AXIAL WIREWOUND RESISTORS AC

FEATURES

- General purpose resistors;
- High power dissipation in small volume;
- High pulse load handling capabilities;
- Different forming styles available;
- High temperature silicone coating.

MARKET SEGMENTS AND APPLICATIONS

Market Segment	Application
Industrial	Power supplies Motor speed controls
Telecom	Line protection resistor Power supplies
Consumer	Audio Editors Systems
Sound \& Vision	Hitchen appliances
DAP	White good
Lighting	Ballast equipment
Automotive	Dashboard electronics
	Electronic fuel injection

TECHNOLOGY

The resistor element is a resistive wire, which is wound, in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating . The resistor is coated with green silicon cement which is non-flammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215 " and "IEC 60068-2-45". The standard resistor is supplier with axial lead taped or with formed leads as a special type.

QUICK REFERENCE DATA

DESCRIPTION	AC01	AC03	AC04	AC05	AC07	AC10	AC15	AC20
Rated dissipation at $\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}$	1W	3W	4W	5W	7W	10W	15W	20W
Rated dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$	0.9W	2.5W	3.5W	4.7W	5.8W	8.4W	12.5W	16.0W
Resistance range (E24 Series), (see note 1)	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 2.4 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 5.1 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 6.8 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 8.2 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.1 \Omega \\ \text { to } \\ 15 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 0.68 \Omega \\ \text { to } \\ 27 \mathrm{k} \Omega \\ \hline \end{gathered}$	$\begin{gathered} 0.82 \Omega \\ \text { to } \\ 39 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 1.2 \Omega \\ \text { to } \\ 56 \mathrm{k} \Omega \end{gathered}$
Resistance tolerance (see note 2)	$\pm 5 \%$; (see note 2)							
Maximum permissive body temperature	$350^{\circ} \mathrm{C}$							
Temperature coefficient	values <10 : $+600 \mathrm{ppm} /{ }^{\circ} \mathrm{C} ;$ values $\geq 10 \Omega:-80 /+140 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (See note. 3)							
Climatic category (IEC 60068)	40/200/56							
Operator Temperature	$-40^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$							
Basic specification	IEC 60 115-1							
Limit voltage	$V=\sqrt{\text { Pn } \times \mathrm{R}}$							
Stability after : Load, 1000 hours Soldering Climatic tests Short time overload	$\Delta R / R m a x .: ~ \pm 5 \%+0.1 \Omega$ $\Delta R / R$ max.: $\pm 0.5 \%+0.05 \Omega$ $\Delta R / R \max .: \pm 1 \%+0.05 \Omega$ $\Delta R / R m a x .: \pm 2 \%+0.1 \Omega$							
Special product modifications available on request								
Note 1 Special resistives	values; L	w indutan	e styles					
Note 2 Tolerances.: 1\% 3\%	\% 10\%							
Note 3 Temperature coef	cient (pp	/$\left.{ }^{\circ} \mathrm{C}\right) .: 30$	50/90					
Note 4 Terminal lengths and	nd diamet							
Note 5 \quad Terminal with spe	ial configur	ration croppor	ped and	ormed,	uble kink	stand-up	rsion et	
Application information available on request								
1- Pulse load behaviour								
2- High frequency behaviour (self inductance)								

MECHANICAL DATA

Axial style

* Max. displacement between any two resistors.

| TYPE | L max. | D max. | C | D | \| B1-B2| | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AC01 | $\begin{gathered} 10 \\ (0.394) \\ \hline \end{gathered}$ | $\begin{gathered} 4.3 \\ (0.169) \\ \hline \end{gathered}$ | $\begin{gathered} 32 \\ (1.260) \\ \hline \end{gathered}$ | $\begin{gathered} 0.8 \pm 0.03 \\ (0.031 \pm 0.001) \end{gathered}$ | $\begin{gathered} \pm 1.2 \\ (0.047) \\ \hline \end{gathered}$ | $\begin{gathered} 63 \pm 2 \\ (2.480 \pm 0.079) \\ \hline \end{gathered}$ |
| AC03 | $\begin{gathered} 13 \\ (0.512) \end{gathered}$ | $\begin{gathered} 5.5 \\ (0.216) \end{gathered}$ | $\begin{gathered} 30 \\ (1.181) \end{gathered}$ | | $\begin{gathered} \pm 1.2 \\ (0.047) \\ \hline \end{gathered}$ | $\begin{gathered} 63 \pm 2 \\ (2.480 \pm 0.079) \end{gathered}$ |
| AC04 | $\begin{gathered} 17 \\ (0.669) \end{gathered}$ | $\begin{gathered} 5.7 \\ (0.224) \end{gathered}$ | $\begin{gathered} 28 \\ (1.102) \end{gathered}$ | | $\begin{gathered} \pm 1.2 \\ (0.047) \end{gathered}$ | $\begin{gathered} 63 \pm 2 \\ (2.480 \pm 0.079) \end{gathered}$ |
| AC05 | $\begin{gathered} 17 \\ (0.669) \\ \hline \end{gathered}$ | $\begin{gathered} 7.5 \\ (0.295) \\ \hline \end{gathered}$ | $\begin{gathered} 28 \\ (1.102) \\ \hline \end{gathered}$ | | $\begin{gathered} \pm 1.2 \\ (0.047) \\ \hline \end{gathered}$ | $\begin{gathered} 63 \pm 2 \\ (2.480 \pm 0.079) \\ \hline \end{gathered}$ |
| AC07 | $\begin{gathered} 25 \\ (0.984) \\ \hline \end{gathered}$ | $\begin{gathered} 7.5 \\ (0.295) \\ \hline \end{gathered}$ | $\begin{gathered} 28 \\ (1.102) \\ \hline \end{gathered}$ | | $\begin{gathered} \pm 1.2 \\ (0.047) \\ \hline \end{gathered}$ | $\begin{gathered} 73 \pm 2 \\ (2.874 \pm 0.079) \\ \hline \end{gathered}$ |
| AC10 | $\begin{gathered} 44 \\ (1.732) \end{gathered}$ | $\begin{gathered} \hline 8 \\ (0.315) \end{gathered}$ | $\begin{gathered} \hline 28 \\ (1.102) \\ \hline \end{gathered}$ | | $\begin{gathered} \pm 1.2 \\ (0.047) \end{gathered}$ | $\begin{gathered} 89 \pm 2 \\ (3.504 \pm 0.079) \end{gathered}$ |
| AC15 | $\begin{gathered} 51 \\ (2.008) \end{gathered}$ | $\begin{gathered} \hline 10 \\ (0.394) \end{gathered}$ | $\begin{gathered} \hline 28 \\ (1.102) \end{gathered}$ | | - | - |
| AC20 | $\begin{gathered} 67 \\ (2.638) \end{gathered}$ | $\begin{gathered} 10 \\ (0.394) \end{gathered}$ | $\begin{gathered} \hline 28 \\ (1.102) \end{gathered}$ | | - | - |

Dimensions in mm (inches).

Terminal forming types available under request

Stand-up type

Kink type S

Double kink type

The dimension for leads forming to be define as a function of specific application.

Radial tapped version (available for AC01 type)

Parameter	Symbol	Dimensions	Tolerance	Notes
Maximum body diameter	D	$\begin{gathered} 4.1 \\ (0.161) \\ \hline \end{gathered}$	Máx.	
Maximum body length	A	$\begin{gathered} 8.5 \\ (0.335) \\ \hline \end{gathered}$	Máx.	
Lead wire diameter	d	$\begin{gathered} 0.8 \\ (0.031) \end{gathered}$	$\begin{gathered} +0.06 /-0.05 \\ (+0.002 /-0.002) \end{gathered}$	
Pitch of components	P	$\begin{gathered} 12.7 \\ (0.500) \\ \hline \end{gathered}$	$\begin{gathered} \pm 1.0 \\ (0.039) \\ \hline \end{gathered}$	
Feed hole pitch	Po	$\begin{gathered} 12.7 \\ (0.500) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.2 \\ (0.008) \\ \hline \end{gathered}$	
Pitch error max.	-	$\begin{gathered} 1.0 \\ (0.039) \\ \hline \end{gathered}$	-	$\begin{gathered} \text { In } 20 \\ \text { spacing } \end{gathered}$
Feed-hole centre to lead at topside at the tape	P_{1}	$\begin{gathered} 3.85 \\ (0.151) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (0.002) \\ \hline \end{gathered}$	
Feed hole centre to body centre	P2	$\begin{gathered} 6.35 \\ (0.250) \\ \hline \end{gathered}$	$\begin{gathered} \pm 1.0 \\ (0.039) \\ \hline \end{gathered}$	
Lead-to-lead distance	F	$\begin{gathered} 5.0 \\ (0.197) \\ \hline \end{gathered}$	$\begin{gathered} +0.5 /-0.2 \\ (+0.002 /-0.008) \\ \hline \end{gathered}$	
Component alignment	$\Delta \mathrm{h}$	0	$\begin{gathered} \pm 1.2 \\ (0.047) \\ \hline \end{gathered}$	
Component alignment	$\Delta \mathrm{g}$	0	$\pm 3^{\circ}$	
Tape width	W	$\begin{gathered} 18.0 \\ (0.709) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (0.002) \\ \hline \end{gathered}$	
Minimum hol down tape width	W0	$\begin{gathered} 6.0 \\ (0.236) \\ \hline \end{gathered}$	$\begin{gathered} +0.2 /-0.5 \\ (+0.008 /-0.002) \end{gathered}$	
Hole position	W1	$\begin{gathered} 9.0 \\ (0.354) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (0.002) \end{gathered}$	
Maximum hold down tape position	W2	$\begin{gathered} 0.5 \\ (0.020) \\ \hline \end{gathered}$	Máx.	
Lead wire	H0	$\begin{gathered} 16.5 \\ (0.650) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ (0.020) \end{gathered}$	
Height of component from tape centre	H1	$\begin{gathered} 32.0 \\ (1.260) \\ \hline \end{gathered}$	Máx.	23min
Feed hole diameter	D_{0}	$\begin{gathered} 4.0 \\ (0.157) \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.2 \\ (0.008) \end{gathered}$	
Total tape thickness	T	$\begin{gathered} 0.9 \\ (0.035) \\ \hline \end{gathered}$	Máx.	0.4min
Maximum length of snipped lead	L	$\begin{gathered} 11.0 \\ (0.433) \\ \hline \end{gathered}$	Máx.	
Minimum lead wire (tape portion) shortest lead.	L1	$\begin{gathered} 2.5 \\ (0.098) \\ \hline \end{gathered}$	Mín.	

Dimensions in mm (Inches)

ELETRICAL CHARACTERISTICS

DERATING

The power that the resistor can dissipates depends on the operating temperature; see bellow.

Temperature rise of the resistor body as a function of the dissipation

APPLICATION INFORMATION

HOT SPOT

Hot Spot temperature rise (ΔT) as a function of dissipated power.

SOLDER SPOT

Lead length as a function of the dissipation with the temperature rise at the end of lead (soldering oint)

PULSE LOAD CAPABILITIES

How to interpret the maximum allowed pulse load from the graphs see details and definitions on general introduction

AC 01 - Single Pulse

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

AC 01

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

Pulse capability; W_{s} as a function of Rn .

AC 03 - Repetitive Pulse

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration.

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

AC 07

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration ti)

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

Pulse on regular basis; maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

AC 15 - Repetitive Pulse

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

--
Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

Pulse on regular basis;maximum permissible peak pulse power (Pmax) as a function of pulse duration (ti)

AC 20

Pulse on regular basis;maximun permissible peak pulse voltage (Vmax) as a function of pulse duration (ti)

MARKING

The resistor is marked with the nominal resistance value, the tolerance on the resistance and the rated dissipation at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$.
For values up to 910Ω, the R is used as the decimal point.
For values of $1 \mathrm{~K} \Omega$ and upwards, the letter K is used as the decimal point for the $\mathrm{K} \Omega$ indication.
Example:

$$
6 \mathrm{~K} 8 \quad 5 \%
$$

5W

ORDERING CODE (12NC)

The resistors have a 12-digit ordering code indicating the resistor type and resistive value.

Ordering example:
The ordering code of the AC01 resistor, value $47 \Omega 5 \%$, supplied in ammopack of 1000 units is:
230632833479

NAFTA ORDERING INFORMATION - CROSS REFERENCE

NAFTA ORDERING CODES

The resistor have on ordering code with 12 digits, first 5 digits for product type and the subsequent digits indicate the resistance value and tolerance.

Type	Resistance range	Tol. \%	12NC	Nafta part Number ${ }^{(1)}$	SPQ units
AC01	0.1Ω to $2 \mathrm{~K} \Omega$	± 5	2306328 33xxx	AC01WxxxxxJ	1000; ammopack
AC02	0.1Ω to $4,7 \mathrm{~K} \Omega$	± 5	2306326 33xxx	AC02Wxxxxx	500; ammopack
AC03	0.1Ω to $4.7 \mathrm{~K} \Omega$	± 5	2322329 03xxx	AC03WxxxxxJ	500; ammopack
AC03	0.1Ω to $5.1 \mathrm{~K} \Omega$	± 5	2306326 45xxx	AC03WxxxxxJCF203	500; Box
AC04	0.1Ω to $6.8 \mathrm{~K} \Omega$	± 5	2322329 04xxx	AC04WxxxxxJ	500; ammopack
AC05	0.1Ω to $8.2 \mathrm{~K} \Omega$	± 5	2322329 05xxx	AC05WxxxxxJ	500; ammopack
AC05	0.1Ω to $10 \mathrm{~K} \Omega$	± 5	2306321 45xxx	AC05WxxxxxJCF203	500; Box
AC07	0.1Ω to $15 \mathrm{~K} \Omega$	± 5	2322329 07xxx	AC07WxxxxxJ	500; ammopack
AC10	0.68Ω to $27 \mathrm{~K} \Omega$	± 5	2322329 10xxx	AC10WxxxxxJ	500; ammopack
AC15	0.82Ω to $39 \mathrm{~K} \Omega$	± 5	2322329 15xxx	AC15WxxxxxJ	100; Box
AC20	1.2Ω to $56 \mathrm{~K} \Omega$	± 5	2322329 20xxx	AC20WxxxxxJ	100; Box

COMPOSITION OF OHMIC VALUE

The ohmic value is represented by 5 digits.

Value	5 Digits (All Other)
1Ω	1 R 000
10Ω	10 R 00
100Ω	100 RO
$1 \mathrm{~K} \Omega$	1 K 000
$10 \mathrm{~K} \Omega$	10 K 00
$100 \mathrm{~K} \Omega$	100 K 0
$1 \mathrm{M} \Omega$	1 M 000

Ordering example:
The ordering code for AC01, value $47 \Omega 5 \%$, supplied in ammopack of 1000 units is: AC01W47R00J

PACKAGING

Axial resistor (taped or loose in box)

	TYPE	QUANTITY	M	N	P
	AC01 Tape in box	1000	$\begin{gathered} 85 \\ (3.346) \end{gathered}$	$\begin{gathered} 60 \\ (2.362) \end{gathered}$	$\begin{gathered} 263 \\ (10.354) \end{gathered}$
	$\begin{gathered} \text { AC03 } \\ \text { Tape in box } \end{gathered}$	500	$\begin{gathered} 85 \\ (3.346) \end{gathered}$	$\begin{gathered} 77 \\ (3.031) \end{gathered}$	$\begin{gathered} 259 \\ (10.197) \end{gathered}$
	$\begin{gathered} \text { AC04 } \\ \text { Tape in box } \end{gathered}$	500	$\begin{gathered} 85 \\ (3.346) \end{gathered}$	$\begin{gathered} \hline 77 \\ (3.031) \end{gathered}$	$\begin{gathered} 259 \\ (10.197) \end{gathered}$
	$\begin{gathered} \text { AC05 } \\ \text { Tape in box } \end{gathered}$	500	$\begin{gathered} 85 \\ (3.346) \end{gathered}$	$\begin{gathered} 112 \\ (4.409) \end{gathered}$	$\begin{gathered} 259 \\ (10.197) \end{gathered}$
	AC07 Tape in box	500	$\begin{gathered} 93 \\ (3.661) \end{gathered}$	$\begin{gathered} 115 \\ (4.527) \end{gathered}$	$\begin{gathered} 259 \\ (10.197) \\ \hline \end{gathered}$
	AC10 Tape in box	500	$\begin{gathered} 110 \\ (4.331) \end{gathered}$	$\begin{gathered} 117 \\ (4.606) \end{gathered}$	$\begin{gathered} 275 \\ (10.827) \end{gathered}$
	$\begin{gathered} \text { AC15 } \\ \text { Loose in box } \end{gathered}$	100	$\begin{gathered} 140 \\ (5.512) \end{gathered}$	$\begin{gathered} 60 \\ (2.362) \end{gathered}$	$\begin{gathered} 335 \\ (13.189) \end{gathered}$
	$\begin{gathered} \text { AC20 } \\ \text { Loose in box } \end{gathered}$	100	$\begin{gathered} 140 \\ (5.512) \end{gathered}$	$\begin{gathered} 60 \\ (2.362) \end{gathered}$	$\begin{gathered} 335 \\ (13.189) \end{gathered}$

Axial resistor taped in reel (Special part number under request)

TYPE	QUANTITY
AC01	4000
AC02	1500
AC03	1500
AC04	1500
AC05	1000

TESTS AND REQUIREMENTS

Essentially all tests and requirements present in table bellow, follow the schedule of IEC standard, publication 60115-1, 60115-4 and 60068.

$\begin{gathered} \text { IEC } \\ \text { 60115-1 } \\ \text { CLAUSE } \end{gathered}$	$\begin{gathered} \hline \text { IEC } \\ 60068 \\ \text { TEST } \\ \text { METHOD } \end{gathered}$	TEST	PROCEDURE	REQUIREMENTS
4.8.4.2		Temperature coefficient	$\begin{aligned} & \text { At } 20 /-40 / 20^{\circ} \mathrm{C} . \\ & 20 / 200 / 20^{\circ} \mathrm{C}: \\ & \text { Resistive value }<10 \Omega \\ & \\ & \text { Resistive value } \geq 10 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{TC} \leq \pm 600 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & -80 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \leq \mathrm{TC} \\ & \mathrm{TC} \leq+140 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
	Temperature rise	Horizontally mounted. loaded with Pn		Hot spot temperature less than maximum body temperature.
4.13		Short time overload	Room temperature; dissipation $10 \times \mathrm{Pn}$; 5s (voltage not more than $1000 \mathrm{~V} / 25 \mathrm{~mm}$)	$\Delta \mathrm{R} / \mathrm{Rmax} .: \pm 2 \%+0.1 \Omega$
4.15		Robustness of resistor body.	load $200 \pm 10 \mathrm{~N}$	no visible damage $\Delta R / R \max .: 0.5 \%+0.05 \Omega$

$\begin{aligned} & \text { IEC } \\ & \text { 60115-1 } \\ & \text { CLAUSE } \end{aligned}$	$\begin{gathered} \text { IEC } \\ 60068 \\ \text { TEST } \\ \text { METHOD } \end{gathered}$	TEST	PROCEDURE	REQUIREMENTS
4.16	U Ua Ub Uc	Robustness of terminations: Tensile all samples Bending half number of samples Torsion other half number of samples	load 10N; 10s load $5 \mathrm{~N} ; 90^{\circ} .180^{\circ} .90^{\circ}$ $2 \times 180^{\circ}$ in opposite directions	no visible damage $\Delta R / R m a x .: ~ 0.5 \%+0.05 \Omega$
4.17	Ta	Solderability	2s; $235{ }^{\circ} \mathrm{CF}$; flux600	Good tinning. no visible damage
4.18	Tb	Resistance to soldering heat	Thermal shock: 3s; $350^{\circ} \mathrm{C}, 2.5 \mathrm{~mm}$ from body.	$\Delta \mathrm{R} /$ Rmax.: $0.5 \%+0.05 \Omega$
4.19	14(Na)	Rapid change of temperature	$\begin{aligned} & 0.5 \mathrm{~h}-40^{\circ} \mathrm{C} \\ & 0.5 \mathrm{~h}+200^{\circ} \mathrm{C} \\ & 5 \text { cycles } \end{aligned}$	no visible damage $\Delta R / R m a x .: 1 \%+0.05 \Omega$
4.22	Fc	Vibration	Frequency 10 to 500 Hz. Displacement 0.75 mm or acceleration 10 g . three directions; total 6 h (3x2h)	no visible damage $\Delta R / R m a x$: $0.5 \%+0.05 \Omega$
4.23		Climatic sequence		
4.23.2	Ba	Dry heat	16h. $200{ }^{\circ} \mathrm{C}$	
$4.23 .3$	Db	Damp heat (accelerated) 1st cycle	$\begin{aligned} & 24 \mathrm{~h} ; 55^{\circ} \mathrm{C} ; \\ & 95-100 \% \text { R.H. } \end{aligned}$	
4.23.4	Aa	Cold	$2 \mathrm{~h} ;-40^{\circ} \mathrm{C}$	
4.23.5	M	Low air pressure	1h; 8.5 KPa; $15-35^{\circ} \mathrm{C}$	
4.23.6	Db	Damp heat (accelerated) remaining cycles	$\begin{aligned} & 5 \text { days; } 55^{\circ} \mathrm{C} \text {; } \\ & 95-100 \% \text { R.H. } \end{aligned}$	$\Delta \mathrm{R} / \mathrm{Rmax} .: 1 \%+0.05 \Omega$
4.24.2	3(Ca)	Damp heat (steady state)	$\begin{aligned} & 56 \text { days; } 40^{\circ} \mathrm{C} \text {; } \\ & 90-95 \% \text { R.H. } \\ & \text { dissipation } \leq 0.01 \mathrm{Pn} \end{aligned}$	No visible damage $\Delta R / R m a x .: ~ 1 \%+0.05 \Omega$
4.25 .1		Endurance (at $70^{\circ} \mathrm{C}$)	1000h loaded with 0.9 $\mathrm{Pn} ; 1.5 \mathrm{~h}$ on and 0.5 h off	No visible damage $\Delta \mathrm{R} /$ Rmax.: $5 \%+0.1 \Omega$
4.23.2	27(Ba)	Endurance at upper category temperature.	$\begin{aligned} & 1000 \text { hours; } 200^{\circ} \mathrm{C} \text {; no } \\ & \text { load } \end{aligned}$	No visible damage $\Delta R / R m a x .: 5 \%+0.1 \Omega$
4.29	45 (Xa)	Component solvent resistance	70% trichlorotrifluoroethane and 30% isopropyl alcohol; $\mathrm{H}_{2} \mathrm{O}$	No visible damage

