \Omega$
CMRR	Common-Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.0 \mathrm{~V}$, Note 9	50	70		dB
V_{CM}	Input Common-Mode Voltage	input low, CMRR $\geq 50 \mathrm{~dB}$		-0.3	0	V
		input high, CMRR $\geq 50 \mathrm{~dB}$	3.0	3.3		V
\pm PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{V}_{+}}=\left\|\mathrm{V}_{\mathrm{V}_{-}}\right\|=1.5 \mathrm{~V}$ to $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$	55	75		dB
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF
$\mathrm{V}_{\text {OUT }}$	Output Swing	output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		0.2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $R_{L}=2 k$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		10	$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		10	$\begin{aligned} & 33 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $\mathrm{R}_{\mathrm{L}}=600 \Omega$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		33	$\begin{aligned} & 110 \\ & 165 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=600 \Omega$		33	$\begin{aligned} & 110 \\ & 165 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{SC}	Output Short Circuit Current	sinking or sourcing, Note 8	60	95		mA
I_{S}	Supply Current			0.8	2.2	mA

AC Electrical Characteristics (3V)

$\mathrm{V}_{\mathrm{V}_{+}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7 ; unless noted

Symbol	Parameter	Condition		Min	Typ	Max
Units						
GBW	Slew Rate	Gain-Bandwidth Product			0.5	
ϕ_{m}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		0.45		MHz
		$\mathrm{C}_{\mathrm{L}}=3500 \mathrm{pF}$		85	\circ	
G_{m}				40		\circ

DC Electrical Characteristics (5V)

$\mathrm{V}_{\mathrm{V}_{+}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7 ; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.0	9	mV
$\mathrm{TCV}_{\mathrm{OS}}$	Input Offset Voltage Average Drift			1.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.5		pA
I_{OS}	Input Offset Current			0.25		pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			>1		$\mathrm{T} \Omega$
CMRR	Common-Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5 \mathrm{~V}$, Note 9	55	80		dB
V_{CM}	Input Common-Mode Voltage	input low, CMRR $\geq 55 \mathrm{~dB}$		-0.3	-0.0	V
		input high, CMRR $\geq 55 \mathrm{~dB}$	5.0	5.3		V
\pm PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{V}_{+}}=\left\|\mathrm{V}_{\mathrm{V}_{-}}\right\|=2.5 \mathrm{~V}$ to $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$	55	75		dB
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF
$\mathrm{V}_{\text {OUT }}$	Output Swing	output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		0.3	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.3	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		15	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		15	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $R_{L}=600 \Omega$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		50	$\begin{aligned} & 165 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=600 \Omega$		50	$\begin{aligned} & 165 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{SC}	Output Short Circuit Current	sinking or sourcing, Note 8	85	105		mA
$\mathrm{I}_{\text {S }}$	Supply Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}+/ 2$		1.0	2.8	mA

AC Electrical Characteristics (5V)

$\mathrm{V}_{\mathrm{V}_{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
THD	Total Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=-2$, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}=4.0 \mathrm{~V}_{\mathrm{PP}}$		0.05		$\%$
SR				0.5		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Slew Rate	Gain-Bandwidth Product			0.4	
ϕ_{m}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	MHz			
		$\mathrm{C}_{\mathrm{L}}=4500 \mathrm{pF}$		85		\circ
G_{m}	Gain Margin			10		\circ

DC Electrical Characteristics (10V)

$\mathrm{V}_{\mathrm{V}_{+}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}_{-}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}_{+}} / 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7 ; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.0	9	mV
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift			1.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			0.5		pA
I_{OS}	Input Offset Current			0.25		pA
$\mathrm{R}_{\text {IN }}$	Input Resistance			>1		$\mathrm{T} \Omega$
CMRR	Common-Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 10 \mathrm{~V}$, Note 9	60	85		dB
V_{CM}	Input Common-Mode Voltage	input low, $\mathrm{V}_{+}=10 \mathrm{~V}, \mathrm{CMRR} \geq 60 \mathrm{~dB}$		-0.3	-0.0	V
		input high, $\mathrm{V}_{+}=10 \mathrm{~V}, \mathrm{CMRR} \geq 60 \mathrm{~dB}$	10.0	10.3		V
\pm PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{V}_{+}}=\left\|\mathrm{V}_{\mathrm{V}_{-}}\right\|=2.5 \mathrm{~V}$ to $5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$	55	75		dB
A_{V}	Large Signal Voltage Gain	sourcing or sinking, $R_{L}=2 k$, Note 10	80	340		V / mV
		sourcing or sinking, $R_{L}=600 \Omega$, Note 10	15	300		V / mV
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance			3		pF
$\mathrm{V}_{\text {OUT }}$	Output Swing	output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		0.5	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$		0.5	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\text {OUT }}$		24	$\begin{gathered} \hline 80 \\ 120 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		24	$\begin{gathered} 80 \\ 120 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output high, $R_{L}=600 \Omega$ specified as $\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{OUT}}$		80	$\begin{aligned} & 270 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		output low, $\mathrm{R}_{\mathrm{L}}=600 \Omega$		80	$\begin{aligned} & 270 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
${ }_{\text {I }}$	Output Short Circuit Current	sinking or sourcing, Notes 8	90	115		mA
I_{S}	Supply Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}+/ 2$		1.5	4.0	mA

AC Electrical Characteristics (10V)

$\mathrm{V}_{\mathrm{V}_{+}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{V}_{+}} 2 ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$; Note 7 ; unless noted

Symbol	Parameter	Condition	Min	Typ	Max	Units
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-2, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{\mathrm{OUT}}=8.5 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$		0.01		\%
SR	Slew Rate	$\mathrm{V}+=10 \mathrm{~V}$, Note 11		0.5		$\mathrm{V} / \mathrm{\mu s}$ V/us
GBW	Gain-Bandwidth Product			0.37		MHz
ϕ_{m}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		85		-
		$C_{L}=6000 \mathrm{pF}$		40		-
G_{m}	Gain Margin			10		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}$		37		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$		1.5		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

Note 1. Exceeding the absolute maximum rating may damage the device.
Note 2. The device is not guaranteed to function outside its operating rating.
Note 3. I/O Pin Voltage is any external voltage to which an input or output is referenced.
Note 4. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(\max)}$; the junction-to-ambient thermal resistance, θ_{JA}; and the ambient temperature, T_{A}. The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D}=\left(T_{J(\max)}-T_{A}\right) \div \theta_{J A}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
Note 5. Thermal resistance, θ_{JA}, applies to a part soldered on a printed-circuit board.
Note 6. Devices are ESD protected; however, handling precautions are recommended.
Note 7. All limits guaranteed by testing or statistical analysis.
Note 8. Continuous short circuit may exceed absolute maximum T_{J} under some conditions.
Note 9. CMRR is determined as follows: The maximum $\Delta \mathrm{V}_{\mathrm{OS}}$ over the V_{CM} range is divided by the magnitude of the V_{CM} range. The measurement points are: $\mathrm{V}_{\mathrm{V}_{-}},\left(\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}_{-}}\right) / 2$, and $\mathrm{V}_{\mathrm{V}_{+}}$.
Note 10. R_{L} connected to 5 V . Sourcing: $5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}$. Sinking: $2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}$.
Note 11. Device connected as a voltage follower with a 10 V step input. The value is the positive or negative slew rate, whichever is slower.

Typical Characteristics

Application Information

Input Common-Mode Voltage

The MIC7300 tolerates input overdrive by at least 300 mV beyond either rail without producing phase inversion.
If the absolute maximum input voltage is exceeded, the input current should be limited to $\pm 5 \mathrm{~mA}$ maximum to prevent reducing reliability. A $10 \mathrm{k} \Omega$ series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50 V above the supply or below ground. See Figure 1.

Figure 1. Input Current-Limit Protection

Output Voltage Swing

Sink and source output resistances of the MIC7300 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. The output resistance is:

$$
R_{\text {OUT }}=\frac{V_{\text {DROP }}}{l_{\text {LOAD }}}
$$

$V_{\text {DROP }}$ is the voltage dropped within the amplifier output stage. $\mathrm{V}_{\text {DROP }}$ and $\mathrm{I}_{\text {LOAD }}$ can be determined from the V_{O} (output swing) portion of the appropriate Electrical Characteristics table. I LOAD is equal to the typical output high voltage minus $\mathrm{V}+/ 2$ and divided by $\mathrm{R}_{\text {LOAD }}$. For example, using the Electrical Characteristics DC (5V) table, the typical output high voltage using a $2 \mathrm{k} \Omega$ load (connected to $\mathrm{V}+/ 2$) is 4.985 V , which produces an I LOAD of:

$$
\left(\frac{4.985 \mathrm{~V}-2.5 \mathrm{~V}}{2 \mathrm{k} \Omega}\right)=1.243 \mathrm{~mA} .
$$

Voltage drop in the amplifier output stage is:

$$
\begin{aligned}
& \mathrm{V}_{\text {DROP }}=5.0 \mathrm{~V}-4.985 \mathrm{~V} \\
& \mathrm{~V}_{\text {DROP }}=0.015 \mathrm{~V}
\end{aligned}
$$

Because of output stage symmetry, the corresponding typical output low voltage (0.015 V) also equals $\mathrm{V}_{\text {DROP }}$. Then:

$$
\mathrm{R}_{\text {OUT }}=\frac{0.015 \mathrm{~V}}{0.001243 \mathrm{~A}}=12 \Omega
$$

Power Dissipation

The MIC7300 output drive capability requires considering power dissipation. If the load impedance is low, it is possible to damage the device by exceeding the $125^{\circ} \mathrm{C}$ junction temperature rating.
On-chip power consists of two components: supply power and output stage power. Supply power $\left(\mathrm{P}_{\mathrm{S}}\right)$ is the product of the supply voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}_{-}}$) and supply current ($\left.\mathrm{I}_{\mathrm{S}}\right)$.

Output stage power $\left(\mathrm{P}_{\mathrm{O}}\right)$ is the product of the output stage voltage drop ($\mathrm{V}_{\text {DROP }}$) and the output (load) current ($\mathrm{l}_{\mathrm{OUT}}$). Total on-chip power dissipation is:

$$
\begin{aligned}
& P_{D}=P_{S}+P_{O} \\
& P_{D}=V_{S} I_{S}+V_{\text {DROP }} I_{\text {OUT }}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\text { total on-chip power } \\
& \mathrm{P}_{\mathrm{S}}=\text { supply power dissipation } \\
& \mathrm{P}_{\mathrm{O}}=\text { output power dissipation } \\
& \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{V}-} \\
& \mathrm{I}_{\mathrm{S}}=\text { power supply current } \\
& \mathrm{V}_{\mathrm{DROP}}=\mathrm{V}_{\mathrm{V}_{+}}-\mathrm{V}_{\mathrm{OUT}} \quad \\
& \mathrm{~V}_{\mathrm{DROP}}=\mathrm{V}_{\mathrm{OUT}}-\mathrm{V}_{\mathrm{V}_{-}} \quad \text { (sourcing current) } \\
& \text { (sinking current) }
\end{aligned}
$$

The above addresses only steady state (dc) conditions. For non-dc conditions the user must estimate power dissipation based on rms value of the signal.
The task is one of determining the allowable on-chip power dissipation for operation at a given ambient temperature and power supply voltage. From this determination, one may calculate the maximum allowable power dissipation and, after subtracting P_{S}, determine the maximum allowable load current, which in turn can be used to determine the miniumum load impedance that may safely be driven. The calculation is summarized below.

$$
\begin{aligned}
& P_{\mathrm{D}(\text { max })}=\frac{T_{\mathrm{J}(\max)}-T_{\mathrm{A}}}{\theta_{\mathrm{JA}}} \\
& \theta_{\mathrm{JA}(\mathrm{SOT}-23-5)}=260^{\circ} \mathrm{C} / \mathrm{W} \\
& \theta_{\mathrm{JA}(\mathrm{MSOP}-8)}=85^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Driving Capacitive Loads

Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The MIC7300 can typically drive a 2500 pF capacitive load connected directly to the output when configured as a unity-gain amplifier and powered with a 2.2 V supply. At 10 V operation the circuit typically drives 6000 pF . Phase margin is typically 40°.

Using Large-Value Feedback Resistors

A large-value feedback resistor (>500k Ω) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the feedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance.
Figure 2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor C_{FB} introduces sufficient phase lead to overcome
the phase lag caused by feedback resistor $R_{F B}$ and input capacitance $\mathrm{C}_{\mathbb{I N}}$. The value of C_{FB} is determined by first estimating C_{IN} and then applying the following formula:

Figure 2. Cancelling Feedback Phase Lag
Since a significant percentage of $\mathrm{C}_{\text {IN }}$ may be caused by board layout, it is important to note that the correct value of C_{FB} may change when changing from a breadboard to the final circuit layout.

Typical Circuits

Some single-supply, rail-to-rail applications for which the MIC7300 is well suited are shown in the circuit diagrams of Figures 3 through 7.

Figure 3a. Noninverting Amplifier

Figure 3b. Noninverting Amplifier Behavior

Figure 4. Voltage Follower/Buffer

Figure 5. Voltage-Controlled Current Sink

Figure 6. Square Wave Oscillator

Figure 7. AC-Coupled Inverting Amplifier

Package Information

8-Pin MSOP (MM)

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

