

- · Six 1:1 isolated windings that can be connected in series or parallel
- · Tightly coupled windings
- 500 Vrms isolation between each • winding
- Power range: 5 50 Watts as inductor and flyback transformer; up to 150 Watts as forward transformer
- Frequency range up to 1 MHz

These off-the shelf parts can be used to create thousands of configurations, providing a convenient method for designers to create custom magnetics. By connecting the windings in series or parallel, the Hexa-Path components can be configured as inductors, coupled inductors and transformers for use in virtually any application: flyback, buck/boost, push-pull, forward, full and half bridge, Cuk, and SEPIC.

There are six different sizes available with five HP parts and five HPH parts in each size. The HP offers lower DCR and higher Irms ratings. The HPH offers higher inductance and greater energy storage capabilities.

Winding Layouts

12 0

110

10 C

6 C

50

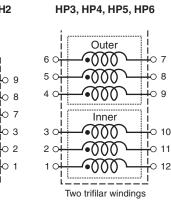
4 C

HP1, HP2, HPH1, HPH2

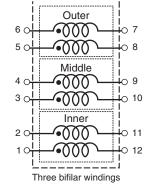
•000

•000

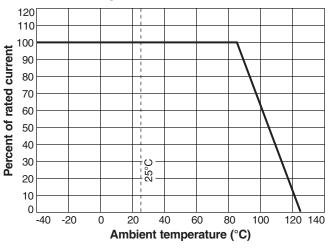
•000


•000

•000


•000

One 6-filar winding


0

HPH3, HPH4, HPH5, HPH6

Current Derating

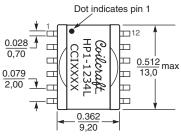
Specifications subject to change without notice. Please check our website for latest information.

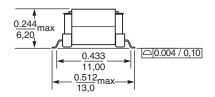
Document 613-1 Revised 01/23/09

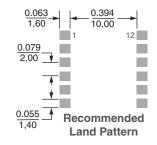
1102 Silver Lake Road Carv. Illinois 60013 **Phone** 847/639-6400 Fax 847/639-1469 E-mail info@coilcraft.com Web http://www.coilcraft.com

Downloaded from Elcodis.com electronic components distributor

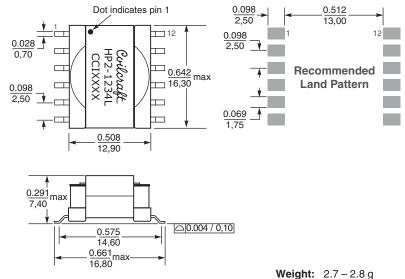
		0		- .		
Part number ¹	Inductance ² (µH)	DCR max ³ (Ohms)	Volt-time product ⁴ (V-µsec)	Peak energy storage⁵ (µJ)	Isat ⁶ (A)	Irms ⁷ (A)
HP1-1400L_	89.6 ±25%	0.130	23.4	Note 8	Note 8	0.74
HP1-0190L_	12.2 ±20%	0.130	23.4	29.8	0.440	0.74
HP1-0102L_	6.5 ±15%	0.130	23.4	55.1	0.820	0.74
HP1-0076L_ HP1-0059L	4.9 ±10% 3.8 ±5%	0.130 0.130	23.4 23.4	74.7 93.8	1.10 1.40	0.74 0.74
HP2-1600L_	78.4 ±25%	0.085	44.0	Note 8	Note 8	1.13
HP2-0216L	$10.6 \pm 20\%$	0.085	44.0	79.2	0.770	1.13
HP2-0116L_	5.7 ±15%	0.085	44.0	184	1.60	1.13
HP2-0083L_	4.1 ±10%	0.085	44.0	228	2.10	1.13
HP2-0066L_	3.2 ±5%	0.085	44.0	252	2.50	1.13
HP3-0950L_	77.0 ±25%	0.055	30.4	Note 8	Note 8	1.73
HP3-0138L_	11.2 ±20%	0.055	30.4	59.6 111	0.650 1.14	1.73 1.73
HP3-0084L_ HP3-0055L	6.8 ±15% 4.5 ±10%	0.055 0.055	30.4 30.4	156	1.14	1.73
HP3-0047L	$3.8 \pm 5\%$	0.055	30.4	173	1.90	1.73
 HP4-1150L_	93.2 ±25%	0.055	47.3	Note 8	Note 8	1.88
HP4-0140L_	11.3 ±20%	0.055	47.3	142	1.00	1.88
HP4-0075L_	6.1 ±15%	0.055	47.3	307	2.00	1.88
HP4-0060L_	4.9 ±10%	0.055	47.3	386	2.50	1.88
HP4-0047L_	3.8 ±5%	0.055	47.3	490	3.20	1.88
HP5-1200L_ HP5-0155L	76.8 ±25% 9.9 ±20%	0.045 0.045	62.8 62.8	Note 8 281	Note 8 1.50	2.25 2.25
HP5-0083L	$5.3 \pm 15\%$	0.045	62.8	562	2.90	2.25
HP5-0067L_	4.3 ±10%	0.045	62.8	626	3.40	2.25
HP5-0053L_	3.4 ±5%	0.045	62.8	946	4.70	2.25
HP6-2400L	86.4 ±25%	0.020	87.9	Note 8	Note 8	3.50
HP6-0325L	11.7 ±20%	0.020	87.9	332	1.50	3.50
HP6-0158L HP6-0121L	5.69 ±15% 4.36 ±10%	0.020 0.020	87.9 87.9	981 1485	3.70 5.20	3.50 3.50
HP6-0090L	$4.30 \pm 10\%$ 3.24 ±5%	0.020	87.9	1833	5.20 6.70	3.50
HPH1-1400L	202 ±25%	0.340	35.1	Note 8	Note 8	0.62
HPH1-0190L_	27.4 ±20%	0.340	35.1	31.1	0.300	0.62
HPH1-0102L_	14.7 ±15%	0.340	35.1	60.2	0.570	0.62
HPH1-0076L_	10.9 ±10%	0.340	35.1	99.2	0.850	0.62
HPH1-0059L_	8.5 ±5%	0.340	35.1	107	1.00	0.62
HPH2-1600L_	160 ±25%	0.155 0.155	30.8	Note 8	Note 8	0.83
HPH2-0216L_ HPH2-0116L	21.6 ±20% 11.6 ±15%	0.155	30.8 30.8	82.3 177	0.550 1.10	0.83 0.83
HPH2-0083L	8.3 ±10%	0.155	30.8	302	1.70	0.83
HPH2-0066L_	6.6 ±5%	0.155	30.8	333	2.00	0.83
HPH3-0950L_	160 ±25%	0.125	43.9	Note 8	Note 8	1.13
HPH3-0138L_	23.6 ±20%	0.125	43.9	52.5	0.420	1.13
HPH3-0084L_	14.2 ±15%	0.125	43.9	98.0	0.740	1.13
HPH3-0055L_ HPH3-0047L_	9.3 ±10% 7.94 ±5%	0.125 0.125	43.9 43.9	169 196	1.20 1.40	1.13 1.13
HPH4-1150L	194 ±25%	0.078	68.3	Note 8	Note 8	1.65
HPH4-0140L_	$23.7 \pm 20\%$	0.078	68.3	138	0.680	1.65
HPH4-0075L_	12.7 ±15%	0.078	68.3	314	1.40	1.65
HPH4-0060L_	10.1 ±10%	0.078	68.3	368	1.70	1.65
HPH4-0047L_	7.94 ±5%	0.078	68.3	529	2.30	1.65
HPH5-1200L_	173 ±25%	0.070	94.2	Note 8	Note 8	1.95
HPH5-0155L_ HPH5-0083L_	22.3 ±20% 12.0 ±15%	0.070 0.070	94.2 94.2	248 546	0.940 1.90	1.95 1.95
HPH5-0067L	$9.65 \pm 10\%$	0.070	94.2 94.2	700	2.40	1.95
HPH5-0053L_	7.63 ±5%	0.070	94.2	809	2.90	1.95
HPH6-2400L	194 ±25%	0.030	131.9	Note 8	Note 8	2.90
HPH6-0325L	26.3 ±20%	0.030	131.9	477	1.20	2.90
HPH6-0158L	12.8 ±15%	0.030	131.9	1176	2.70	2.90
HPH6-0121L HPH6-0090L	9.8 ±10% 7.29 ±5%	0.030 0.030	131.9 131.9	1783 1944	3.80 4.60	2.90 2.90
		0.000	101.3	1044	00	2.30
Coil	on al	4		cifications subj se check our w		
un	VUA		riea	SE CHECK OUT W	ensite iol	ialest IIII
	V	11	02 Silver La	ake Road Ca	ary, Illinoi	s 60013


1.	Please specify	/ termination and packaging codes:
	HPH1	-1400 L D
	Termination:	 L = RoHS compliant tin-silver over tin over nickel over phos bronze. Special order: T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).
	Packaging:	All but HP6 and HPH6:
		$\mathbf{D} = 13''$ machine-ready reel. EIA-481
		embossed plastic tape
		B = Less than full reel. In tape, but not machine ready. To have a leader and trailer added (\$25 charge), use code letter D instead.
0	Inductor of in	HP6 and HPH6: 24 per tray (no code)
2.	0.1 Vrms, 0 A	per winding, measured at 100 kHz, .dc.
3.	DCR is per wi	nding, measured on Cambridge nicro-ohmmeter or equivalent.
4.	windings coniti time product f multiply the va	duct is for a single winding or multiple nected in parallel. To calculate volt- or windings connected in series, alue specified in the table by the ndings connected in series.
5.	windings, ass	storage is for any combination of uming saturation current applied. See inition of saturation current.
6.		which the inductance drops 30% typ
	from its value applied to all s applications w series, use the	without current, based on current six windings connected in series. For there all windings are not connected in e following equation to calculate Isat: × 6 ÷ number of windings in series.
7.	due to self he flow through a Application te	auses a 40°C rise from 25°C ambient ating, tested with continuous current all windings connected in series. mperature rise will depend on the rent, duty cycle, and winding
	converter tran energy storag	ed exclusively for use as a forward Isformer and was not tested for Je and saturation current. cifications at 25°C.
Te nic		RoHS tin-silver over tin over s bronze. Other terminations
Ar cu	nbient temp irrent, +85°C	erature -40°C to +85°C with Irms to +125°C with derated current
+1	25°C. Packa	erature Component: –40°C to Iging: –40°C to +80°C
40	second refle	soldering heat Max three bws at +260°C, parts cooled to ure between cycles
M	oisture Sens	sitivity Level (MSL) 1 (unlimited °C / 85% relative humidity)
Fa 38 ca	ilures (MTB per billion ho lculated per T	urs / 26,315,789 hours, Felcordia SR-332
ree	commended	Only pure water or alcohol
	otice.	ocument 613-2 Bevised 01/23/09


Specifications subject to change without notice. Please check our website for latest information.


Document 613-2 Revised 01/23/09

1102 Silver Lake Road Cary, Illinois 60013 Phone 847/639-6400 Fax 847/639-1469 E-mail info@coilcraft.com Web http://www.coilcraft.com



Weight: 1.4 g Packaging 500 per 13" reel Plastic tape: 24 mm wide, 0.5 mm thick, 20 mm pocket spacing, 6.6 mm pocket depth

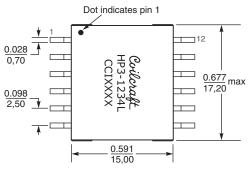
Dimensions are in $\frac{\text{inches}}{\text{mm}}$

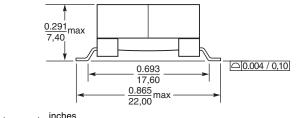
HP2, HPH2

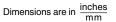
Dimensions are in $\frac{\text{inches}}{\text{mm}}$

Packaging 400 per 13" reel Plastic tape: 32 mm wide, 0.4 mm thick, 20 mm pocket spacing, 7.6 mm pocket depth

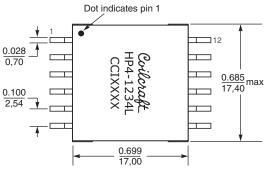
Coilcraft

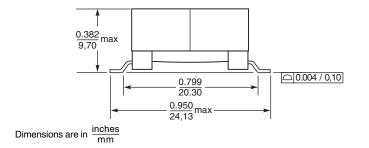

Specifications subject to change without notice. Please check our website for latest information.

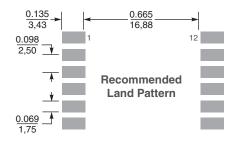

Document 613-3 Revised 01/23/09

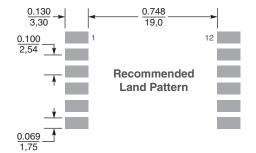

© Coilcraft, Inc. 2009

1102 Silver Lake Road Cary, Illinois 60013 Phone 847/639-6400 Fax 847/639-1469 E-mail info@coilcraft.com Web http://www.coilcraft.com







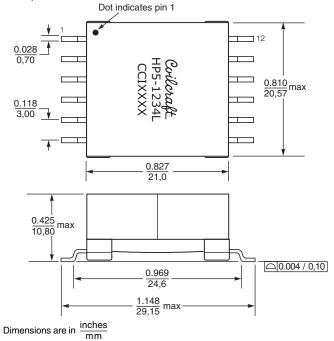

HP4, HPH4

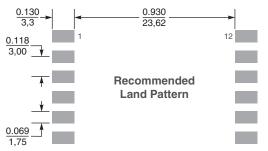
Weight: 4.2 – 4.6 g Packaging 200 per 13" reel Plastic tape: 44 mm wide, 0.4 mm thick, 28 mm pocket spacing, 9.6 mm pocket depth

Weight: 6.8 – 7.5 g Packaging 200 per 13" reel Plastic tape: 44 mm wide, 0.4 mm thick, 24 mm pocket spacing, 11.5 mm pocket depth

Coilcraft

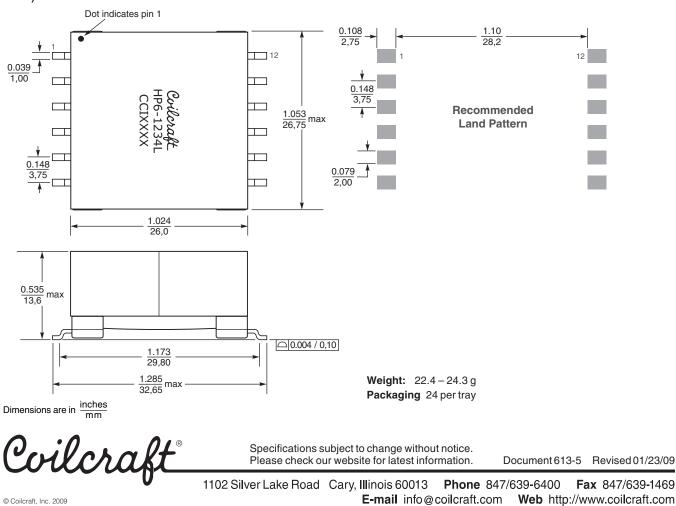
Specifications subject to change without notice. Please check our website for latest information.


Document 613-4 Revised 01/23/09


© Coilcraft, Inc. 2009

Downloaded from Elcodis.com electronic components distributor

1102 Silver Lake Road Cary, Illinois 60013 **Phone** 847/639-6400 **Fax** 847/639-1469 **E-mail** info@coilcraft.com **Web** http://www.coilcraft.com


NEW! Hexa-Path Magnetics HP5, HPH5

Weight: 10.6 – 11.5 g Packaging 175 per 13" reel Plastic tape: 44 mm wide, 0.4 mm thick, 28 mm pocket spacing, 12.0 mm pocket depth

Formulas used to calculate electrical characteristics

Connecting windings in series

 $\label{eq:constraint} \begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \times (number \ of \ windings)^2 \\ \mbox{DCR} = \mbox{DCR}_{table} \times number \ of \ windings \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div number \ of \ windings \ connected \ in \ series \\ \mbox{Irms} = \ \mbox{Irms}_{table} \end{array}$

Connecting windings in parallel

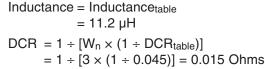
 $\begin{array}{l} \mbox{Inductance = Inductance_{table}} \\ \mbox{DCR = 1 \div [number of windings \times (1 \div DCR_{table})]} \\ \mbox{Isat = (Isat_{table} \times 6) \div number of windings connected in series} \\ \mbox{Irms = Irms_{table} \times number of windings} \end{array}$

Inductors – using multiple windings

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
HP3-0138L_	11.2 ±20%	0.055	30.4	1.656	0.650	1.73

Connecting windings in series

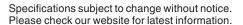
For higher inductance, the windings can be connected in series. As inductance increases, energy storage and Irms remain the same, but DCR increases and Isat decreases.

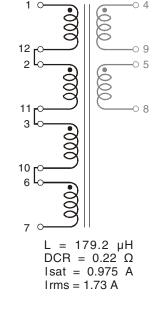

Example: Calculate new electricals for HP3-0138L with four windings (W_n) connected in series:

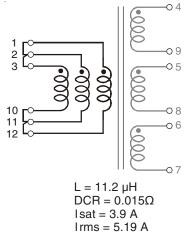
Irms = Irms_{table} = 1.73 A

Connecting windings in parallel

To increase current ratings, the windings (W_n) can be connected in parallel. DCR decreases, current ratings increase, and inductance remains the same.


Example: Calculate new electricals for HP5-0083L, with three (W_n) windings connected in parallel (equivalent to one winding in series):




 $lsat = (lsat_{table} \times 6) \div W_n$ $= (0.65 \times 6) \div 1 = 3.9 A$

Irms = Irms_{table} \times W_n = 1.73 \times 3 = 5.19 A

Document 613-6 Revised 01/23/09

© Coilcraft, Inc. 2009

Downloaded from Elcodis.com electronic components distributor

1102 Silver Lake Road Cary, Illinois 60013 **Phone** 847/639-6400 **Fax** 847/639-1469 **E-mail** info@coilcraft.com **Web** http://www.coilcraft.com

Formulas used to calculate electrical characteristics

Connecting windings in series

 $\label{eq:constraint} \begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \times (number of windings)^2 \\ \mbox{DCR} = \mbox{DCR}_{table} \times number of windings \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div number of windings connected in series \\ \mbox{Irms} = \mbox{Irms}_{table} \\ \mbox{Occ} = \mbox{Irms}_{table} \\ \mbox{Irms}_{table} = \mbox{Irms}_{table} \\ \mbox{Irms}_{table}$

Connecting windings in parallel

 $\begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \\ \mbox{DCR} = 1 \div [\mbox{number of windings} \times (1 \div \mbox{DCR}_{table})] \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div \mbox{number of windings} \\ \mbox{Irms} = \mbox{Irms}_{table} \times \mbox{number of windings} \end{array}$

Create a 13 Watt 2:1:1 flyback transformer with a bias winding

Choose HPH3-0138L

Vin = 36 - 57 Vdc; Vout = 12 V, 1.1 A

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
HPH3-0138L	23.6 ±20%	0.125	43.9	1.457	0.420	1.13

Connecting primary windings in series

When primary windings (W_{pri}) are connected in series, inductance increases, energy storage and Irms remain the same, but DCR increases and Isat decreases.

Example: For HPH3-0138L, connect two primary windings in series:

Inductance = Inductance_{table} × W_{pri^2} = 23.6 × 2² = 94.4 µH

 $\begin{array}{l} \text{DCR} &= \text{DCR}_{table} \times W_{pri} \\ &= 0.125 \times 2 = 0.25 \text{ Ohms} \end{array}$

Isat = $(Isat_{table} \times 6) \div W_{pri}$ = $(0.42 \times 6) \div 2 = 1.26 \text{ A}$

Irms = Irmstable = 1.13 A

Connecting secondary windings in parallel

When secondary windings (W_{sec}) are connected in parallel, DCR decreases and Irms increases.

Example: For HPH3-0083L, connect two secondary windings in parallel:

 $\begin{aligned} \text{DCR} &= 1 \div [W_{\text{sec}} \times (1 \div \text{DCR}_{\text{table}})] \\ &= 1 \div [(2 \times (1 \div 0.125)] = 0.0625 \text{ Ohms} \end{aligned}$

 $Irms = Irms_{table} \times W_{sec} = 1.13 \times 2 = 2.26 \text{ A}$

olcr

Specifications subject to change without notice. Please check our website for latest information.

Document 613-7 Revised 01/23/09

Pri $\begin{array}{c} 12 \\ 2 \\ 0 \\ 11 \\ 3 \\ 0 \\ 10 \end{array}$

Primary: L = 94.4 μH DCR = 0.25Ω Isat = 1.26 A Irms = 1.13 A

Secondary: DCR = 0.0625Ω Irms = 2.26 A

1102 Silver Lake Road Cary, Illinois 60013 **Phone** 847/639-6400 **Fax** 847/639-1469 **E-mail** info@coilcraft.com **Web** http://www.coilcraft.com

Downloaded from Elcodis.com electronic components distributor

Formulas used to calculate electrical characteristics

Connecting windings in series

 $\label{eq:constraint} \begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \times (number of windings)^2 \\ \mbox{DCR} = \mbox{DCR}_{table} \times number of windings \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div number of windings connected in series \\ \mbox{Irms} = \mbox{Irms}_{table} \end{array}$

Connecting windings in parallel

 $\begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \\ \mbox{DCR} = 1 \div [\mbox{number of windings} \times (1 \div \mbox{DCR}_{table})] \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div \mbox{number of windings} \\ \mbox{Irms} = \mbox{Irms}_{table} \times \mbox{number of windings} \end{array}$

Create a 130 Watt, 1:1, two switch forward converter transformer

Choose HPH6-2400L

Vin = 36 - 57 Vdc; Vout = 12 V, 10.8 A

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
HPH6-2400L	194 ±25%	0.030	131.9	N/A	N/A	2.90

Connecting primary windings in parallel

When primary windings (W_{pri}) are connected in parallel, DCR decreases, Irms increases, and inductance and volt-time product remain the same.

Example: For HPH6-2400L, connect three primary windings in parallel:

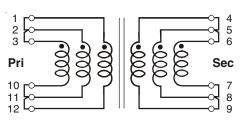
 $\label{eq:constraint} \begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \\ = 194 \ \mu H \\ \\ \mbox{DCR} = 1 \ \div \left[(W_{pri} \times (1 \ \div \ DCR_{table}) \right] \\ = 1 \ \div \left[(3 \times (1 \ \div \ 0.030]) = 0.010 \ \mbox{Ohms} \end{array} \right]$

- VT = VT_{table} = 131.9 V-µsec
- Irms = Irms_{table} \times W_{pri} = 2.90 \times 3 = 8.70 A

Connecting secondary windings in parallel

When secondary windings (W_{sec}) are connected in parallel, DCR decreases and Irms increases.

Example: For HPH6-2400L, connect three secondary windings in parallel:


DCR = $1 \div [W_{sec} \times (1 \div DCR_{table})]$ = $1 \div [(3 \times (1 \div 0.030)] = 0.010$ Ohms

 $Irms = Irms_{table} \times W_{sec}$ $= 2.90 \times 3 = 8.70 \text{ A}$

oilcra

Specifications subject to change without notice. Please check our website for latest information.

Document 613-8 Revised 01/23/09

 Primary:

 L = 194 μH

 DCR = 0.01Ω

 Irms = 8.7 A

 VT = $131.9 \text{ V-}\mu\text{sec}$

Secondary: DCR = 0.01Ω Irms = 8.7 A

Downloaded from Elcodis.com electronic components distributor

1102 Silver Lake Road Cary, Illinois 60013 **Phone** 847/639-6400 **Fax** 847/639-1469 **E-mail** info@coilcraft.com **Web** http://www.coilcraft.com

Formulas used to calculate electrical characteristics

Connecting windings in series

Inductance = Inductance_{table} \times (number of windings)² $DCR = DCR_{table} \times number of windings$ Isat = $(Isat_{table} \times 6) \div$ number of windings connected in series Irms = Irmstable

Connecting windings in parallel

Inductance = Inductance_{table} $DCR = 1 \div [number of windings \times (1 \div DCR_{table})]$ $Isat = (Isat_{table} \times 6) \div$ number of windings connected in series Irms = Irmstable × number of windings

Create a 100 Watt, 1:2, half bridge forward converter transformer with center tapped secondary

Choose HP6-2400L

Vin = 36 – 57 Vdc; Vout = 24 V, 4.2 A

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
HPH6-2400L	194 ±25%	0.030	131.9	N/A	N/A	2.90

Connecting primary windings in parallel

When primary windings (Wpri) are connected in parallel, DCR decreases, current ratings increase, and inductance and volt-time product remain the same.

Example: For HPH-2400L, connect two primary windings in parallel:

Inductance = Inductance_{table} = 194 µH $DCR = 1 \div [W_{pri} \times (1 \div DCR_{table})]$ $= 1 \div [(2 \times (1 \div 0.030))] = 0.015$ Ohms

VT = VT_{table} = 131.9 V-µsec

 $Irms = Irms_{table} \times W_{pri}$ = 2.90 × 2 = 5.8 A

Connecting secondary windings in series

When secondary windings (Wsec) are connected in series, Irms remains the same, but DCR increases.

Example: For HP6-2400L, connect four secondary windings in series, creating a center tap at pins 9 and 5. For each half of the secondary:

DCR = DCR_{table} × W_{sec} = 0.030 × 2 = 0.060 Ohms $Irms = Irms_{table}$

= 2.9 A

Specifications subject to change without notice. Please check our website for latest information.

Document 613-9 Revised 01/23/09

03 _പ10 Sec A പ്പ 9 Pri • 5 Sec B

Primary:	Each half secondary;
L = 194 µH	Sec A (3-9), Sec B5-7):
DCR = 0.015Ω	DCR = 0.06Ω
Irms = 5.8 A	Irms = 2.9 A
VT = 131.9 V-usec	

1102 Silver Lake Road Cary, Illinois 60013 Phone 847/639-6400 Fax 847/639-1469 E-mail info@coilcraft.com Web http://www.coilcraft.com

Downloaded from Elcodis.com electronic components distributor

Formulas used to calculate electrical characteristics

Connecting windings in series

 $\label{eq:constraint} \begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \times (\mbox{number of windings})^2 \\ \mbox{DCR} = \mbox{DCR}_{table} \times \mbox{number of windings} \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div \mbox{number of windings connected in series} \\ \mbox{Irms} = \mbox{Irms}_{table} \end{array}$

Connecting windings in parallel

 $\begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \\ \mbox{DCR} = 1 \div [\mbox{number of windings} \times (1 \div \mbox{DCR}_{table})] \\ \mbox{Isat} = (\mbox{Isat}_{table} \times 6) \div \mbox{number of windings} \\ \mbox{Irms} = \mbox{Irms}_{table} \times \mbox{number of windings} \end{array}$

Create a 1:1 gate drive transformer

Choose HP1-1400L

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
HP1-1400L	89.6±25%	0.130	23.4	N/A	N/A	0.74

Connecting primary windings in series

When primary windings (W_{pri}) are connected in series, inductance and volt-time product increase, energy storage and Irms remain the same, but DCR increases.

Example: For HPH1-1400L, connect three primary windings in series:

 $\begin{array}{l} \mbox{Inductance} = \mbox{Inductance}_{table} \times \mbox{W}_{pri}^2 \\ = 89.6 \times 3^2 = 806.4 \ \mu \mbox{H} \\ \mbox{DCR} = \mbox{DCR}_{table} \times \mbox{W}_{pri} \\ = 0.130 \times 3 = 0.39 \ \mbox{Ohms} \end{array}$

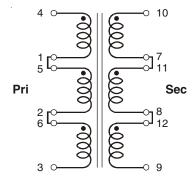
VT = VT_{table} × W_{pri} = 70.2 V-µsec

 $Irms = Irms_{table} = 0.74$

Connecting secondary windings in series

When secondary windings (W_{sec}) are connected in series, Irms remains the same, but DCR increases.

Example: For HP1-1400L, connect three secondary windings in series:


 $DCR = DCR_{table} \times W_{sec}$ $= 0.130 \times 3 = 0.39 \text{ Ohms}$ $Irms = Irms_{table}$

= 0.74

oilcra

Specifications subject to change without notice. Please check our website for latest information.

Document 613-10 Revised 01/23/09

1102 Silver Lake Road Cary, Illinois 60013 Phone 847/639-6400 Fax 847/639-1469 E-mail info@coilcraft.com Web http://www.coilcraft.com