

AXIAL WIREWOUND RESISTORS AC

FEATURES

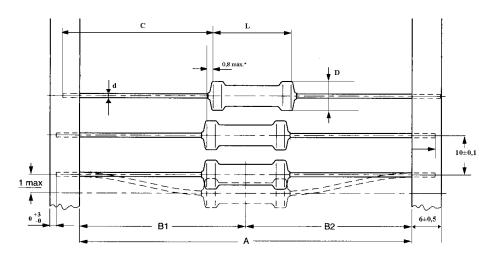
- General purpose resistors;
- High power dissipation in small volume;
- High pulse load handling capabilities;
- Different forming styles available;
- High temperature silicone coating.

MARKET SEGMENTS AND APPLICATIONS

Market Segment	Application		
Industrial	Power supplies		
	Motor speed controls		
Telecom	Line protection resistor		
	Power supplies		
Consumer	Audio Editors Systems		
Sound & Vision	High end hi-fi		
DAP	Kitchen appliances		
	White good		
Lighting	Ballast equipment		
Automotive	Dashboard electronics		
	Electronic fuel injection		

TECHNOLOGY

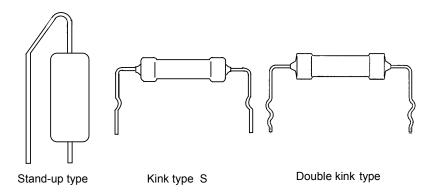
The resistor element is a resistive wire, which is wound, in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating. The resistor is coated with green silicon cement which is non-flammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45". The standard resistor is supplier with axial lead taped or with formed leads as a special type.


QUICK REFERENCE DATA

DESC	DESCRIPTION		AC03	AC04	AC05	AC07	AC10	AC15	AC20
Rated dissipa	Rated dissipation at T _{amb} =40 °C		3W	4W	5W	7W	10W	15W	20W
Rated dissipa	tion at T _{amb} =70 °C	0.9W	2.5W	3.5W	4.7W	5.8W	8.4W	12.5W	16.0W
Dogiotopoo re	ango (E24 Corios)	0.1Ω	0.1Ω	0.1Ω	0.1Ω	0.1Ω	0.68Ω	0.82Ω	1.2Ω
	ange (E24 Series), e note 1)	to	to	to	to	to	to	to	to
(300	, note i	2.4kΩ	5.1kΩ	6.8 k Ω	8.2kΩ	15kΩ	27kΩ	39kΩ	56kΩ
Resistance tole	erance (see note 2)				±5%; (se	e note 2)			
	m permissive emperature				35	0°C			
Temperat	ture coefficient	values <	10Ω: +600	ppm/°C	; values	≥10Ω: -8	30/+140 pp	m/°C (See	note. 3)
	gory (IEC 60 068)					00/56			
Operator	Temperature				-40°C to	+ 200°C			
Basic s	specification				IEC 60	115-1			
Limi	t voltage				∨ =√	Pn x R			
Stabi	lity after :								
Load,	1000 hours	Δ R/Rmax.: ±5% +0.1 Ω							
So	oldering			ΔR	R max.: ±	0.5% +0.0)5Ω		
Clim	atic tests			ΔF	R/Rmax.: :	±1% +0.05	5Ω		
Short tii	me overload			ΔF	R/ Rmax.:	± 2% +0.	1Ω		
	Spe	ecial produ	ct modifica	tions ava	ilable on i	request			
Note 1	Special resistives	values; Lo	w indutan	ce styles					
Note 2	Tolerances.: 1% 3	% 10%							
Note 3	Temperature coeff	coefficient (ppm/°C).: 30 / 50 / 90							
Note 4	Terminal lengths a								
Note 5	Terminal with spec	Terminal with special configuration cropped and formed, double kink, stand-up version etc.							
	Application information available on request								
1 - Pulse load	1 - Pulse load behaviour								
2 - High freque	ency behaviour (self	inductance	:)						
,									

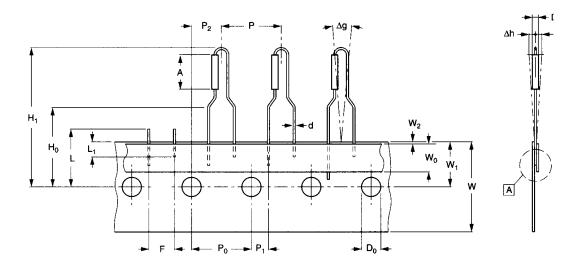
MECHANICAL DATA

Axial style


st Max. displacement between any two resistors.

TYPE	L max.	D max.	С	D	B1-B2	Α
AC01	10 (0.394)	4.3 (0.169)	32 (1.260)		± 1.2 (0.047)	63 ± 2 (2.480 ± 0.079)
AC03	13 (0.512)	5.5 (0.216)	30 (1.181)		± 1.2 (0.047)	63 ± 2 (2.480 ± 0.079)
AC04	17 (0.669)	5.7 (0.224)	28 (1.102)	0.0 + 0.00	± 1.2 (0.047)	63 ± 2 (2.480 ± 0.079)
AC05	17 (0.669)	7.5 (0.295)	28 (1.102)	0.8 ± 0.03 (0.031 ± 0.001)	± 1.2 (0.047)	63 ± 2 (2.480 ± 0.079)
AC07	25 (0.984)	7.5 (0.295)	28 (1.102)		± 1.2 (0.047)	73 ± 2 (2.874 ± 0.079)
AC10	44 (1.732)	8 (0.315)	28 (1.102)		± 1.2 (0.047)	89 ± 2 (3.504 ± 0.079)
AC15	51 (2.008)	10 (0.394)	28 (1.102)		-	-
AC20	67 (2.638)	10 (0.394)	28 (1.102)		-	-

Dimensions in mm (inches).

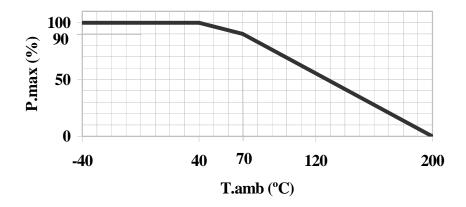


Terminal forming types available under request

The dimension for leads forming to be define as a function of specific application.

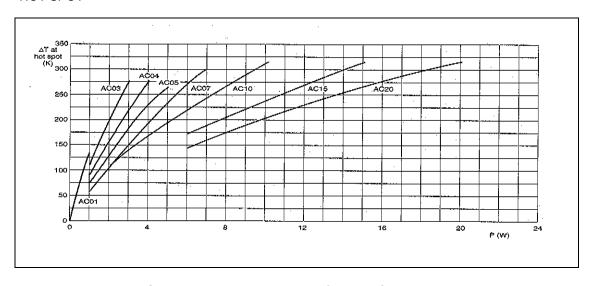
Radial tapped version (available for AC01 type)

Parameter	Symbol	Dimensions	Tolerance	Notes
Maximum body diameter	D	4.1 (0.161)	Máx.	
Maximum body length	Α	8.5 (0.335)	Máx.	
Lead wire diameter	d	0.8 (0.031)	+ 0.06 / -0.05 (+0.002 / - 0.002)	
Pitch of components	Р	12.7 (0.500)	± 1.0 (0.039)	
Feed hole pitch	Po	12.7 (0.500)	± 0.2 (0.008)	
Pitch error max.	-	1.0 (0.039)	-	In 20 spacing
Feed-hole centre to lead at topside at the tape	P ₁	3.85 (0.151)	± 0.5 (0.002)	
Feed hole centre to body centre	P2	6.35 (0.250)	± 1.0 (0.039)	
Lead-to-lead distance	F	5.0 (0.197)	+ 0.5 / - 0.2 (+0.002 / -0.008)	
Component alignment	Δh	0	± 1.2 (0.047)	
Component alignment	Δg	0	± 3°	
Tape width	W	18.0 (0.709)	± 0.5 (0.002)	
Minimum hol down tape width	W0	6.0 (0.236)	+ 0.2 / - 0.5 (+0.008 / - 0.002)	
Hole position	W1	9.0 (0.354)	± 0.5 (0.002)	
Maximum hold down tape position	W2	0.5 (0.020)	Máx.	
Lead wire	H0	16.5 (0.650)	± 0.5 (0.020)	
Height of component from tape centre	H1	32.0 (1.260)	Máx.	23min
Feed hole diameter	D_0	4.0 (0.157)	± 0.2 (0.008)	
Total tape thickness	Т	0.9 (0.035)	Máx.	0.4min
Maximum length of snipped lead	L	11.0 (0.433)	Máx.	
Minimum lead wire (tape portion) shortest lead.	L1	2.5 (0.098)	Mín.	


Dimensions in mm (Inches).

ELETRICAL CHARACTERISTICS

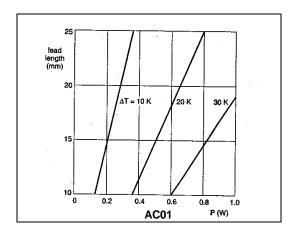
DERATING

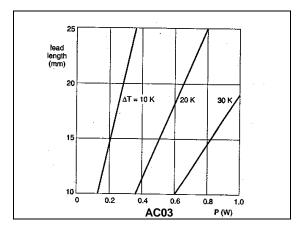

The power that the resistor can dissipates depends on the operating temperature; see bellow.

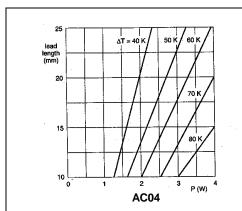
Temperature rise of the resistor body as a function of the dissipation

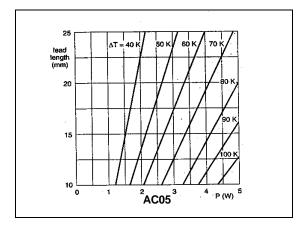
APPLICATION INFORMATION

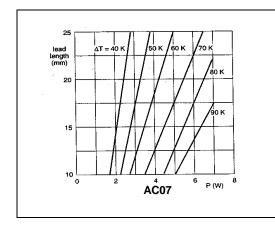
HOT SPOT

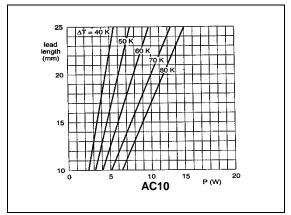


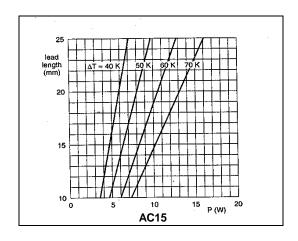

Hot Spot temperature rise (ΔT) as a function of dissipated power.

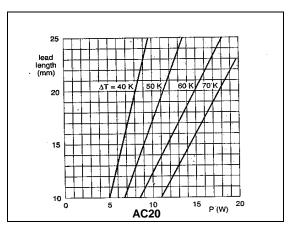


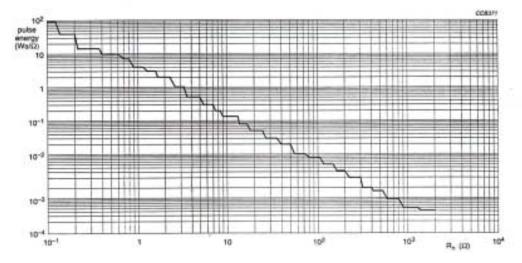

SOLDER SPOT


Lead length as a function of the dissipation with the temperature rise at the end of lead (soldering oint)

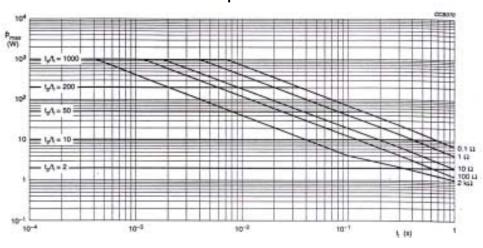


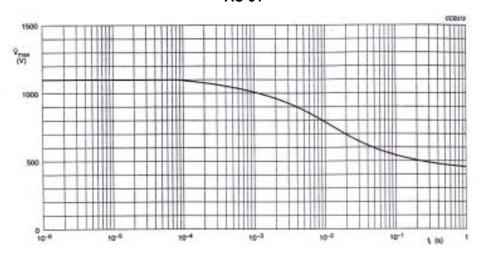


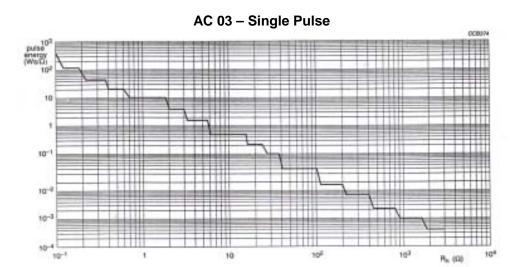




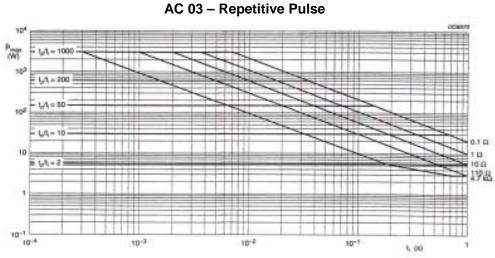
PULSE LOAD CAPABILITIES


How to interpret the maximum allowed pulse load from the graphs see details and definitions on general introduction



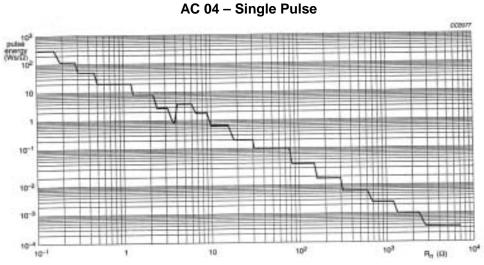

Pulse on regular basis; maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

AC 01

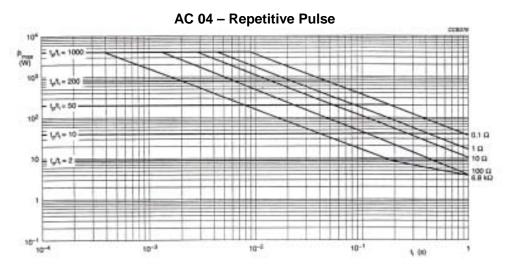


Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

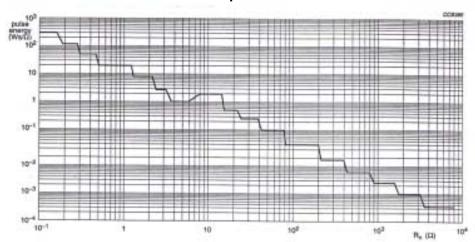
Pulse capability; W_{s} as a function of Rn.



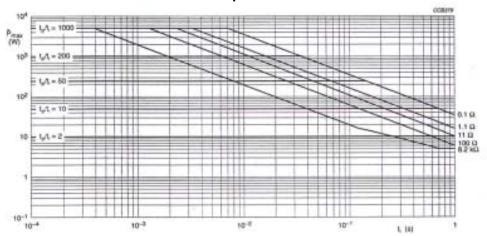
Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)



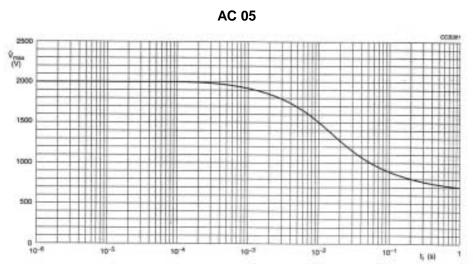
Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)


Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

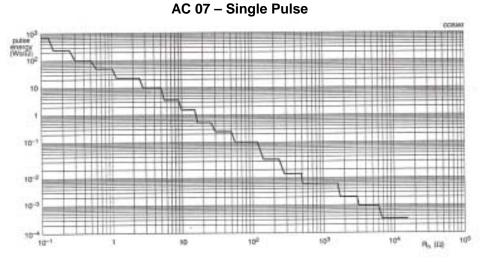
Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration.



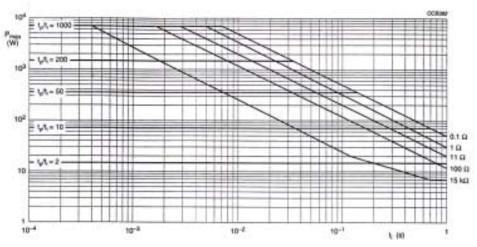
AC 05 - Repetitive Pulse

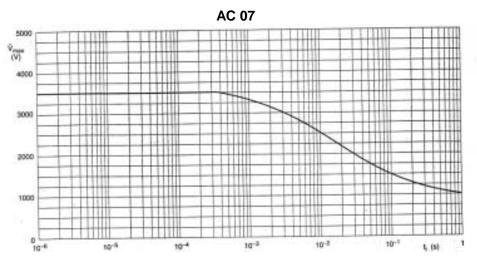

Pulse capability; W_s as a function of Rn.

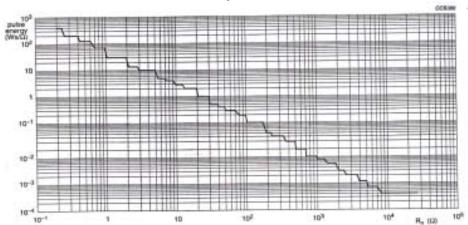
AC 05 - Repetitive Pulse



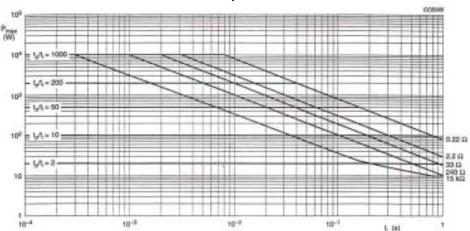
Pulse on regular basis; maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

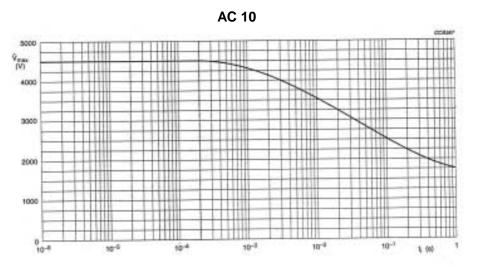

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)


Pulse capability; W_s as a function of Rn.

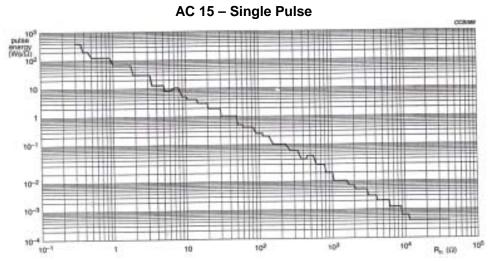

Pulse on regular basis; maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration ti)

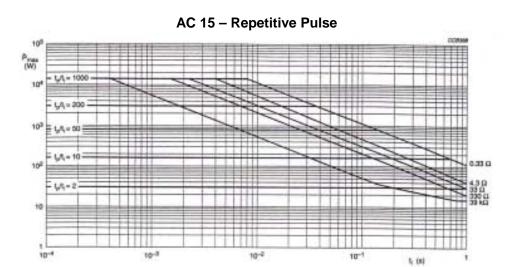



Pulse capability; W_s as a function of Rn.

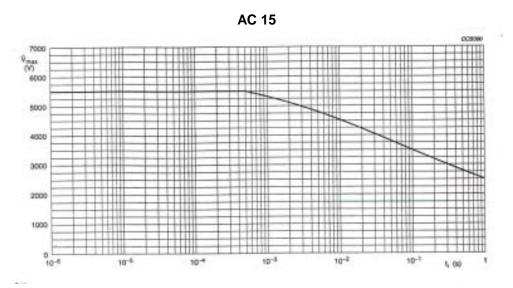
AC 10 - Repetitive Pulse



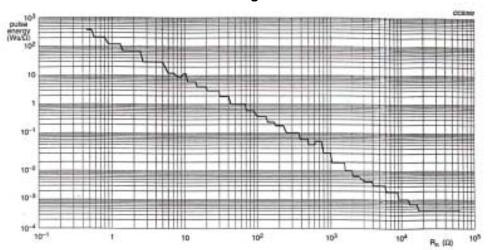
Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

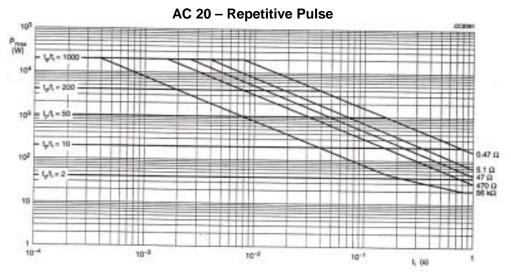


Pulse on regular basis; maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

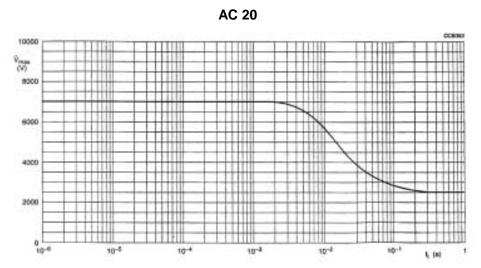


Pulse capability; W_s as a function of Rn.


Pulse on regular basis; maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)


Pulse on regular basis; maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

AC 20 - Single Pulse



Pulse capability; W_s as a function of Rn.

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

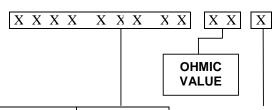
Pulse on regular basis; maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

MARKING

The resistor is marked with the nominal resistance value, the tolerance on the resistance and the rated dissipation at T_{amb} = 40°C.

For values up to 910Ω , the R is used as the decimal point.

For values of $1K\Omega$ and upwards, the letter K is used as the decimal point for the $K\Omega$ indication.


Example:

6K8 5% 5W

ORDERING CODE (12NC)

The resistors have a 12-digit ordering code indicating the resistor type and resistive value.

PRODUCT TYPE	ORDERING CODE
AC01	2306 328 33
AC03	2322 329 03
AC04	2322 329 04
AC05	2322 329 05
AC07	2322 329 07
AC10	2322 329 10
AC15	2322 329 15
AC20	2322 329 20

NUMBER	RESISTANCE DECADE
7	0.1 to 0.976Ω
8	1 to 9.76Ω
9	10 to 97.6Ω
1	100 to 976Ω
2	1 to 9.76kΩ
3	10 to 12kΩ

Ordering example:

The ordering code of the AC01 resistor, value 47Ω 5%, supplied in ammopack of 1000 units is: 2306 328 33479

NAFTA ORDERING INFORMATION - CROSS REFERENCE

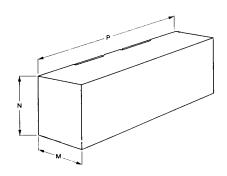
NAFTA ORDERING CODES

The resistor have on ordering code with 12 digits, first 5 digits for product type and the subsequent digits indicate the resistance value and tolerance.

Туре	Resistance range	Tol. %	12NC	Nafta part Number ⁽¹⁾	SPQ units
AC01	0.1 Ω to 2 K Ω	± 5	2306 328 33xxx	AC01WxxxxxJ	1000; ammopack
AC02	$0.1~\Omega$ to $4,7~K\Omega$	± 5	2306 326 33xxx	AC02WxxxxxJ	500; ammopack
AC03	$0.1~\Omega$ to $4.7~K\Omega$	± 5	2322 329 03xxx	AC03WxxxxxJ	500; ammopack
AC03	$0.1~\Omega$ to $5.1~K\Omega$	± 5	2306 326 45xxx	AC03WxxxxxJCF203	500; Box
AC04	$0.1~\Omega$ to $6.8~K\Omega$	± 5	2322 329 04xxx	AC04WxxxxxJ	500; ammopack
AC05	$0.1~\Omega$ to $8.2~K\Omega$	± 5	2322 329 05xxx	AC05WxxxxxJ	500; ammopack
AC05	$0.1~\Omega$ to $10~\text{K}\Omega$	± 5	2306 321 45xxx	AC05WxxxxxJCF203	500; Box
AC07	$0.1~\Omega$ to $15~\text{K}\Omega$	± 5	2322 329 07xxx	AC07WxxxxxJ	500; ammopack
AC10	$0.68~\Omega$ to 27 K Ω	± 5	2322 329 10xxx	AC10WxxxxxJ	500; ammopack
AC15	$0.82~\Omega$ to $39~\text{K}\Omega$	± 5	2322 329 15xxx	AC15WxxxxxJ	100; Box
AC20	1.2 Ω to 56 KΩ	± 5	2322 329 20xxx	AC20WxxxxxJ	100; Box

COMPOSITION OF OHMIC VALUE

The ohmic value is represented by 5 digits.

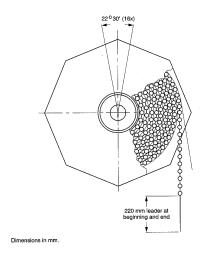

Value	5 Digits (All Other)		
1 Ω	1R000		
10 Ω	10R00		
100 Ω	100R0		
1 ΚΩ	1K000		
10 KΩ	10K00		
100 KΩ	100K0		
1 ΜΩ	1M000		

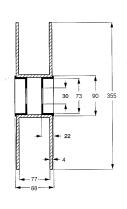
Ordering example:

The ordering code for AC01, value 47Ω 5% , supplied in ammopack of 1000 units is: AC01W47R00J

PACKAGING

Axial resistor (taped or loose in box)




TYPE	QUANTITY	М	N	Р
AC01	1000	85	60	263
Tape in box		(3.346)	(2.362)	(10.354)
AC03	500	85	77	259
Tape in box		(3.346)	(3.031)	(10.197)
AC04	500	85	77	259
Tape in box		(3.346)	(3.031)	(10.197)
AC05	500	85	112	259
Tape in box		(3.346)	(4.409)	(10.197)
AC07	500	93	115	259
Tape in box		(3.661)	(4.527)	(10.197)
AC10	500	110	117	275
Tape in box		(4.331)	(4.606)	(10.827)
AC15	100	140	60	335
Loose in box		(5.512)	(2.362)	(13.189)
AC20	100	140	60	335
Loose in box		(5.512)	(2.362)	(13.189)

Dimensions in mm (inches)

Axial resistor taped in reel (Special part number under request)

TYPE	QUANTITY
AC01	4000
AC02	1500
AC03	1500
AC04	1500
AC05	1000

TESTS AND REQUIREMENTS

Essentially all tests and requirements present in table bellow, follow the schedule of IEC standard, publication 60115-1, 60115-4 and 60068.

IEC 60115-1 CLAUSE	IEC 60068 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.8.4.2		Temperature coefficient	At 20/-40/20°C. 20/200/20°C: Resistive value < 10Ω Resistive value $\ge 10\Omega$	TC ≤ ±600ppm/°C - 80 ppm / °C <_TC
	Temperature rise	Horizontally mounted. loaded with Pn		TC≤ +140 ppm / °C Hot spot temperature less than maximum body temperature.
4.13		Short time overload	Room temperature; dissipation 10 x Pn; 5s (voltage not more than 1000V / 25mm)	Δ R/Rmax.: \pm 2% + 0.1 Ω
4.15		Robustness of resistor body.	load 200 ± 10N	no visible damage Δ R/Rmax.:0.5%+ 0.05 Ω

IEC 60115-1 CLAUSE	IEC 60068 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.16	U	Robustness of terminations:		
	Ua	Tensile all samples	load 10N; 10s	no visible damage
	Ub	Bending half number of samples	load 5N; 90°. 180°. 90°	Δ R/Rmax.: 0.5%+0.05 Ω
	Uc	Torsion other half number of samples	2 x 180° in opposite directions	
4.17	Та	Solderability	2s; 235°CF; flux600	Good tinning. no visible damage
4.18	Tb	Resistance to soldering heat	Thermal shock: 3s; 350°C, 2.5 mm from body.	ΔR/Rmax.: 0.5%+0.05Ω
4.19	14(Na)	Rapid change of temperature	0.5h - 40 °C 0.5h + 200 °C 5 cycles	no visible damage Δ R/Rmax.: 1% + 0.05 Ω
4.22	Fc	Vibration	Frequency 10 to 500 Hz. Displacement 0.75mm or acceleration 10g. three directions; total 6h (3x2h)	no visible damage Δ R/Rmax.: 0.5% + 0.05 Ω
4.23		Climatic sequence		
4.23.2	Ва	Dry heat	16h. 200 °C	
4.23.3	Db	Damp heat (accelerated) 1st cycle	24h; 55 °C; 95 - 100% R.H.	
4.23.4	Aa	Cold	2h; -40 °C	
4.23.5	М	Low air pressure	1h; 8.5 KPa; 15 – 35 °C	
4.23.6	Db	Damp heat (accelerated) remaining cycles	5 days; 55 °C; 95 – 100% R.H.	ΔR/Rmax.:1% + 0.05Ω
4.24.2	3(Ca)	Damp heat (steady state)	56 days; 40 °C; 90 - 95% R.H. dissipation ≤ 0.01Pn	No visible damage Δ R/Rmax.: 1% + 0.05 Ω
4.25.1		Endurance (at 70 °C)	1000h loaded with 0.9 Pn; 1.5h on and 0.5h off	No visible damage $\Delta R/R$ max.: 5% + 0.1 Ω
4.23.2	27(Ba)	Endurance at upper category temperature.	1000 hours; 200°C; no load	No visible damage Δ R/Rmax.: 5% + 0.1 Ω
4.29	45 (Xa)	Component solvent resistance	70% trichlorotrifluoroethane and 30% isopropyl alcohol; H ₂ O	No visible damage