
TOSHIBA

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

VIEW)

12 1Y4

11 2A1

2Y1

GND 10

9 **Г**

(TOP

VIEW)

12 1Y4

11 2A1

12 1<u>7</u>4

11 2A1

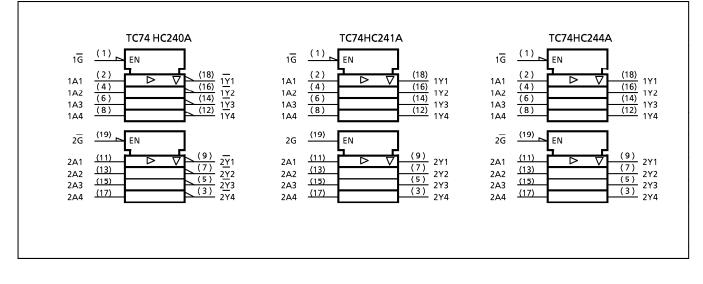
2Y1

GND 10

9 **Г**

(TOP

2<u>7</u>1 9


GND 10

Г

(TOP

VIEW)

IEC LOGIC SYMBOL

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	V _{OUT}	-0.5~V _{CC} +0.5	V
Input Diode Current	Ι _{ικ}	± 20	mA
Output Diode Current	Ι _{οκ}	±20	mA
DC Output Current	I _{OUT}	± 35	mA
DC V _{CC} / Ground Current	I _{cc}	± 75	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T _{stg}	-65~150	°C

*500mW in the range of Ta = -40° C~65°C. From Ta=65°C to 85°C a derating factor of -10mW/°C shall be applied until 300mW.

RECOMMENDED OPERATING CONDITIONS

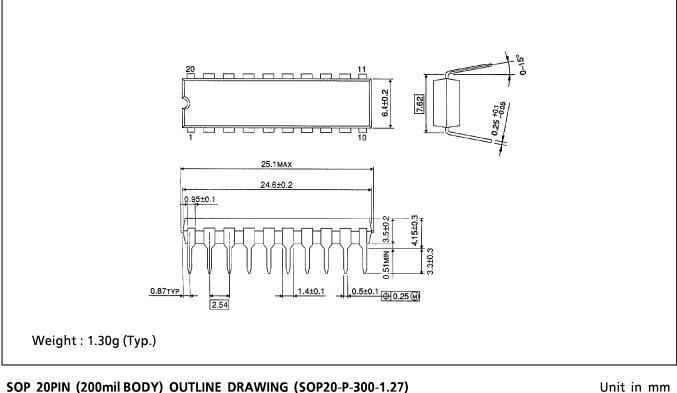
PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	V _{OUT}	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
Input Rise and Fall Time	t _r , t _f	$\begin{array}{r} 0 \sim 1000 \ (V_{CC} = 2.0V) \\ 0 \sim 500 \ (V_{CC} = 4.5V) \\ 0 \sim 400 \ (V_{CC} = 6.0V) \end{array}$	ns

DC ELECTRICAL CHARACTERISTICS

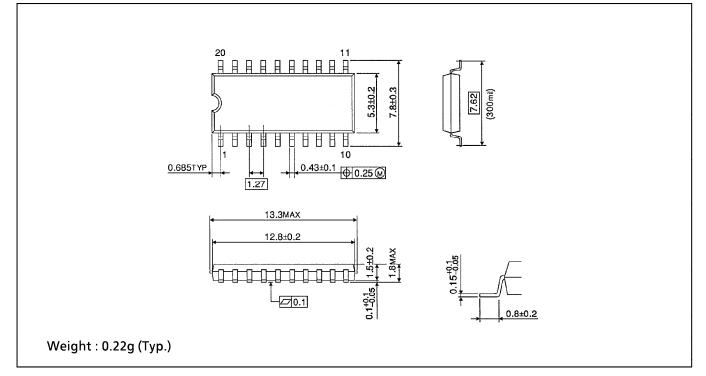
PARAMETER SYI	SYMBOL		CONDITION				a = 25°C		Ta = −40~85°C	
PARAIVIETER SYN		TEST CO		(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High - Level Input Voltage	VIH				1.50 3.15 4.20			1.50 3.15 4.20		v
Low - Level Input Voltage	VIL			2.0 4.5 6.0			0.50 1.35 1.80		0.50 1.35 1.80	v
High - Level Output Voltage	V _{OH}	V _{I N} = V _{I H} or V _{I L}	$I_{OH} = -20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9	_	v
			$I_{OH} = -6 \text{ mA}$ $I_{OH} = -7.8 \text{ mA}$	4.5 6.0	4.18 5.68	4.31 5.80	=	4.13 5.63	_	
Low - Level Output Voltage V	Vol	V _{I N} =	I _{OL} = 20μA	2.0 4.5 6.0		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	v
		V_{IH} or V_{IL}	$I_{OL} = 6 \text{ mA}$ $I_{OL} = 7.8 \text{mA}$	4.5 6.0	—	0.17 0.18	0.26 0.26	_	0.33 0.33	
3 - State Output Off - State Current	I _{oz}	$V_{1N} = V_{1H} \text{ or } V_{1L}$ $V_{OUT} = V_{CC} \text{ or GND}$		6.0	_		±0.5	_	± 5.0	
Input Leakage Current	I _{I N}	$V_{IN} = V_{CC} \text{ or } GND$		6.0	_		±0.1	—	± 1.0	μΑ
Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CC} \text{ or } GND$		6.0			4.0	—	40.0	

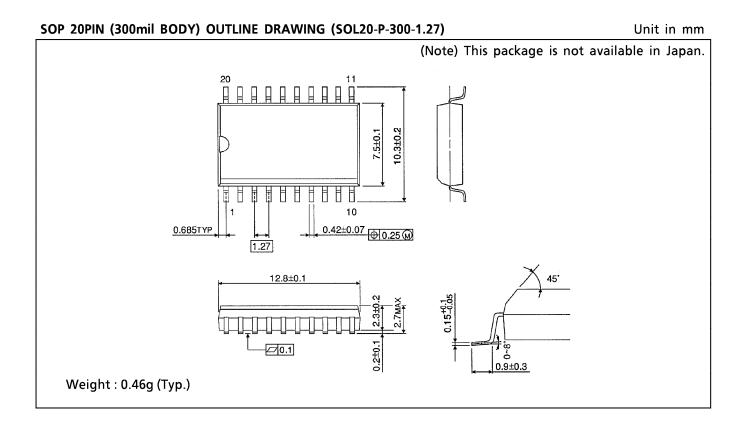
			V _{cc}	Ta = 25°C			Ta = - 40~85°C			
PARAMETER	STIMBUL	TEST CONDITION	(pF)	(V)	MIN.	TYP.	MAX.	MIN.	MAX.	
Output Transition Time	t _{TLH} t _{THL}		50	2.0 4.5 6.0		25 7 6	60 12 10		75 15 13	
Propagation Delay Time	t _{pLH}		50	2.0 4.5 6.0		36 12 10	90 18 15		115 23 20	
	t _{pHL}		150	2.0 4.5 6.0		51 17 14	130 26 22		165 33 28	
Output Enable time	t _{pZL} t _{pZH}	$R_L = 1 k\Omega$	50	2.0 4.5 6.0		48 16 14	125 25 21		155 31 26	ns
			150	2.0 4.5 6.0		63 21 18	165 33 28		205 41 35	
Output Disable time	t _{pLZ} t _{pHZ}	$R_L = 1 k \Omega$	50	2.0 4.5 6.0		32 15 14	125 25 21		155 31 26	
Input Capacitance	C _{IN}				_	5	10	—	10	
Output Capacitance	COUT					10	—	_	—	_
Power Dissipation Capacitance	C(1)	TC74HC240A				31	—	_	_	pF
	C _{PD} (1)	TC74HC241A / 244A		-	33	_	_	_		

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)


Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:


 I_{CC} (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 8$ (per bit)


DIP 20PIN OUTLINE DRAWING (DIP20-P-300-2.54A)

Unit in mm

SOP 20PIN (200mil BODY) OUTLINE DRAWING (SOP20-P-300-1.27)

