
Engines for Global Connectivity

FEATURES

- Path overhead (POH) processing for up to $12 \times$ STS-1 SPEs or $4 \times$ VC-4/STS-3c SPEs
- 4 Tx and 4 Rx Pointer Tracking State Machines (PTSM). Each performs pointer tracking of up to three STS-1 pointers in STS-3 mode, or a single STS-3c pointer in STS-3c mode, or a single AU-4 pointer in STM-1 mode.
- Non-blocking cross connects allow AU-3s or AU-4s to be routed to any like direction Telecom Bus
- Four full duplex 19.44 Mbyte/s Telecom Bus interfaces
- Supports STS-3, STS-3c, or STM-1 SPE/VCs on a per Telecom Bus basis
- Standard 8-bit wide host microprocessor interface (selectable between Intel or Motorola)
- Maskable interrupt request bits for host interface
- Performance counters for receive B3 errors and REI
- Retimer modules for each Telecom Bus can retime data and optionally track SONET/SDH pointers in either the TX or RX direction
- Loss of Pointer (LOP), Path AIS (PAIS), and POH alarm interrupt request bits provided for each STS/AU-4
- Boundary scan capability (IEEE 1149.1)
- +3.3V power supply
- 456-lead plastic ball grid array package (PBGA), 27 mm x 27 mm

DESCRIPTION

The POP-12 ${ }^{\text {TM }}$ integrates STS-1-SPE/STS-3c-SPE/VC-4 POH processing, AU-3/AU-4 pointer processing/retiming, and AU-3/AU-4 cross connect for four Telecom Bus interfaces into one package. It provides an interface to high density mapper applications when used with the TranSwitch PHAST-12E (TXC-06212), and mapper and framer devices. The POP-12 device is designed to provide a seamless interface with the PHAST-12E device.
In SDH mode, the POP-12 can interface up to four Telecom Buses, and simultaneously terminate and process up to four individual VC-4 POH streams, while providing pointer retiming at the outputs of the Telecom Buses. The two integrated non-blocking cross connects can cross connect $\mathrm{A} U-4 \mathrm{~s}$ to any Telecom Bus (in the same direction).
In SONET mode, the POP-12 provides the same functions as in SDH mode for STS-3c payloads, plus, it can alternatively terminate and process up to twelve individual STS-1-SPE POH streams for four individual STS-3s. Its two integrated non-blocking cross connects allow either AU-3 or AU-4 level cross connecting to any Telecom Bus (in the same direction), and perform pointer retiming at the outputs of the Telecom Buses.

APPLICATIONS

- Auxiliary POH processor for PHAST-12E
- Interconnects multiple or single SONET/SDH Overhead Terminators and mapper devices
- IXC/ILEC Central Office Equipment
- OC-12/48 Add/Drop Mux
- Multiple STM-1/STS-3c/STS-3 Add/Drop Mux
- Grooming Switching for Metro Networks
- TransMux for DS-3 to VT mapping
- T1/E1 or T3/E3 aggregation
- Protection Applications

Copyright © 2003 TranSwitch Corporation POP-12 is a Trademark of TranSwitch Corporation TranSwitch and TXC are registered trademarks of TranSwitch Corporation

TranSwitch Corporation • 3 Enterprise Drive - Shelton, Connecticut 06484 - USA
 Tel: 203-929-8810 . Fax: 203-926-9453 . www.transwitch.com

TABLE OF CONTENTS

Section Page
List of Figures 3
Applicable Standards Documentation 4
Scope 5
Overview 6
General Device Level 7
Telecom Bus Interface 7
Microprocessor Interface 8
Retimer Block 8
Cross Connect Block 9
RX Popfunction Block 9
TX Popfunction Block 10
Mechanical and packaging requirements 10
Power 10
Boundary Scan 10
Lead Diagram 11
Lead Descriptions 12
Absolute Maximum Ratings and Environmental Limitations． 28
Thermal Characteristics． 28
Power Requirements 28
Input，Output and Input／Output Parameters 29
Timing Characteristics 31
Operation 48
General Information and Memory Map Bit Ordering 48
Clocks 48
POP－12 Power－Up－Reset Sequence 48
AURT（AU／STS Retiming Block） 51
AUCC（AU／STS Cross Connect Block） 52
POP（Path Overhead Processing） 52
TX J1 Trace Buffer 54
TX C2，F2，F3，K3，N1 Insert． 54
TX H4 Insert 54
TXG1 Insert 55
TX B3 Generator 56
TX All Zeros Generator 56
RX J1 Trace Buffer． 56
RX C2． 57
RX F2，F3，K3，N1 Bytes 57
RX B3 Checker 57
RX G1 57
RX H4 Byte 57
Sequencer 58
CMUX 58
Microprocessor Interface 58
Boundary Scan Interface 58
Throughput Delay 58
Memory Map 59
Control and Status Registers 62 DATA SHEET
Boundary Scan 88
Boundary Scan Introduction 88
Boundary Scan Chain 90
BSDL File 90
Application Examples 90
Transmux 90
Terminal Mux for High Density DS-3/E3 Access. 92
1+1 APS for OC-12/STM-4 Multiplex Section/Line Protection 92
Linear Add/Drop Mux 94
Dual Ring Add/Drop Mux 95
ADM for Single VC-4 97
Multiservice ADM with Pass Through 99
Package Information 101
Ordering Information 102
Related Products. 102
Standards Documentation Sources 104
List of Data Sheet Changes 106
LIST OF FIGURES
Figure Page
1 POP-12 TXC-06603 High Level Block Diagram 7
2 POP-12 TXC-06603 Lead Diagram (Bottom View) 12
3 Transmit Telecom Bus ($x=A, B, C, D$) Input Timing. 32
4 Transmit Telecom Bus ($x=A, B, C, D$) Output Timing 34
5 Receive Telecom Bus ($x=A, B, C, D$) Input Timing 36
6 Receive Telecom Bus ($x=A, B, C, D$) Output Timing 38
7 Asynchronous Microprocessor Interface: Intel-type Write Cycle Timing 40
8 Asynchronous Microprocessor Interface: Intel-type Read Cycle Timing 42
9 Asynchronous Microprocessor Interface: Motorola-type Write Cycle Timing 44
10 Asynchronous Microprocessor Interface: Motorola-type Read Cycle Timing 46
11 Boundary Scan Timing 48
12 Block Diagram of POP-12 Device RX Direction 50
13 Block Diagram of POP-12 Device TX Direction. 51
14 Pointer Tracking State Machine 53
15 High Level Block Diagram of $1 / 12$ of POP-12 Function. 54
16 Muxing of 3 POP Functions for STS-3 55
17 Boundary Scan Schematic 90
18 TransMux Application for the POP-12 92
19 Terminal Mux Application for the POP-12 93
20 1+1 APS Application for Multiplex Section/Line Protection 94
21 Linear Add/Drop Mux 95
22 Dual-Ring Add/Drop Mux with Path Protection 96
23 Path Protection for one VC-4 path. 98
24 ADM with pass through of two Telecom Bus channels, ADD/DROP of one tributary, and termination of one VC-4/STS-3c into the UTOPIA Level 2 Bus. 100
25 POP-12 TXC-06603 456-Lead Plastic Ball Grid Array Package 102

APPLICABLE STANDARDS DOCUMENTATION

Standards documents applicable to the functions of the POP－12 are listed in the table below．The addresses and other contact information for the organizations that publish or distribute them are provided at the rear of this document．References to these documents are made in the text by showing the document number in brackets，e．g．，［G．707］．

Document No．

G． 707
G． 783 ITU－T，Characteristics of Synchronous Digital Hierarchy（SDH）Equipment Functional Blocks，（04／97）
GR－253 Bellcore，GR－253－CORE，Synchronous Optical Network（SONET）Transport Systems： Common Generic Criteria，Issue 2，（12／95），Revision 2 （01／99）

IEEE 1149.1 IEEE Standard Access Port and Boundary Scan Architecture（1990，supplement a 1993， and supplement b 1994）

SCOPE

This document provides a detailed description of the features, characteristics and operation of the TranSwitch POP-12 (12-Channel Path Overhead Processor Retimer, and Cross Connect) device. The primary application of the POP-12 is to provide the Path Overhead Processing for the PHAST-12E device in Telecom applications.
Throughout this document, SONET and SDH terminologies are used interchangeably when describing portions of the payload or overhead of a SONET/SDH frame. SDH terminology provides more "granularity" for describing parts of a frame and hence is used more often. e.g., An STS-3c-SPE can be referred to as a VC-4 in this document, an STS-3c-SPE plus its pointer is referred to as an AU-4, etc.

OVERVIEW

Figure 1. POP-12 TXC-06603 High Level Block Diagram

The POP-12, integrates STS-1-SPE/STS-3c-SPE/VC-4 POH processing, AU-3/AU-4 pointer processing/retiming, and AU-3/AU-4 cross connect for four telecom bus interfaces into one package. It provides an interface to high density mapper applications when used with TranSwitch's PHAST-12E and mapper and framer devices. In fact the POP-12 device is designed to provide a seamless interface with the PHAST-12E device.

In SDH mode, the POP-12 can interface up to four telecom buses, and simultaneously terminate and process up to four individual VC-4 POH streams, while providing pointer retiming at the output telecom busses. The two integrated non-blocking cross connects can cross connect AU-4s to any telecom bus (in the same direction).

In SONET mode, the POP-12 provides the same functions as in SDH mode for STS-3c payloads, plus, it can alternatively terminate and process up to twelve individual STS-1-SPE POH streams for four individual STS3 s . Its two integrated non-blocking cross connects allow either AU-3 or AU-4 level cross connecting to any telecom bus (in the same direction), and perform pointer retiming at the output telecom busses.
Standard compliant performance monitoring and alarm processing is provided and can be accessed through a generic microprocessor interface that can be configured to support either an INTEL or MOTOROLA style bus. Detected alarms can generate maskable interrupts to the host microprocessor.

Table 1. Signals Terminated By The POP-12

Signal	Number of Signals that can be terminated	Payload Granularity	Total Number of Payloads that can be Simultaneously Processed	Cross Connect Type available
STS-3	4	STS-1-SPE	$12 x$ STS-1-SPE	AU-3
STS-3c	4	STS-3c-SPE	$4 \times$ STS-3c-SPE	AU-4
STM-1	4	VC-4	$4 x$ VC-4	AU-4

GENERAL DEVICE LEVEL

- Four full duplex telecom bus interfaces.
- Supports STS-3, STS-3c, or STM-1 SPE/VCs on a per Telecom Bus basis.
- Standard 8-bit wide microprocessor Interface (lead selectable between Intel or Motorola).
- Performance counters.
- Maskable interrupt request bits.
- Retimer modules for each telecom bus can retime data and optionally track SONET/SDH pointers in either the TX or RX direction.
- Non-blocking cross connects allow AU-3/AU-4s to be routed to any Telecom Bus. The granularity for payloads that can be handled by the cross connect is shown in Table 1 above.
- POH processing for up to $12 x$ STS-1-SPEs or $4 x \mathrm{VC}-4 /$ STS-3c-SPE.

TELECOM BUS INTERFACE

- 8-bit wide data interface
- 19.44 MHz clock ($\pm 20 \mathrm{ppm}$)
- SPE indication
- J0, J1, and optionally V1 pulses.
- In the TX direction, the transmitted H 4 byte can optionally be synchronized to the input V1 pulse.
- In the RX direction, V1 pulses can optionally be output which are synchronized to the received H 4 byte.

Engines for Global Connectivity

- Fail signals. Input fail signals can be used to force all 1 s in its corresponding SPE/AU. Output Fail signals indicate that either the corresponding fail input has been activated or that Loss of Pointer or Path AIS have been detected while the pointer tracking state machine in the retimer block has not been bypassed. The Fail inputs go through a cross connect so that they are cross connected along with their corresponding SPE/VC to the corresponding fail output.

MICROPROCESSOR INTERFACE

- 8 -bit wide data bus
- 3 internal registers are used to access the internal 16-bit address space. Two address registers contain the address to be accessed. The third register is used to read or write to the address pointed to by the two address registers.
- Intel or Motorola style bus interfaces selected by hardware strap.
- Asynchronous microprocessor interface clock from 8-20 MHz.
- Interrupt lead driven by maskable interrupt request bits. Active high for Intel interface and active low for Motorola Interface.
- READY/DTACK lead.
- Provides access to all control bits, interrupt request bits, and performance counters. All interrupt request bits latch the interrupt request and clear on read. They become set again if the causing alarm persists. Counters are non-saturating and roll over when they overflow.

RETIMER BLOCK

Retimer blocks are identical for both the TX and RX directions. The POP-12 contains 4 retimer blocks in the TX direction and 4 in the RX direction. This allows up to 12 STS-1-SPEs to be processed in each direction. The features of an individual Retimer Block is given below:

- Telecom Bus interface for input and output.
- Supports STS-3, STS-3c, or STM-1 traffic.
- Can be programmed to find pointers using C 1 byte pulse or A_{3} byte pulse from input Telecom Bus.
- Pointer Tracking State Machine (PTSM) performs pointer tracking of up to three STS-1 pointers in STS-3 mode, or a single STS-3c pointer in STS-3c mode, or a single AU-4 pointer in STM-1 mode.
- 8-bit counters are provided for counting positive pointer justifications detected.
- 8-bit counters are provided for counting negative pointer justifications detected.
- Loss of Pointer (LOP) and Path AIS (PAIS) detected interrupt request bits provided for each STS/AU-4 pointer.
- All 1 s signal is generated downstream if LOP or PAIS are detected.
- Output of PTSM is buffered in a 64-byte FIFO. There are three 64-byte FIFOs, one for each STS. The three 64-byte FIFOs operate in parallel as a single FIFO when in STS-3c or STM-1 modes.
- A retimer block takes data from the FIFOs and retimes them to a reference clock.
- The output frame can be synchronized to an optional frame pulse with programmable delays of $1,4,7,10,13,16$, or 19. There is one reference clock and frame input for the TX Retimer Blocks and there is another reference clock and frame input for the RX Retimer Blocks.
- The PTSM can be bypassed and the input Telecom Bus signal can just be retimed. In this case the SPE J0 and J1 signals are required.
- When bypassed or not bypassed, the Retimer Blocks can accept an optional V1 pulse without causing problems. However, in the TX direction, the V1 pulse can be used to synchronize the TX H4 POH byte to provide a multiframe indication for VT and Low Order VC applications.

DATA SHEET

CROSS CONNECT BLOCK

The TX and RX cross connect blocks are identical.

- The cross connect blocks have four Telecom Bus inputs and four Telecom Bus outputs.
- Any of the AU-3/AU-4 output from the Retimer Block can be cross connected and applied to any of the Cross Connects output Telecom Busses, in the same direction. e.g., STS-1 \#3 of input TX Telecom Bus 1 can be cross connected to STS-1 \#2 of output TX Telecom Bus 3.
- Broadcasting of AU-3/AU-4 can be done.

RX POPFUNCTION BLOCK

- Can support STS-3/STS-3c/STM-1 POH bytes.
- All RX POH bytes are written to on chip memory and can be read.
- 64-byte circulating buffer for RX J1 bytes.
- 16-bit counter for counting RX B3 errors.
- 16-bit counter for counting RX FEBE/REI. RX FEBE/REI greater than 8 H are counted as 0 H .
- C2 Mismatch (SLM) detection based on microprocessor written expected C2 byte. RX C2 byte=01H is not considered a mismatch. An SLM interrupt request bit is provided.
- RX Unequipped Signal Label (UNEQ) detection. An UNEQ interrupt request bit is provided.
- Path Trace Mismatch (TIM) alarm detection (64-byte or 16-byte) based on microprocessor written expected J1 message. A TIM interrupt request bit is provided.
- 1-bit or 3-bit path RDI can be detected. The detection of LOP or PAIS disables RDI detection. A RDI interrupt request bit is provided.
- V1 pulse generated on output Telecom Bus interface based on RX H4 byte=00H.
- Control bits provided for enabling disabling RX C2 byte processing, RX V1 pulse generation, RX J1 byte processing, RX FEBE reception.
- RX All1s signal is generated when LOP or PAIS are detected by the PTSM.
- RX All is signal is generated when SLM, UNEQ, or TIM are detected and the appropriate POH byte processing is enabled.

TX POPFUNCTION BLOCK

- Can support STS-3/STS-3c/STM-1 POH bytes.
- The J1, C2, F2, F3, K3, and N1 POH bytes can be inserted by the POP-12 or can be passed through unaltered based on control bit settings.
- 64-byte TX J1 buffer can be used to transmit 64-byte or 16-byte J1 message.
- B3 can be recalculated or passed through.
- G1 byte can be passed through or generated based on received alarms and B3 errors.
- TX FEBE is generated based on received B3 errors. A 10-nibble deep FIFO is used to buffer the transfer of B3 errors from the RX to the TX Popfunction Blocks. TX FEBE counts are zeroed out during detection of RX LOP or PAIS.
- TX RDI is generated as single bit (STM-1 mode) or three bit (STS-3/STS-3c modes) for at least 10 frames according to the table below:

TX RDI Generation

Mode	Alarm	RDI Code	Priority
STS-3/STS-3c	LOP, Path AIS	101	1
	UNEQ, TIM	110	2
	SLM $^{\mathrm{a}}$	010	3
	No Alarm	001	4
	LOP, Path AIS, UNEQ, TIM	100	N/A
	No Alarm	000	N/A

a. A control bit exists for enabling/disabling SLM from generating an RDI. In STM-1 mode that control bit should be set to disable RDI generation. However, RDI can be generated in STM-1 mode if the control bit is set to do so.

- TX H4 byte can be passed through, or a fixed value can be transmitted, or a multiframe count that is synchronized to an input V1 pulse can be generated.
- Control bits provided to replace the input data with all 0s. When used with the TX POH control bits, either Unequipped or Supervisory Unequipped signals can be transmitted in any STS-1-SPE, STS-3c-SPE, or VC-4.

MECHANICAL AND PACKAGING REQUIREMENTS

- 456 lead, $27 \mathrm{~mm} \times 27 \mathrm{~mm}$ plastic Ball Grid Array (BGA)

POWER

- 2.0 Watts.

BOUNDARY SCAN

The Boundary Scan Port includes a five-lead TAP (Test Access Port) that conforms to the IEEE 1149.1-1994 standard for JTAG testing. This TAP provides external boundary scan to read and write the POP-12 input and output leads from the TAP for board and component testing.

LEAD DIAGRAM

$\begin{aligned} & \left.=\begin{array}{c\|c\|} A E & A C \end{array} \right\rvert\, \\ & =+3.3 \text { Volts } \\ & = \\ & =\text { Ground } \end{aligned}$				

Figure 2. POP-12 TXC-06603 Lead Diagram (Bottom View)

LEAD DESCRIPTIONS

Please note that none of these leads are 5 V tolerant．
The electrical characteristics of the I／O types（e．g．，LVTTL，LVTTLp，etc．）can be found in the section＂Input， Output and Input／Output Parameters＂on page 29.

POWER AND GROUND LEADS

\left.| Lead Name | Lead No． | Lead Description |
| :---: | :--- | :--- |
| GND | A1，A26，E13，E14，L11，L12，L13，L14，L15，L16， | Ground：0－volt reference． |
| | M11，M12，M13，M14，M15，M16，N5，N11，N12， | |
| | N13，N14，N15，N16，N22，P5，P11，P12，P13，P14， | |
| | P15，P16，P22，R111，R12，R13，R14，R15，R16，T11， | |
| T12，T13，T14，T15，T16，AB13，AB14，AF1，AF26 | | |$\right)$

TELECOM BUS INTERFACE LEADS

Lead Name	Lead No．	I／O	Type	Lead Description
TXCCLK	A4	I	LVTTLp	Transmit Reference Clock： TXCCLK is provided as a transmit reference timebase for devices connected to the transmit Telecom Bus inter－ face．TXCCLK is configured to be 19．44 MHz $\pm 20 \mathrm{ppm}$. The TX Telecom Bus inputs are retimed to this clock．All Telecom Bus 1－4 transmit output signals are clocked out of the POP－12 on the rising edge of this clock．
TXCFRM	B4	I	LVTTLD	Transmit Reference Frame Pulse： TXCFRM along with TXCCLK can be used to synchro－ nize the data that is input to the Telecom Bus ports to a common frame reference．If this lead is not used it must be grounded，in which case the output TX Telecom Bus signals will be aligned to an internally generated frame reference．

Lead Name	Lead No.	I/O	Type	Lead Description
TTBDATAINA(7) TTBDATAINA(6) TTBDATAINA(5) TTBDATAINA(4) TTBDATAINA(3) TTBDATAINA(2) TTBDATAINA(1) TTBDATAINA (0)	V3 U5 U4 V1 U3 U1 T4 T3	I	LVTTLp	Telecom Bus 1 Transmit Input Data: This data is clocked into the POP-12 on the rising edge of TTBCLKINA. Bit 7 is the MSB and is transmitted first.
TTBCLKINA	R3	1	LVTTLp	Telecom Bus 1 Transmit Input Clock: All of the input signals for Telecom Bus 1 are clocked into the POP-12 on the rising edge of this clock. The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$.
TTBJ0J1INA	T2	1	LVTTLd	Telecom Bus 1 Transmit Input Slot Indication: When the TTBSPEINA signal is high, TTBJOJ1INA indicates the position of the J1 byte(s) on Telecom Bus 1. When the TTBSPEINA signal is low, TTBJOJ1INA indicates the position of the J0 byte (CPOST=1) or A23 byte (CPOST=0). The J 1 and J0/A23 pulses are required if the TX Pointer Tracking State Machine is bypassed. If it is not bypassed then only valid pointer bytes and either a J0 or A23 pulse are needed.
TTBSPEINA	R4	I	LVTTLd	Telecom Bus 1 Transmit Input Synchronous Payload Envelope Signal: This signal is high for the SPE bytes and is low for the TOH bytes on input Telecom Bus 1. If the TX PTSM is not bypassed, and only a JO/A23 pulse is present on TTBJOJ1INA, then this lead can be grounded.
TTBFAILINA(2) TTBFAILINA(1) TTBFAILINA(0)	$\begin{aligned} & \hline \text { W1 } \\ & \text { W2 } \\ & \text { V4 } \end{aligned}$	1	LVTTLp	Telecom Bus 1 Transmit Input Failure Indications: TTBFAILINA(2:0) are used to force the respective STS in Telecom Bus 1 to All 1s. The state of these leads are routed to their corresponding TTBFAILOUTx (y) leads according to the setting of the control bits in the TCC1-6 registers. e.g., If STS-1 \#1 going into the POP-12 is routed to STS-1 \#8 going out of the POP-12, then the TTBFAILINA(0) signal is routed to the TTBFAILOUTC(1) output.
TTBDATAINB(7) TTBDATAINB(6) TTBDATAINB(5) TTBDATAINB(4) TTBDATAINB (3) TTBDATAINB(2) TTBDATAINB(1) TTBDATAINB(0)	$\begin{aligned} & \text { AF5 } \\ & \text { AC7 } \\ & \text { AD6 } \\ & \text { AE5 } \\ & \text { AF4 } \\ & \text { AC6 } \\ & \text { AE4 } \\ & \text { AF3 } \end{aligned}$	1	LVTTLp	Telecom Bus 2 Transmit Input Data: This data is clocked into the POP-12 on the rising edge of TTBCLKINB. Bit 7 is the MSB and is transmitted first.
TTBCLKINB	AD4	1	LVTTLp	Telecom Bus 2 Transmit Input Clock: All of the input signals for Telecom Bus 2 are clocked into the POP-12 on the rising edge of this clock. The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$.

Lead Name	Lead No．	I／O	Type	Lead Description
TTBJOJ1INB	AB6	I	LVTTLd	Telecom Bus 2 Transmit Input Slot Indication： When the TTBSPEINB signal is high，TTBJOJ1INB indi－ cates the position of the J1 byte（s）on Telecom Bus 2． When the TTBSPEINB signal is low，TTBJOJ1INB indi－ cates the position of the J0 byte（CPOST＝1）or A23 byte（CPOST＝0）．The J1 and Jo／A23 pulses are required if the TX Pointer Tracking State Machine is bypassed．If it is not bypassed then only valid pointer bytes and either a J0 or A23 pulse are needed．
TTBSPEINB	AC5	I		LVTTLd

Lead Name	Lead No.	I/O	Type	Lead Description
TTBSPEINC	AE12	1	LVTTLd	Telecom Bus 3 Transmit Input Synchronous PayIoad Envelope Signal: This signal is high for the SPE bytes and is low for the TOH bytes on input Telecom Bus 3. If the TX PTSM is not bypassed, and only a J0/A23 pulse is present on TTBJOJ1INC, then this lead can be grounded.
TTBFAILINC(2) TTBFAILINC(1) TTBFAILINC(0)	AC15 AD15 AE15	I	LVTTLp	Telecom Bus 3 Transmit Input Failure Indications: TTBFAILINC(2:0) are used to force the respective STS in Telecom Bus 1 to All 1s. The state of these leads are routed to their corresponding TTBFAILOUT $x(y)$ leads according to the setting of the control bits in the TCC1-6 registers. e.g., If STS-1 \#1 going into the POP-12 is routed to STS-1 \#8 going out of the POP-12, then the TTBFAILINA (0) signal is routed to the TTBFAILOUTC(1) output.
TTBDATAIND(7) TTBDATAIND(6) TTBDATAIND(5) TTBDATAIND (4) TTBDATAIND(3) TTBDATAIND(2) TTBDATAIND(1) TTBDATAIND(0)	AC20 AF22 AE21 AD20 AF21 AC19 AE20 AB18	1	LVTTLp	Telecom Bus 4 Transmit Input Data: This data is clocked into the POP-12 on the rising edge of TTBCLKIND. Bit 7 is the MSB and is transmitted first.
TTBCLKIND	AE19	I	LVTTLp	Telecom Bus 4 Transmit Input Clock: All of the input signals for Telecom Bus 4 are clocked into the POP-12 on the rising edge of this clock. The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$.
TTBJOJ1IND	AD19	1	LVTTLd	Telecom Bus 4 Transmit Input Slot Indication: When the TTBSPEIND signal is high, TTBJOJ1IND indicates the position of the J1 byte(s) on Telecom Bus 4. When the TTBSPEIND signal is low, TTBJOJ1IND indicates the position of the J 0 byte (CPOST=1) or A23 byte (CPOST=0). The J1 and J0/A23 pulses are required if the TX Pointer Tracking State Machine is bypassed. If it is not bypassed then only valid pointer bytes and either a J0 or A23 pulse are needed.
TTBSPEIND	AF20	1	LVTTLd	Telecom Bus 4 Transmit Input Synchronous Payload Envelope Signal: This signal is high for the SPE bytes and is low for the TOH bytes on input Telecom Bus 4. If the TX PTSM is not bypassed, and only a JO/A23 pulse is present on TTBJOJ1IND, then this lead can be grounded.

Lead Name	Lead No．	I／O	Type	Lead Description
TTBFAILIND（2） TTBFAILIND（1） TTBFAILIND（0）	$\begin{aligned} & \hline \text { AB25 } \\ & \text { AC26 } \\ & \text { AA23 } \end{aligned}$	I	LVTTLp	Telecom Bus 4 Transmit Input Failure Indications： TTBFAILIND（2：0）are used to force the respective STS in Telecom Bus 4 to All 1s．The state of these leads are routed to their corresponding TTBFAILOUT $x(y)$ leads according to the setting of the control bits in the TCC1－6 registers．e．g．，If STS－1 \＃1 going into the POP－12 is routed to STS－1 \＃8 going out of the POP－12，then the TTBFAILINA (0) signal is routed to the TTBFAILOUTC（1）output．
TTBDATAOUTA（7） TTBDATAOUTA（6） TTBDATAOUTA（5） TTBDATAOUTA（4） TTBDATAOUTA（3） TTBDATAOUTA（2） TTBDATAOUTA（1） TTBDATAOUTA（0）	$\begin{aligned} & \text { R23 } \\ & \text { T26 } \\ & \text { T24 } \\ & \text { T23 } \\ & \text { U25 } \\ & \text { U24 } \\ & \text { V26 } \\ & \text { U23 } \end{aligned}$	0	LVTTL	Telecom Bus 1 Transmit Output Data： This data is clocked out of the POP－12 on the rising edge of TXCCLK．Bit 7 is the MSB and is transmitted first．The TOH bytes are outputs as 0 s ．The pointer bytes are always provided．
TTBCLKOUTA	R24	0	LVTTL	Telecom Bus 1 Transmit Output Clock： All of the output signals for Telecom Bus 1 are clocked out of the POP－12 on the rising edge of TXCCLK．The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ and is derived directly from TXCCLK．
TTBJ0J1OUTA	R26	0	LVTTL	Telecom Bus 1 Transmit Output Slot Indication： When the TTBSPEOUTA signal is high，TTBJOJ1OUTA indicates the position of the J1 byte（s）on Telecom Bus 1．When the TTBSPEOUTA signal is low， TTBJOJ1OUTA indicates the position of the J0 byte．
TTBSPEOUTA	R25	O	LVTTL	Telecom Bus 1 Transmit Output Synchronous Pay－ Ioad Envelope Signal： This signal is high for the SPE bytes and is low for the TOH bytes on output Telecom Bus 1．Note that this sig－ nal dynamically adjusts when an output pointer adjust－ ment occurs．
$\begin{aligned} & \text { TTBFAILOUTA(2) } \\ & \text { TTBFAILOUTA(1) } \\ & \text { TTBFAILOUTA(0) } \end{aligned}$	$\begin{aligned} & \text { P26 } \\ & \text { P24 } \\ & \text { P25 } \end{aligned}$	0	LVTTL	Telecom Bus 1 Transmit Output Failure Indications： TTBFAILOUTA（2：0）follow their corresponding TTBFAILINx x（ y ）leads according the routing set by the control bits in the TCC1－6 registers．e．g．，If STS－1 \＃1 going into the POP－12 is routed to STS－1 \＃8 going out of the POP－12，then the TTBFAILOUTA（ 0 ）signal is routed to the TTBFAILOUTC（1）output．Also，these leads will be set to a 1 if the input PTSM is not bypassed and is generating Path AIS in its corresponding STS．

Lead Name	Lead No.	I/O	Type	Lead Description
TTBDATAOUTB(7) TTBDATAOUTB(6) TTBDATAOUTB(5) TTBDATAOUTB(4) TTBDATAOUTB(3) TTBDATAOUTB(2) TTBDATAOUTB(1) TTBDATAOUTB(0)	$\begin{aligned} & \hline \hline \text { G25 } \\ & \text { H24 } \\ & \text { G26 } \\ & \text { H25 } \\ & \text { J24 } \\ & \text { H26 } \\ & \text { K22 } \\ & \text { J25 } \end{aligned}$	0	LVTTL	Telecom Bus 2 Transmit Output Data: This data is clocked out of the POP-12 on the rising edge of TXCCLK. Bit 7 is the MSB and is transmitted first. The TOH bytes are outputs as 0 s . The pointer bytes are always provided.
TTBCLKOUTB	H23	0	LVTTL	Telecom Bus 2 Transmit Output Clock: All of the output signals for Telecom Bus 2 are clocked out of the POP-12 on the rising edge of TXCCLK. The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ and is derived directly from TXCCLK.
TTBJ0J1OUTB	F25	0	LVTTL	Telecom Bus 2 Transmit Output SIot Indication: When the TTBSPEOUTB signal is high, TTBJOJ1OUTB indicates the position of the J 1 byte(s) on Telecom Bus 2. When the TTBSPEOUTB signal is low, TTBJOJ1OUTB indicates the position of the J0 byte.
TTBSPEOUTB	F26	0	LVTTL	Telecom Bus 2 Transmit Output Synchronous Payload Envelope Signal: This signal is high for the SPE bytes and is low for the TOH bytes on output Telecom Bus 2. Note that this signal dynamically adjusts when an output pointer adjustment occurs.
TTBFAILOUTB(2) TTBFAILOUTB(1) TTBFAILOUTB(0)	$\begin{aligned} & \text { E25 } \\ & \text { F24 } \\ & \text { F23 } \end{aligned}$	0	LVTTL	Telecom Bus 2 Transmit Output Failure Indications: TTBFAILOUTB(2:0) follow their corresponding TTBFAILIN $x(y)$ leads according to the routing set by the control bits in the TCC1-6 registers. e.g., If STS-1 \#1 going into the POP-12 is routed to STS-1 \#8 going out of the POP-12, then the TTBFAILOUTA(0) signal is routed to the TTBFAILOUTC(1) output. Also, these leads will be set to a 1 if the input PTSM is not bypassed and is generating Path AIS in its corresponding STS.
TTBDATAOUTC(7) TTBDATAOUTC(6) TTBDATAOUTC(5) TTBDATAOUTC(4) TTBDATAOUTC(3) TTBDATAOUTC(2) TTBDATAOUTC(1) TTBDATAOUTC(0)	$\begin{aligned} & \hline \text { A19 } \\ & \text { B19 } \\ & \text { A20 } \\ & \text { C19 } \\ & \text { E18 } \\ & \text { D19 } \\ & \text { A21 } \\ & \text { C20 } \end{aligned}$	0	LVTTL	Telecom Bus 3 Transmit Output Data: This data is clocked out of the POP-12 on the rising edge of TXCCLK. Bit 7 is the MSB and is transmitted first. The TOH bytes are outputs as 0 s . The pointer bytes are always provided.
TTBCLKOUTC	C18	0	LVTTL	Telecom Bus 3 Transmit Output Clock: All of the output signals for Telecom Bus 3 are clocked out of the POP-12 on the rising edge of TXCCLK. The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ and is derived directly from TXCCLK.

Lead Name	Lead No．	I／O	Type	Lead Description
TTBJ0J1OUTC	D17	0	LVTTL	Telecom Bus 3 Transmit Output Slot Indication： When the TTBSPEOUTC signal is high，TTBJOJ1OUTC indicates the position of the J 1 byte（s）on Telecom Bus 3．When the TTBSPEOUTC signal is low， TTBJOJ1OUTC indicates the position of the J0 byte．
TTBSPEOUTC	E17	0	LVTTL	Telecom Bus 3 Transmit Output Synchronous Pay－ load Envelope Signal： This signal is high for the SPE bytes and is low for the TOH bytes on output Telecom Bus 3．Note that this sig－ nal dynamically adjusts when an output pointer adjust－ ment occurs．
$\begin{aligned} & \hline \text { TTBFAILOUTC(2) } \\ & \text { TTBFAILOUTC(1) } \\ & \text { TTBFAILOUTC(0) } \end{aligned}$	$\begin{aligned} & \text { A17 } \\ & \text { B17 } \\ & \text { A18 } \end{aligned}$	0	LVTTL	Telecom Bus 3 Transmit Output Failure Indications： TTBFAILOUTC（2：0）follow their corresponding TTBFAILIN $x(y)$ leads according to the routing set by the control bits in the TCC1－6 registers．e．g．，If STS－1 \＃1 going into the POP－12 is routed to STS－1 \＃8 going out of the POP－12，then the TTBFAILOUTA（0）signal is routed to the TTBFAILOUTC（1）output．Also，these leads will be set to a 1 if the input PTSM is not bypassed and is generating Path AIS in its corresponding STS．
TTBDATAOUTD（7） TTBDATAOUTD（6） TTBDATAOUTD（5） TTBDATAOUTD（4） TTBDATAOUTD（3） TTBDATAOUTD（2） TTBDATAOUTD（1） TTBDATAOUTD（0）	$\begin{aligned} & \hline \text { B10 } \\ & \text { A10 } \\ & \text { D11 } \\ & \text { B11 } \\ & \text { A11 } \\ & \text { D12 } \\ & \text { B12 } \\ & \text { A12 } \end{aligned}$	O	LVTTL	Telecom Bus 4 Transmit Output Data： This data is clocked out of the POP－12 on the rising edge of TXCCLK．Bit 7 is the MSB and is transmitted first．The TOH bytes are outputs as 0 s ．The pointer bytes are always provided．
TTBCLKOUTD	C10	0	LVTTL	Telecom Bus 4 Transmit Output Clock： All of the output signals for Telecom Bus 2 are clocked out of the POP－12 on the rising edge of TXCCLK．The clock frequency is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ and is derived directly from TXCCLK．
TTBJ0J1OUTD	A8	0	LVTTL	Telecom Bus 4 Transmit Output Slot Indication： When the TTBSPEOUTD signal is high，TTBJOJ1OUTD indicates the position of the J1 byte（s）on Telecom Bus 3．When the TTBSPEOUTD signal is low， TTBJOJ1OUTD indicates the position of the J0 byte．
TTBSPEOUTD	D10	0	LVTTL	Telecom Bus 4 Transmit Output Synchronous Pay－ load Envelope Signal： This signal is high for the SPE bytes and is low for the TOH bytes on output Telecom Bus 4．Note that this sig－ nal dynamically adjusts when an output pointer adjust－ ment occurs．

(

Lead Name	Lead No.	I/O	Type	Lead Description
TTBFAILOUTD(2) TTBFAILOUTD(1) TTBFAILOUTD(0)	$\begin{gathered} \hline \hline \text { D9 } \\ \text { C9 } \\ \text { E10 } \end{gathered}$	0	LVTTL	Telecom Bus 4 Transmit Output Failure Indications: TTBFAILOUTD(2:0) follow their corresponding TTBFAILINx(y) leads according to the routing set by the control bits in the TCC1-6 registers. e.g., If STS-1 \#1 going into the POP-12 is routed to STS-1 \#8 going out of the POP-12, then the TTBFAILOUTA(0) signal is routed to the TTBFAILOUTC(1) output. Also, these leads will be set to a 1 if the input PTSM is not bypassed and is generating Path AIS in its corresponding STS.
RXCCLK	D2	I	LVTTLp	Receive Reference Clock: RXCCLK is provided as a receive reference timebase for devices connected to the receive Telecom Bus interface. RXCCLK is configured to be $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$. The RX Telecom Bus inputs are retimed to this clock. All Telecom Bus 1-4 receive output signals are clocked out of the POP-12 on the rising edge of this clock
RXCFRM	F4	I	LVTTLd	Receive Reference Frame Pulse: RXCFRM along with RXCCLK can be used to synchronize the data that is input to the RX Telecom Bus ports to a common frame reference. If this lead is not used it must be grounded, in which case the output RX Telecom Bus signals will be aligned to an internally generated frame reference.
RXMF1 RXMF2 RXMF3 RXMF4	$\begin{aligned} & \text { D1 } \\ & \text { E3 } \\ & \text { E1 } \\ & \text { E2 } \end{aligned}$	0	LVTTL	Multiframe Reference Outputs: These four signals are identical and provide a one RXCCLK clock cycle wide pulse every 500 microseconds. They are clocked out of the POP-12 device on the falling edge of the RXCCLK signal. These signals provide a four frame multi-frame reference for downstream mapper devices that may require such a reference and use the same clock for transmitting as is applied to the RXCCLK input.
RTBDATAOUTA(7) RTBDATAOUTA(6) RTBDATAOUTA(5) RTBDATAOUTA(4) RTBDATAOUTA(3) RTBDATAOUTA(2) RTBDATAOUTA(1) RTBDATAOUTA(0)	$\begin{gathered} \hline \text { AC1 } \\ \text { AB3 } \\ \text { AB2 } \\ \text { AA3 } \\ \text { Y4 } \\ \text { AA2 } \\ \text { Y3 } \\ \text { AA1 } \end{gathered}$	0	LVTTL	Telecom Bus 1 Receive Output Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked out of the POP-12 on the rising edge of RXCCLK. The TOH bytes are output as 0s, but the pointer bytes are always provided.
RTBCLKOUTA	Y1	0	LVTTL	Telecom Bus 1 Receive Output Clock: All Telecom Bus 1 receive output signals are clocked out of the POP-12 on the rising edge of RXCCLK. This clock is directly derived from RXCCLK.

Lead Name	Lead No.	I/O	Type	Lead Description
RTBJ0J1OUTA	Y2	O	LVTTL	Telecom Bus 1 Receive Output J0J1 Signal: This signal identifies the J 0 byte position in the RTBDATAOUTA(7:0) stream when RTBJOJ1OUTA is high and RTBSPEOUTA is low. The J1 byte(s) are identified when RTBJOJ1OUTA is high and RTBSPEOUTA is high.
RTBSPEOUTA	V5	O	LVTTL	Telecom Bus 1 Receive Output SPE Signal: RTBSPEOUTA is high during the SPE bytes of RTBDATAOUTA(7:0) and is low otherwise. Note that this signal dynamically adjusts when a pointer adjustment is output.
RTBFAILOUTA(2) RTBFAILOUTA(1) RTBFAILOUTA(0)	$\begin{aligned} & \text { AA5 } \\ & \text { AD1 } \\ & \text { AC2 } \end{aligned}$	0	LVTTL	Telecom Bus 1 Receive Output Failure Indications: These signals go high when the POP-12 detects Loss of Pointer or Path AIS when the PTSM is not bypassed. RTBFAILOUTA(n) will stay active as long as the failure condition exists in its corresponding STS. This lead also follows the state of its corresponding RTBFAILINx(y) input as set by the control bits in the RCC1-6 registers.
RTBDATAOUTB(7) RTBDATAOUTB(6) RTBDATAOUTB(5) RTBDATAOUTB(4) RTBDATAOUTB(3) RTBDATAOUTB(2) RTBDATAOUTB(1) RTBDATAOUTB(0)	AE10 AC11 AC10 AF9 AE9 AD9 AC9 AE8	0	LVTTL	Telecom Bus 2 Receive Output Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked out of the POP-12 on the falling rising edge of RXCCLK. The TOH bytes are output as 0s, but the pointer bytes are always provided.
RTBCLKOUTB	AE7	0	LVTTL	Telecom Bus 2 Receive Output Clock: All Telecom Bus 2 receive output signals are clocked out of the POP-12 on the rising edge of RXCCLK. This clock is directly derived from RXCCLK.
RTBJ0J1OUTB	AF7	O	LVTTL	Telecom Bus 2 Receive Output J0J1 Signal: This signal identifies the JO byte position in the RTBDATAOUTB(7:0) stream when RTBJ0J1OUTB is high and RTBSPEOUTB is low. The J1 byte(s) are identified when RTBJOJ1OUTB is high and RTBSPEOUTB is high.
RTBSPEOUTB	AD8	O	LVTTL	Telecom Bus 2 Receive Output SPE Signal: RTBSPEOUTB is high during the SPE bytes of RTBDATAOUTB $(7: 0)$ and is low otherwise. Note that this signal dynamically adjusts when a pointer adjustment is output.
RTBFAILOUTB(2) RTBFAILOUTB(1) RTBFAILOUTB(0)	AC12 AE11 AD11	0	LVTTL	Telecom Bus 2 Receive Output Failure Indications: These signals go high when the POP-12 detects Loss of Pointer or Path AIS when the PTSM is not bypassed. RTBFAILOUTB(n) will stay active as long as the failure condition exists in its corresponding STS. This lead also follows the state of its corresponding RTBFAILINx(y) input as set by the control bits in the RCC1-6 registers.

Lead Name	Lead No.	I/O	Type	Lead Description
RTBDATAOUTC(7) RTBDATAOUTC(6) RTBDATAOUTC(5) RTBDATAOUTC(4) RTBDATAOUTC(3) RTBDATAOUTC(2) RTBDATAOUTC(1) RTBDATAOUTC(0)	AE18 AB17 AC17 AF18 AD17 AE17 AF17 AC16	0	LVTTL	Telecom Bus 3 Receive Output Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked out of the POP-12 on the rising edge of RXCCLK. The TOH bytes are output as 0 s , but the pointer bytes are always provided.
RTBCLKOUTC	AF16	0	LVTTL	Telecom Bus 3 Receive Output Clock: All Telecom Bus 3 receive output signals are clocked out of the POP-12 on the rising edge of RXCCLK. This clock is directly derived from RXCCLK.
RTBJ0J1OUTC	AD16	0	LVTTL	Telecom Bus 3 Receive Output J0J1 Signal: This signal identifies the JO byte position in the RTBDATAOUTC(7:0) stream when RTBJOJ1OUTC is high and RTBSPEOUTC is low. The J1 byte(s) are identified when RTBJOJ1OUTC is high and RTBSPEOUTC is high.
RTBSPEOUTC	AE16	0	LVTTL	Telecom Bus 3 Receive Output SPE Signal: RTBSPEOUTC is high during the SPE bytes of RTBDATAOUTC(7:0) and is low otherwise. Note that this signal dynamically adjusts when a pointer adjustment is output.
$\begin{aligned} & \hline \text { RTBFAILOUTC(2) } \\ & \text { RTBFAILOUTC(1) } \\ & \text { RTBFAILOUTC(0) } \end{aligned}$	$\begin{aligned} & \text { AC18 } \\ & \text { AF19 } \\ & \text { AD18 } \end{aligned}$	0	LVTTL	Telecom Bus 3 Receive Output Failure Indications: These signals go high when the POP-12 detects Loss of Pointer or Path AIS when the PTSM is not bypassed. RTBFAILOUTC(n) will stay active as long as the failure condition exists in its corresponding STS. This lead also follows the state of its corresponding RTBFAILINx(y) input as set by the control bits in the RCC1-6 registers.
RTBDATAOUTD(7) RTBDATAOUTD(6) RTBDATAOUTD(5) RTBDATAOUTD(4) RTBDATAOUTD(3) RTBDATAOUTD(2) RTBDATAOUTD(1) RTBDATAOUTD(0)	V23 W26 W25 W24 V22 W23 AA26 Y24	0	LVTTL	Telecom Bus 4 Receive Output Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked out of the POP-12 on the rising edge of RXCCLK. The TOH bytes are output as 0 s , but the pointer bytes are always provided.
RTBCLKOUTD	AA24	0	LVTTL	Telecom Bus 4 Receive Output Clock: All Telecom Bus 4 receive output signals are clocked out of the POP-12 on the rising edge of RXCCLK. This clock is directly derived from RXCCLK.
RTBJOJ1OUTD	AB26	0	LVTTL	Telecom Bus 4 Receive Output J0J1 Signal: This signal identifies the JO byte position in the RTBDATAOUTD(7:0) stream when RTBJOJ1OUTD is high and RTBSPEOUTD is low. The J1 byte(s) are identified when RTBJOJ1OUTD is high and RTBSPEOUTD is high.

Lead Name	Lead No．	I／O	Type	Lead Description
RTBSPEOUTD	Y23	O	LVTTL	Telecom Bus 4 Receive Output SPE Signal： RTBSPEOUTD is high during the SPE bytes of RTBDATAOUTD（7：0）and is low otherwise．Note that this signal dynamically adjusts when a pointer adjust－ ment is output．
$\begin{aligned} & \hline \text { RTBFAILOUTD(2) } \\ & \text { RTBFAILOUTD(1) } \\ & \text { RTBFAILOUTD(0) } \end{aligned}$	$\begin{aligned} & \text { V25 } \\ & \text { U22 } \\ & \text { V24 } \end{aligned}$	0	LVTTL	Telecom Bus 4 Receive Output Failure Indications： These signals go high when the POP－12 detects Loss of Pointer or Path AIS when the PTSM is not bypassed． RTBFAILOUTD（ n ）will stay active as long as the failure condition exists in its corresponding STS．This lead also follows the state of its corresponding RTBFAILINx（y） input as set by the control bits in the RCC1－6 registers．
RTBDATAINA（7） RTBDATAINA（6） RTBDATAINA（5） RTBDATAINA（4） RTBDATAINA（3） RTBDATAINA（2） RTBDATAINA（1） RTBDATAINA（0）	L26 M23 M25 M26 N23 N24 N25 N26	1	LVTTLp	Telecom Bus 1 Receive Input Data： Bit 7 is the MSB and is received first．Bit 0 is the LSB and is received last．The data on these leads are clocked into the POP－12 on the rising edge of RTBCLKINA．When RB1 $=0$ ，valid pointer bytes are required to be present in the data stream．Otherwise if RB1 $=1$ ，the J0J1 signal provides the location of the J1 bytes and the pointer bytes do not need to be present in the data stream．
RTBCLKINA	L25	1	LVTTLp	Telecom Bus 1 Receive Input Clock： All Telecom Bus 1 receive input signals are clocked into the POP－12 on the rising edge of RTBCLKINA．This clock is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ ．
RTBJOJ1INA	L23	1	LVTTLd	Telecom Bus 1 Receive Input J0J1 Signal： This signal identifies the J 0 byte position in the RTBDATAINA（7：0）stream when RTBJOJ1INA is high and RTBSPEINA is low and CPOSR＝1．When CPOSR＝0 this signal identifies the A23 byte position in the RTBDATAINA $(7: 0)$ stream when RTBJOJ1INA is high and RTBSPEINA is low．The J1 byte（s）are identified when RTBJOJIINA is high and RTBSPEINA is high． When RB1 $=0$ ，the J1 pulses are ignored．When $\mathbf{R B} 1=1$ ， the J0J1 pulses are required．
RTBSPEINA	L24	1	LVTTLd	Telecom Bus 1 Receive Input SPE Signal： RTBSPEINA is high during the SPE bytes of RTBDATAINA（7：0）and is low otherwise．Note that this signal needs to be dynamically adjusted when a pointer adjustment is input．
RTBFAILINA（2） RTBFAILINA（1） RTBFAILINA（0）	$\begin{aligned} & \text { K26 } \\ & \text { K24 } \\ & \text { J26 } \end{aligned}$	1	LVTTLp	Telecom Bus 1 Receive Input Failure Indications： RTBFAILINA（2：0）are used to force the respective STS in RX Telecom Bus 1 to All 1s．The state of these leads are routed to their corresponding RTBFAILOUTx（y） leads according to the setting of the control bits in the RCC1－6 registers．e．g．，If STS－1 \＃1 going into the POP－ 12 is routed to STS－1 \＃8 going out of the POP－12，then the RTBFAILINA（0）signal is routed to the RTBFAILOUTC（1）output．

Lead Name	Lead No.	1/0	Type	Lead Description
RTBDATAINB(7) RTBDATAINB(6) RTBDATAINB(5) RTBDATAINB(4) RTBDATAINB(3) RTBDATAINB(2) RTBDATAINB(1) RTBDATAINB(0)	$\begin{aligned} & \hline \hline \text { E21 } \\ & \text { C22 } \\ & \text { D22 } \\ & \text { A24 } \\ & \text { C26 } \\ & \text { E24 } \\ & \text { D26 } \\ & \text { E26 } \end{aligned}$	1	LVTTLp	Telecom Bus 2 Receive Input Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked into the POP-12 on the rising edge of RTBCLKINB. When RB2 $=0$, valid pointer bytes are required to be present in the data stream. Otherwise if RB2=1, the J0J1 signal provides the location of the J1 bytes and the pointer bytes do not need to be present in the data stream.
RTBCLKINB	B23	1	LVTTLp	Telecom Bus 2 Receive Input Clock: All Telecom Bus 2 receive input signals are clocked into the POP-12 on the rising edge of RTBCLKINB. This clock is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$.
RTBJ0J1INB	D21	1	LVTTLd	Telecom Bus 2 Receive Input J0J1 Signal: This signal identifies the J 0 byte position in the RTBDATAINB $(7: 0)$ stream when RTBJOJ 1 INB is high and RTBSPEINB is low and CPOSR=1. When CPOSR=0 this signal identifies the A23 byte position in the RTBDATAINB $(7: 0)$ stream when RTBJOJ1INB is high and RTBSPEINB is low. The J1 byte(s) are identified when RTBJOJ1INB is high and RTBSPEINB is high. When RB2 $=0$, the J1 pulses are ignored. When $\mathbf{R B 2}=1$, the J0J1 pulses are required.
RTBSPEINB	A23	1	LVTTLd	Telecom Bus 2 Receive Input SPE Signal: RTBSPEINB is high during the SPE bytes of RTBDATAINB(7:0) and is low otherwise. Note that this signal needs to be dynamically adjusted when a pointer adjustment is input.
RTBFAILINB(2) RTBFAILINB(1) RTBFAILINB(0)	$\begin{aligned} & \text { C21 } \\ & \text { D20 } \\ & \text { B22 } \end{aligned}$	1	LVTTLp	Telecom Bus 2 Receive Input Failure Indications: RTBFAILINB(2:0) are used to force the respective STS in RX Telecom Bus 1 to All 1s. The state of these leads are routed to their corresponding RTBFAILOUTx(y) leads according to the setting of the control bits in the RCC1-6 registers. e.g., If STS-1 \#1 going into the POP12 is routed to STS-1 \#8 going out of the POP-12, then the RTBFAILINA(0) signal is routed to the RTBFAILOUTC(1) output.
RTBDATAINC(7) RTBDATAINC(6) RTBDATAINC(5) RTBDATAINC(4) RTBDATAINC(3) RTBDATAINC(2) RTBDATAINC(1) RTBDATAINC(0)	D14 A15 B15 C15 D15 A16 C16 D16	1	LVTTLp	Telecom Bus 3 Receive Input Data: Bit 7 is the MSB and is received first. Bit 0 is the LSB and is received last. The data on these leads are clocked into the POP-12 on the rising edge of RTBCLKINC. When RB3=0, valid pointer bytes are required to be present in the data stream. Otherwise if RB3 $=1$, the JOJ1 signal provides the location of the J1 bytes and the pointer bytes do not need to be present in the data stream.

Lead Name	Lead No．	I／O	Type	Lead Description
RTBCLKINC	C14	1	LVTTLp	Telecom Bus 3 Receive Input Clock： All Telecom Bus 3 receive input signals are clocked into the POP－12 on the rising edge of RTBCLKINC．This clock is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ ．
RTBJOJ1INC	A13	1	LVTTLd	Telecom Bus 3 Receive Input J0J1 Signal： This signal identifies the JO byte position in the RTBDATAINC（7：0）stream when RTBJOJ1INC is high and RTBSPEINC is low and CPOSR＝1．When CPOSR＝0 this signal identifies the A23 byte position in the RTBDATAINC（7：0）stream when RTBJOJ1INC is high and RTBSPEINC is low．The J 1 byte（s）are identi－ fied when RTBJOJ1INC is high and RTBSPEINC is high． When RB3＝0，the J1 pulses are ignored．When RB3＝1， the J0J1 pulses are required．
RTBSPEINC	A14	1	LVTTLd	Telecom Bus 3 Receive Input SPE Signal： RTBSPEINC is high during the SPE bytes of RTBDATAINC（7：0）and is low otherwise．Note that this signal needs to be dynamically adjusted when a pointer adjustment is input．
RTBFAILINC（2） RTBFAILINC（1） RTBFAILINC（0）	$\begin{aligned} & \text { D13 } \\ & \text { C13 } \\ & \text { B13 } \end{aligned}$	1	LVTTLp	Telecom Bus 3 Receive Input Failure Indications： RTBFAILINC（2：0）are used to force the respective STS in RX Telecom Bus 1 to All 1s．The state of these leads are routed to their corresponding RTBFAILOUTx（y） leads according to the setting of the control bits in the RCC1－6 registers．e．g．，If STS－1 \＃1 going into the POP－ 12 is routed to STS－1 \＃8 going out of the POP－12，then the RTBFAILINA（0）signal is routed to the RTBFAILOUTC（1）output．
RTBDATAIND（7） RTBDATAIND（6） RTBDATAIND（5） RTBDATAIND（4） RTBDATAIND（3） RTBDATAIND（2） RTBDATAIND（1） RTBDATAIND（0）	A6 B6 E6 C7 D8 C8 A7 B8	1	LVTTLp	Telecom Bus 4 Receive Input Data： Bit 7 is the MSB and is received first．Bit 0 is the LSB and is received last．The data on these leads are clocked into the POP－12 on the rising edge of RTBCLKIND．When RB4＝0，valid pointer bytes are required to be present in the data stream．Otherwise if RB4 $=1$ ，the J0J1 signal provides the location of the J1 bytes and the pointer bytes do not need to be present in the data stream．
RTBCLKIND	C6	1	LVTTLp	Telecom Bus 4 Receive Input Clock： All Telecom Bus 1 receive input signals are clocked into the POP－12 on the rising edge of RTBCLKIND．This clock is $19.44 \mathrm{MHz} \pm 20 \mathrm{ppm}$ ．

Lead Name	Lead No.	I/O	Type	Lead Description
RTBJOJ1IND	A5	I	LVTTLd	Telecom Bus 4 Receive Input JOJ1 Signal: This signal identifies the J0 byte position in the RTBDATAIND(7:0) stream when RTBJOJ1IND is high and RTBSPEIND is low and CPOSR $=1$. When CPOSR=0 this signal identifies the A23 byte position in the RTBDATAIND(7:0) stream when RTBJOJ1IND is high and RTBSPEIND is low. The J1 byte(s) are identi- fied when RTBJOJ1IND is high and RTBSPEIND is high. When RB4=0, the J1 pulses are ignored. When RB4=1, the J0J1 pulses are required.
RTBSPEIND	B5	I	LVTTLd	Telecom Bus 1 Receive Input SPE Signal: RTBSPEIND is high during the SPE bytes of RTBDATAIND(7:0) and is low otherwise. Note that this signal needs to be dynamically adjusted when a pointer adjustment is input.
RTBFAILIND(2) RTBFALIIND(1) RTBFAILIND(0)	C4	I		LVTTLp
D6	Telecom Bus 1 Receive Input Failure Indications: RTBFAILIND(2:0) are used to force the respective STS in RX Telecom Bus 1 to All 1s. The state of these leads are routed to their corresponding RTBFAILOUTx(y) leads according to the setting of the control bits in the RCC1-6 registers. e.g., If STS-1 \#1 going into the POP- 12 is routed to STS-1 \#8 going out of the POP-12, then the RTBFAILINA(0) signal is routed to the RTBFAILOUTC(1) output.			

MICROPROCESSOR INTERFACE LEADS

Lead Name	Lead No．	1／0	Type	Lead Description
PCLK	P1	I	LVTTLp	Microprocessor Interface Clock： Clock for the microprocessor interface in the POP－12 device．This clock is always required to operate the $\mu \mathrm{P}$ interface．The frequency range for this clock is 8 MHz to 20 MHz ．
DATAIO（7） DATAIO（6） DATAIO（5） DATAIO（4） DATAIO（3） DATAIO（2） DATAIO（1） DATAIO（0）	H2 G1 H3 J5 H4 F1 G3 F5	I／O	LVTTL	Microprocessor Interface Data：（true） Bidirectional bus for data to／from the POP－12 $\mu \mathrm{P}$ inter－ face． Bit（ 0 ）is the LSB．
$\begin{aligned} & \mathrm{LA}(4) \\ & \mathrm{LA}(3) \\ & \mathrm{LA}(2) \\ & \mathrm{LA}(1) \\ & \mathrm{LA}(0) \end{aligned}$	$\begin{aligned} & \text { J1 } \\ & \text { K4 } \\ & \text { K5 } \\ & \text { J3 } \\ & \text { J4 } \end{aligned}$	1	LVTTLp	Microprocessor Interface Address： The 5－bit address that is used to access the address and data registers．Bit（0）is the LSB．
$\overline{\text { WRITE／READ＿WRITE }}$	N1	1	LVTTLp	Microprocessor Write： This signal is high during a data read operation and is low for a data write operation．A low enables data from the $\operatorname{DATAIO}(7: 0)$ bus to be written into the addressed location．
$\overline{\text { READ }}$	N3	1	LVTTLp	Microprocessor Read： For Intel mode，this signal is high during a data write operation and is low during a data read operation．A low enables data to be read from the addressed location．This lead must be tied high for Motorola Mode．
$\overline{\text { DS }}$	R1	1	LVTTLp	Data Strobe：Tie high for Intel mode．In Motorola mode， this lead is driven low to indicate that there is valid data on the DATAIO bus．
READY／DTACK	M1	0	LVTTL	Ready：In Intel mode，this signal is asserted high to tell the external microprocessor that it can end the bus cycle． In Motorola mode，this lead is driven low，to tell the exter－ nal microprocessor that it can end the bus cycle．This lead is not tristated．
$\overline{\text { SELC }}$	P2	1	LVTTLp	POP－12 Chip Select： Enable signal used to validate the address bus for read and write transfers from／to this particular POP－12 device．
INT／／RQ	N4	0	LVTTL	Interrupt： Interrupt to microprocessor．It is active high for Intel mode and active low for motorola mode．

Lead Name	Lead No.	I/O	Type	Lead Description
$\overline{\text { RESETUP }}$	K1	I	LVTTLp	Device Reset: Active low reset that must be applied at power up for at least 150ns after power and all clocks (except TCK) are stable. Also, $\overline{\text { WRITE/READ }}$ WRITE must be held high during the time that RESETUP is held low and for 10 ns after RESETUP is brought high.
MOTO	R2	I	LVTTLp	Motorola Mode Select: When set high the microproces- sor interface is set to Motorola mode. When set low, the Microprocessor interface is set to Intel mode.

TEST AND MISCELLANEOUS LEADS

Lead Name	Lead No.	I/O	Type	Lead Description
TCK	M3	I	LVTTLp	JTAG Port Clock: Boundary scan input clock.
TMS	M4	I	LVTTLp	JTAG Port TMS: Boundary scan TMS input signal.
$\overline{\text { TRS }}$	L1	I	LVTTLp	JTAG Port Reset: Active low asynchronous reset for the boundary scan logic. Holding this lead low for at least 50ns will reset all of the boundary scan logic to disabled state, such that normal operation of the POP-12 is not affected in any way.
TDI	L4	I	LVTTLp	JTAG Port Data Input: Boundary scan input data.
TDO	L2	O	LVTTLp	JTAG Port Data Output: Boundary scan output data.
SCANMODE	K3	I	LVTTLp	SCAN Mode Enable: This lead must be tied low for normal operation. When set high or left floating, the manufacturing scan test is enabled.
SCANEN	K2	I	LVTTLp	SCAN Enable: This lead must be tied low for normal opera- tion. When set high or left floating, the manufacturing scan test is enabled.
HIZ	G4	I	LVTTLp	HI-Z TEST: This lead must be tied low for normal operation. Setting this lead high puts all outputs in high impedance state, except lead TDO, and all bidirectional outputs in input mode.
TESTOUT	F3	O	--	Test Output: Leave this lead unconnected. TESTIN1 TESTIN2
P4	I	--	Test Input: Tie these leads to VDD.	

ABSOLUTE MAXIMUM RATINGS AND ENVIRONMENTAL LIMITATIONS

Parameter	Symbol	Min	Max	Unit	Conditions
Supply Voltage - digital I/O	VDD	-0.3	3.9	V	
Input Voltage (LVTTL)	$\mathrm{V}_{\text {IN }}$	-0.3	VDD	V	
Storage Temperature	T_{S}	-40	125	${ }^{\circ} \mathrm{C}$	
Ambient operating temperature range	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	0 ft./min. linear air flow
Operating junction temperature range	T_{J}	-40	125	${ }^{\circ} \mathrm{C}$	
Moisture Exposure level	ME	5		Level	Per EIA/JEDEC JESD22-A112-A
Relative Humidity, during assembly	RH	30	60	$\%$	Note 2
Relative Humidity, in-circuit	RH	0	100	$\%$	non-condensing
ESD Classification	ESD	absolute value 2	kV	Note 3	

Notes:

1. Conditions exceeding the Min. or Max values may cause permanent failure. Exposure to conditions near the Min. or Max values for extended periods may impair device reliability.
2. Pre-assembly storage in non-drypack conditions is not recommended. Please refer to the instructions on the "CAUTION" label on the drypack bag in which devices are supplied.
3. Test Method for ESD per MIL-STD-883D, Method 3015.7.

THERMAL CHARACTERISTICS

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Thermal Resistance - junction to ambient	θ_{JA}		20		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 4

Note 4: Test done with package assembled on JEDEC standard Multi-Lager test board with $0 \mathrm{ft} / \mathrm{min}$. linear airflow.

POWER REQUIREMENTS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VDD	3.14	3.30	3.46	V
Power Dissipation	P_{DD}			2.0	W

INPUT, OUTPUT AND INPUT/OUTPUT PARAMETERS

For I/Os that have internal pull up resistors, a logic 1 is guaranteed to be applied at the internal circuit if the corresponding lead is left open. However, this does not mean that a logic 1 will be present at that lead. If it is required to have a logic 1 at such a floating lead, then an external pull-up will need to be supplied. On-chip pull-up resistors are about $30-150 \mathrm{k} \Omega$ and on chip pull-down resistors are about $30-150 \mathrm{k} \Omega$. This implies that pulling the voltage up or down on a floating lead requires hundreds of nanoseconds. Transitions will be slower with large capacitive loads.

Input Parameters for LVTTL (3.3 Volt compatible LVTTL input or LVTTL input/output when in input mode)

Parameter	Min	Typ	Max	Unit	Test Conditions
V_{IH}	2.00		VDD	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
V_{IL}	0.00		0.80	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
Input leakage current	-10		10	$\mu \mathrm{~A}$	
Input capacitance			10	pF	

Input Parameters for LVTTLp (3.3 Volt compatible LVTTL input with internal pull-up resistor)

Parameter	Min	Typ	Max	Unit	Test Conditions
V_{IH}	2.10		VDD	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
V_{IL}	0.00		0.80	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
Input leakage current	-117		0	$\mu \mathrm{~A}$	
Input capacitance			10	pF	

Input Parameters for LVTTLd (3.3 Volt compatible LVTTL input with internal pull-down resistor)

Parameter	Min	Typ	Max	Unit	Test Conditions
V_{IH}	2.00		VDD	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
V_{IL}	0.00		0.80	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
Input leakage current	0		117	$\mu \mathrm{~A}$	
Input capacitance			10	pF	

Output Parameters for LVTTL (3.3 Volt LVTTL output or LVTTL input/output when in output mode)

Parameter	Min	Typ	Max	Unit	Test Conditions
V_{OH}	2.4		VDD	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
V_{OL}	0.00		0.4	V	$\mathrm{VDD}=3.14 \mathrm{~V}-3.46 \mathrm{~V}$.
I_{OL}		8		mA	V VL temperature $=125^{\circ} \mathrm{C}$
I_{OH}		8		mA	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{VDD}=3.14 \mathrm{~V}$, junction temperature $=125^{\circ} \mathrm{C}$
Tristate leakage current	-10		-10	$\mu \mathrm{~A}$	Worst case
Output capacitance			10	pF	

DATA SHEET
TXC-06603

TIMING CHARACTERISTICS

This section presents the detailed timing characteristics for the POP-12 in Figures 3 through 11. The load capacitances for the output times are indicated in each Figure as applicable. Unless otherwise indicated, timing parameters are measured at specific signal voltage levels:

1. TTL Inputs

- $0.80 \mathrm{~V} / 2.00 \mathrm{~V}$

2. TTL Outputs

- $0.80 \mathrm{~V} / 2.00 \mathrm{~V}$

The specifications given in this section cover the following environmental condition:
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V} \pm 5 \%$

Figure 3. Transmit Telecom Bus ($x=A, B, C, D$) Input Timing

See parameter table on next page.

Parameter	Symbol	Min	Typ	Max	Unit
TTBCLKINx clock period	$\mathrm{t}_{\mathrm{CYC}(1)}$		51.44		ns
TTBCLKINx duty cycle	$\mathrm{t}_{\mathrm{PWH}(1)} /$ $\mathrm{t}_{\mathrm{CYC}(1)}$	45		55	$\%$
TTBDATAINx(7:0) set-up time to TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(1)}$	7.0			ns
TTBDATAINx(7:0) hold time after TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(1)}$	7.0			ns
TTBJOJ1INx set-up time to TTBCLKIN $\uparrow \uparrow$	$\mathrm{t}_{\mathrm{SU}(2)}$	7.0			ns
TTBJOJ1INx hold time after TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(2)}$	7.0			ns
TTBSPEINx set-up time to TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(3)}$	7.0		ns	
TTBSPEINx hold time after TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(3)}$	7.0			ns
TTBFAILINx(2:0) set-up time to TTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(4)}$	7.0			ns
TTBFAILINx(2:0) hold time after TTBCLKIN $\uparrow \uparrow$	$\mathrm{t}_{\mathrm{H}(4)}$	7.0			ns

Notes:

1. The J 1 pulse is not shown in the timing diagram but has the same timing parameters as the J 0 pulse. If the corresponding TBx bit is set to a 1 , the SPE signal and the J 0 and J 1 pulses are required but valid pointer bytes are not. If the corresponding TBx bit is set to a 0 , only the JO (or A23) pulse is required, as determined by the CPOST bit, the J 1 pulse(s) are ignored; however valid pointer bytes are required.
2. When TTBSPEINx is low, the TTBJOJ1INx signal is used to identify either the A23 or J0 byte position as selected by the CPOST control bit.
3. When TBx is set to 0 , the TTBSPEINx signal can be tied low (as shown by the dashed lines in the TTBSPEINx signal in Figure 3) if there is no J 1 pulse in the TTBJ0J1INx signal. Otherwise, if there is a J 1 pulse in the TTBJ0J1INx signal, then the TTBSPEINx signal needs to be high coincident with the J1 pulse(s), even though they would be ignored. In either case, the TTBSPEINx signal needs to be low coincident with the A23 or J0 pulse in the TTBJOJ1INx signal. When TBx is set to 1 , then the TTBSPEIN x signal must be 1 during the SPE byte times and 0 otherwise. DATA SHEET

Figure 4. Transmit Telecom Bus ($x=A, B, C, D$) Output Timing

100 pF Load
See parameter table on next page.

Parameter	Symbol	Min	Typ	Max	Unit
TXCCLK clock period	$\mathrm{t}_{\mathrm{CYC}(1)}$		51.44		ns
TXCCLK duty cycle	$\mathrm{t}_{\mathrm{PWH}(1)}{ }^{\prime}$ $\mathrm{t}_{\mathrm{CYC}(1)}$	45		55	\％
TTBCLKOUTx clock period	$\mathrm{t}_{\mathrm{CYC}(2)}$		51.44		ns
TTBCLKOUTx duty cycle	$t_{\text {PWH（2）}}$ $\mathrm{t}_{\mathrm{CYC}}(2)$	40		60	\％
TXCFRM set－up time to TXCCLK \uparrow	t_{SU}	7.0			ns
TXCFRM hold time after TXCCLK \uparrow	$t_{\text {H }}$	7.0			ns
TTBCLKOUTx \downarrow delay from TXCCLK \uparrow	$\mathrm{t}_{\mathrm{D}(1)}$	7.0		16	ns
TTBDATAOUTx（7：0）delay from TXCCLK \uparrow	$t_{\text {（2）}}$	7.0		22	ns
TTBJ0J1OUTx delay from TXCCLK \uparrow	$t_{D(3)}$	7.0		22	ns
TTBSPEOUTx delay from TXCCLK \uparrow	$t_{\text {（4）}}$	7.0		22	ns
TTBFAILOUTx（2：0）delay from TXCCLK \uparrow	$t_{\text {（5）}}$	7.0		22	ns
Delay from TXCFRM high and TXCCLK \uparrow to J0 byte position clocked out on TXCCLK \uparrow	$t_{\text {DELAY }}$		Note 4		$\begin{gathered} \text { TXCCLK } \\ \text { Cycles } \end{gathered}$
Transmit Telecom Bus interface output rise and fall times	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	3.8		4.1	ns

Notes：

1．The J 1 pulse（s）is（are）not shown in the timing diagram but has（have）the same timing parameters as the J 0 pulse．
2．$t_{D(n)(\min)}$ represents the earliest time that the corresponding signal starts to change．
3．$t_{D(n)(\max)}$ represents the latest time at which the corresponding signal becomes stable．
4．$t_{\text {DELAY }}$ is determined by the settings of the DELAYT control bits as follows：

DELAYT	$\mathbf{t}_{\text {DELAY }}$	Units
00	1	TXCCLK Cycles
01	4	TXCCLK Cycles
02	7	TXCCLK Cycles
03	10	TXCCLK Cycles
04	13	TXCCLK Cycles
05	16	TXCCLK Cycles
06	19	TXCCLK Cycles

DATA SHEET
TXC-06603

Figure 5. Receive Telecom Bus ($x=A, B, C, D$) Input Timing

See parameter table on next page.

Parameter	Symbol	Min	Typ	Max	Unit
RTBCLKINx clock period	$\mathrm{t}_{\mathrm{CYC}(1)}$		51.44		ns
RTBCLKINx duty cycle	$\mathrm{t}_{\mathrm{PWH}(1)} /$ $\mathrm{t}_{\mathrm{CYC}(1)}$	45		55	$\%$
RTBDATAINx（7：0）set－up time to RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(1)}$	7.0			ns
RTBDATAINx（7：0）hold time after RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(1)}$	7.0			ns
RTBJOJ1INx set－up time to RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(2)}$	7.0		ns	
RTBJOJ1INx hold time after RTBCLKIN $\uparrow \uparrow$	$\mathrm{t}_{\mathrm{H}(2)}$	7.0		ns	
RTBSPEINx set－up time to RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(3)}$	7.0			ns
RTBSPEINx hold time after RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(3)}$	7.0		ns	
RTBFAILINx（2：0）set－up time to RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{SU}(4)}$	7.0			ns
RTBFAILIN $\times(2: 0)$ hold time after RTBCLKINx \uparrow	$\mathrm{t}_{\mathrm{H}(4)}$	7.0			ns

Notes：

1．The J 1 pulse is not shown in the timing diagram but has the same timing parameters as the J 0 pulse．If the cor－ responding RBx bit is set to a 1 ，the J 0 and J 1 pulses are required but valid pointer bytes are not．If the corre－ sponding RBx bit is set to a 0 ，only the J 0 （or A 23 ）pulse is required，as determined by the CPOSR bit，but the J 1 pulse（s）are ignored；however valid pointer bytes are required．
2．When RTBSPEINx is low，the RTBJOJ1INx signal is used to identify either the A23 or J0 byte position as selected by the CPOSR control bit．
3．When RBx is set to 0 ，the RTBSPEINx signal can be tied low（as shown by the dashed lines in the RTBSPEINx signal in Figure 3）if there is no J 1 pulse in the RTBJOJ1INx signal．Otherwise，if there is a J 1 pulse in the RTBJOJ1INx signal，then the RTBSPEINx signal needs to be high coincident with the J1 pulse（s），even though they would be ignored．In either case，the RTBSPEINx signal needs to be low coincident with the A23 or J0 pulse in the RTBJOJ1INx signal．When RBx is set to 1 ，then the RTBSPEINx signal must be 1 during the SPE byte times and 0 otherwise． DATA SHEET

Figure 6．Receive Telecom Bus（ $\mathbf{x}=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ ）Output Timing

100 pF Load
See parameter table on next page．

Parameter	Symbol	Min	Typ	Max	Unit
RXCCLK clock period	$\mathrm{t}_{\mathrm{CYC}(1)}$		51.44		ns
RXCCLK duty cycle	$t_{\text {PWH(1) }}{ }^{\prime}$ $\mathrm{t}_{\mathrm{CYC}}(1)$	45		55	\%
RTBCLKOUTx clock period	$\mathrm{t}_{\mathrm{CYC}(2)}$		51.44		ns
RTBCLKOUTx duty cycle	$t_{\text {PWH(2) }}$ $\mathrm{t}_{\mathrm{CYC}}(2)$	40		60	\%
RXCFRM set-up time to RXCCLK \uparrow	t_{SU}	7.0			ns
RXCFRM hold time after RXCCLK \uparrow	t_{H}	7.0			ns
RTBCLKOUTx \downarrow delay from RXCCLK \uparrow	$t_{\text {(1) }}$	14		35	ns
RTBDATAOUTx(7:0) delay from RXCCLK \uparrow	$t_{\text {(2) }}$	7.0		22	ns
RTBJOJ1OUTx delay from RXCCLK \uparrow	$t_{D(3)}$	7.0		22	ns
RTBSPEOUTx delay from RXCCLK \uparrow	$t_{\text {(4) }}$	7.0		22	ns
RTBFAILOUTx(2:0) delay from RXCCLK \uparrow	$t_{D(5)}$	7.0		22	ns
RXMFx delay from RXCCLK \uparrow	$t_{\text {(6) }}$	7.0		22	ns
Delay from RXCFRM high and RXCCLK \uparrow to J0 byte position clocked out on RXCCLK \uparrow	$t_{\text {DELAY }}$		Note 4		RXCCLK Cycles
Receive Telecom Bus interface output rise and fall times	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	3.8		4.1	ns

Notes:

1. The J 1 pulse(s) is(are) not shown in the timing diagram but has(have) the same timing parameters as the J 0 pulse.
2. $t_{D(n)(\min)}$ represents the earliest time that the corresponding signal starts to change.
3. $t_{D(n)(\max)}$ represents the latest time at which the corresponding signal becomes stable.
4. RXMFx occurs once every 500 microseconds. It is not aligned to RXCFRM or RTBDATAOUTx(7:0) or any other signals.
5. $t_{\text {DELAY }}$ is determined by the settings of the DELAYR control bits as follows:

DELAYR	t $_{\text {DELAY }}$	Units
00	1	RXCCLK Cycles
01	4	RXCCLK Cycles
02	7	RXCCLK Cycles
03	10	RXCCLK Cycles
04	13	RXCCLK Cycles
05	16	RXCCLK Cycles
06	19	RXCCLK Cycles

Figure 7．Asynchronous Microprocessor Interface：Intel－type Write Cycle Timing

100 pF Load

See parameter table on next page．

Parameter	Symbol	Min	Typ	Max	Unit
PCLK clock period（not shown in diagram）${ }^{1}$	${ }^{\text {COYC }}$	50		125	ns
PCLK duty cycle	$\mathrm{t}_{\text {PWH }} / \mathrm{t}_{\mathrm{CYC}}$	45		55	\％
LA（4：0）set－up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\text {SU（1）}}$	0.0			ns
LA（4：0）hold time from $\overline{\text { SELC }}$ de－assertion	$\mathrm{t}_{\mathrm{H}(1)}$	6.0			ns
$\overline{\text { READ }}$ de－assertion set－up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\text {SU（2）}}$	10			ns
$\overline{\text { SELC }}$ assertion set－up time to $\overline{\text { WRITE }}$ assertion	$t_{\text {SU（ }}$ ）	0.0			ns
$\overline{\text { WRITE }}$ assertion to READY valid delay	$t_{\text {D（1）}}$	0.0		23	ns
$\overline{\text { SELC }}$ de－assertion（high）time between accesses	tinactive	$\mathrm{t}_{\mathrm{CYC}}$			ns
$\overline{\text { SELC }}$ hold time from WRITE de－assertion	$\mathrm{t}_{\mathrm{H}(2)}$	2.0			ns
$\overline{\text { WRITE }}$ hold time from READY assertion	$\mathrm{t}_{\mathrm{H}(3)}$	0.0			ns
DATAIO（7：0）input set－up time to $\overline{\text { WRITE }}$ de－assertion	$\mathrm{t}_{\text {SU（4）}}$	7.0			ns
DATAIO（7：0）input hold from $\overline{\text { WRITE }}$ de－assertion	$\mathrm{t}_{\mathrm{H}(4)}$	4.0			ns
READY assertion from $\overline{\text { WRITE }}$ assertion ${ }^{2}$	$\mathrm{t}_{\text {delay }}$	$\mathrm{t}_{\mathrm{CYC}}$		Note 2	ns

Notes：

1．GPPCLK must always be applied to the POP－12 to run the microprocessor interface．
2．When accessing the global registers at virtual address $0000 \mathrm{H}-0 F F F H$ the READY signal will always remain high， as shown by the dashed line above．The maximum value of tdelay is $3^{\star} t C Y C+$（the larger of either 43＊TXCCLKperiod or 43＊RTBCLKINx）．

Figure 8．Asynchronous Microprocessor Interface：Intel－type Read Cycle Timing

See parameter table on next page．

Parameter	Symbol	Min	Typ	Max	Unit
PCLK clock period (not shown in diagram) ${ }^{1}$	$\mathrm{t}_{\mathrm{CYC}}$	50		125	ns
PCLK duty cycle	$\mathrm{t}_{\text {PWH }} / \mathrm{t}_{\mathrm{CYC}}$	45		55	\%
LA(4:0) set-up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\text {SU(1) }}$	0.0			ns
LA(4:0) hold time from $\overline{\text { SELC }}$ de-assertion	$\mathrm{t}_{\mathrm{H}(1)}$	6.0			ns
$\overline{\text { WRITE }}$ de-assertion set-up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\text {SU(2) }}$	0.0			ns
$\overline{\text { SELC }}$ assertion set-up time to $\overline{\text { READ }}$ assertion	$\mathrm{t}_{\mathrm{SU}(3)}$	0.0			ns
$\overline{\mathrm{READ}}$ and $\overline{\text { SELC }}$ assertion to $\overline{\text { READY }}$ valid delay	$t_{D(1)}$	0.0		23	ns
$\overline{\text { SELC }}$ de-assertion (high) time between accesses	$\mathrm{t}_{\text {INACTIVE }}$	$\mathrm{t}_{\mathrm{CYC}}$			ns
$\overline{\text { SELC }}$ hold time from READ de-assertion	$\mathrm{t}_{\mathrm{H}(2)}$	3.0			ns
$\overline{\text { READ }}$ hold time from $\overline{\text { READY }}$ assertion	$\mathrm{t}_{\mathrm{H}(3)}$	0.0			ns
$\overline{\text { READY }}$ assertion from $\overline{\text { READ }}$ and $\overline{\text { SELC }}$ assertion ${ }^{2}$	$\mathrm{t}_{\text {delay }}$	$\mathrm{t}_{\mathrm{CYC}}$		Note 2	ns
$\overline{\operatorname{DATAIO}}(7: 0)$ output tristate turned off from $\overline{\text { READ }}$ and $\overline{\text { SELC }}$ assertion	TD(2)	3.0		17	ns
DATAIO(7:0) output valid delay from $\overline{\mathrm{READ}}$ or $\overline{\text { SELC }}$ de-assertion	TD(3)	1.0			ns
DATAIO(7:0) output tristate delay from $\overline{\operatorname{READ}}$ or $\overline{\mathrm{SELC}}$ deassertion	TD(4)	3.0		14	ns
DATAIO output rise and fall times	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	4.8		5.3	ns

Notes:

1. The GPPCLK must always be applied to the POP-12 to run the microprocessor interface.
2. When accessing the global registers at virtual address 0000H-0FFFH the READY signal will always remain high, as shown by the dashed line above. The maximum value of $t_{\text {delay }}$ is $3^{*} t_{C Y C}+$ (the larger of either 43*TXCCLKperiod or 43*RTBCLKINx).

Figure 9. Asynchronous Microprocessor Interface: Motorola-type Write Cycle Timing

See parameter table on next page.

Parameter	Symbol	Min	Typ	Max	Unit
PCLK clock period（not shown in diagram）${ }^{1}$	$\mathrm{t}_{\text {CYC }}$	50		125	ns
PCLK duty cycle	$\mathrm{t}_{\mathrm{PWH}} / \mathrm{t}_{\mathrm{CYC}}$	45		55	\％
LA（4：0）／READ＿$\overline{\text { WRITE }}$ set－up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\mathrm{SU}(1)}$	0.0			ns
LA（4：0）／READ＿WRITE hold time from SELC de－assertion	$\mathrm{t}_{\mathrm{H}(1)}$	6.0			ns
$\overline{\text { SELC }}$ assertion set－up time to $\overline{\mathrm{DS}}$ assertion	$\mathrm{t}_{\text {SU（2）}}$	0.0			ns
$\overline{\text { SELC }}$ and $\overline{\mathrm{DS}}$ assertion to $\overline{\mathrm{DTACK}}$ valid delay	$t_{D(3)}$	0.0		23	ns
$\overline{\mathrm{SELC}}$ or $\overline{\mathrm{DS}}$ de－assertion to $\overline{\mathrm{DTACK}}$ de－assertion delay	$t_{D(1)}$	1.0		23	ns
$\overline{\text { SELC }}$ de－assertion（high）time between accesses	tinactive	$t_{\text {cYC }}$			ns
$\overline{\text { SELC }}$ hold time from $\overline{\mathrm{DS}}$ de－assertion	$\mathrm{t}_{\mathrm{H}(2)}$	3.0			ns
$\overline{\overline{D S}}$ hold time from $\overline{\text { DTACK }}$ assertion	$\mathrm{t}_{\mathrm{H}(3)}$	0.0			ns
DATAIO（7：0）input set－up time to $\overline{\mathrm{DS}}$ de－assertion	$t_{\text {SU（4）}}$	7.0			ns
DATAIO（7：0）input valid hold from $\overline{\mathrm{DS}}$ de－assertion	$t_{H(4)}$	4.0			ns
$\overline{\overline{D T A C K}}$ assertion from $\overline{\mathrm{DS}}$ assertion ${ }^{2}$	$t_{\text {delay }}$	$\mathrm{t}_{\mathrm{CYC}}$		Note 2	ns

Notes：

1．The GPPCLK must always be applied to the POP－12 to run the microprocessor interface．
2．When accessing the global registers at virtual address $0000 \mathrm{H}-0 \mathrm{FFFH}$ the $\overline{\mathrm{DTACK}}$ signal will go low as soon as $\overline{S E L C}$ and $\overline{D S}$ are asserted，as shown by the dashed line above．The maximum value of $t_{\text {delay }}$ is $3^{*} t_{C Y C}+$（the larger of either 43＊TXCCLKperiod or 43＊RTBCLKINx）．

Figure 10. Asynchronous Microprocessor Interface: Motorola-type Read Cycle Timing

100 pF Load

See parameter table on next page.

Parameter	Symbol	Min	Typ	Max	Unit
PCLK clock period（not shown in diagram）${ }^{1}$	$\mathrm{t}_{\mathrm{CYC}}$	50		125	ns
PCLK duty cycle	$\mathrm{t}_{\text {PWH }} / \mathrm{t}_{\mathrm{CYC}}$	45		55	\％
LA／READ＿$\overline{\text { WRITE }}$ set－up time to $\overline{\text { SELC }}$ assertion	$\mathrm{t}_{\mathrm{SU}(1)}$	0.0			ns
LA／READ＿$\overline{\text { WRITE }}$ hold time from $\overline{\text { SELC }}$ de－assertion	$\mathrm{t}_{\mathrm{H}(1)}$	6.0			ns
$\overline{\text { SELC }}$ assertion set－up time to $\overline{\mathrm{DS}}$ assertion	$\mathrm{t}_{\mathrm{SU}(2)}$	0.0			ns
$\overline{\text { SELC }}$ and $\overline{\mathrm{DS}}$ assertion to $\overline{\text { DTACK }}$ valid delay	$t_{D(1)}$	0.0		23	ns
$\overline{\text { SELC }}$ or $\overline{\mathrm{DS}}$ de－assertion to $\overline{\text { DTACK }}$ de－assertion delay	$t_{D(2)}$	1.0		23	ns
$\overline{\text { SELC }}$ de－assertion（high）time between accesses	tinactive	$\mathrm{t}_{\mathrm{CYC}}$			ns
$\overline{\text { SELC }}$ hold time from $\overline{\mathrm{DS}}$ de－assertion	$\mathrm{t}_{\mathrm{H}(2)}$	6.0			ns
$\overline{\mathrm{DS}}$ hold time from $\overline{\text { DTACK }}$ assertion	$\mathrm{t}_{\mathrm{H}(3)}$	0.0			ns
$\overline{\text { DTACK }}$ assertion from $\overline{\mathrm{DS}}$ assertion ${ }^{2}$	$t_{\text {delay }}$	$\mathrm{t}_{\mathrm{CYC}}$		Note 2	ns
DATAIO（7：0）output tristate turned off from $\overline{\mathrm{DS}}$ and $\overline{\mathrm{SELC}}$ assertion	$t_{\text {（4）}}$	3.0		17	ns
DATAIO（7：0）output valid hold from $\overline{\mathrm{DS}}$ or $\overline{\mathrm{SELC}}$ de－ assertion	$t_{\text {（5）}}$	1.0			ns
DATAIO（7：0）output tristated from $\overline{\mathrm{DS}}$ or $\overline{\text { SELC }}$ de－assertion	$t_{\text {（6）}}$	3.0		14	ns
DATAIO（7：0）output rise and fall times	$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	4.8		5.3	ns

Notes：

1．The GPPCLK must always be applied to the POP－12 to run the microprocessor interface．
2．When accessing the global registers at virtual address $0000 \mathrm{H}-0 \mathrm{FFFH}$ the $\overline{\mathrm{DTACK}}$ signal will go low as soon as $\overline{\text { SELC }}$ and $\overline{\mathrm{DS}}$ are asserted，as shown by the dashed line above．The maximum value of $\mathrm{t}_{\text {delay }}$ is $3^{*} \mathrm{t}_{\mathrm{CYC}}+$（the larger of either 43^{*} TXCCLKperiod or 43^{*} RTBCLKINx）．

TXC-06603

Figure 11. Boundary Scan Timing

100 pF Load

Parameter	Symbol	Min	Max	Unit
TCK clock period	$\mathrm{t}_{\mathrm{CYC}}$	50		ns
TCK clock duty cycle	$\mathrm{t}_{\mathrm{PWH} / \mathrm{TCYC}}$	40	60	$\%$
TMS setup time to TCK \uparrow	$\mathrm{t}_{\mathrm{SU}(1)}$	3.0		ns
TMS hold time after TCK \uparrow	$\mathrm{t}_{\mathrm{H}(1)}$	15		ns
TDI setup time to TCK \uparrow	$\mathrm{t}_{\mathrm{SU}(2)}$	3.0		ns
TDI hold time after TCK \uparrow	$\mathrm{t}_{\mathrm{H}(2)}$	15		ns
TDO delay from TCK \downarrow	t_{D}	3.0	20	ns
$\overline{\text { TRS pulse width }}$	t_{PW}	50		ns

OPERATION

This Operation section provides additional detailed information on the operation of the functional units and pro－ cesses of the POP－12 device．It is by no means exhaustive and should be read in conjunction with the informa－ tion contained in the other sections of this Data Sheet．

It should be noted that interrupt requests are not all rationalized in the POP－12 hardware．That is，lower level alarms are not inhibited by higher level alarms except when indicated．The rationalization of alarms needs to be handled in the software that monitors the POP－12 device．

GENERAL INFORMATION AND MEMORY MAP BIT ORDERING

The memory map of the POP－12 device is partitioned into thirteen segments，as shown in＂POP－12 Memory Map＂on page 59．The first block，called Common Control，contains all of the global configuration parameters and cross connect settings for the POP－12 device．The other twelve blocks，called POP Function 1－12，contain the individual control and status for each of up to twelve channels that can be processed by the POP－12．

Memory map address locations are stated in Hexadecimal（H）．The bit placement relationship between a receive and transmit serial SDH／SONET（STM／STS）byte（e．g．，J1）and its corresponding storage location in the POP－12 memory map is shown below：

CLOCKS

The PCLK input clock needs to be present to enable the microprocessor interface to operate．The correspond－ ing clocks and Telecom Bus signals for the other blocks need to be present or access to those chiplets via the microprocessor interface will not succeed and will result in an internal watchdog timer timing out．The watch－ dog timer causes the READY／DTACK signal to go active after 255 PCLK cycles if the internal logic is unable to generate one，such as would occur if a clock was missing．This keeps the microprocessor from hanging up．

POP－12 POWER－UP－RESET SEQUENCE

The $\overline{\text { RESETUP }}$ lead is used to perform a synchronous reset of the POP－12 device．At power up，after the power and all clocks（except TCK）have stabilized，this lead must be held low for at least 150ns and then brought high before the POP－12 can be configured for operation．Also，$\overline{\text { WRITE／READ＿WRITE must be held }}$ high during the time that $\overline{\text { RESETUP }}$ is held low and for 10 ns after $\overline{\text { RESETUP }}$ is brought high．

POP－12 OPERATIONAL OVERVIEW

The POP－12 supports three modes of operation：STS－3，STS－3c，and STM－1．Each full duplex channel inter－ face is able to be configured to one of the three modes independent of the other Telecom Bus．The only con－ straint that needs to be observed is in the cross connecting of data from one Telecom Bus to another．e．g．，If data arriving at Telecom Bus 1 is to be cross connected to Telecom Bus 3，then both Telecom Bus 1 and 3 need to be configured for the same mode．

DATA SHEET
TXC-06603

RXCCLK and optionally RXCFRM are used to retime all four RX Telecom Bus interface inputs. TXCCLK and optionally TXCFRM are used to retime all four TX Telecom Bus interface inputs. However, the individual Telecom Bus inputs can operate independently of each other, provided that the input clock rate is $19.44 \mathrm{MHz} \pm 20$ ppm.
A block diagram of the POP-12 device is shown in the figures below.
In the RX direction, there are four Telecom Bus inputs called TBI. These Telecom Bus inputs accept either a J0J1 or a frame pulse aligned to the A23 byte. The data formats on each Telecom Bus can either be $1 x$ VC-4/STS-3c-SPE or 3xSTS-1-SPE. Pointer processing and/or retiming are performed in order to locate the VC-4/STS-3c-SPE or STS-1-SPEs and to align the Telecom Bus (TB) signals to a common frame reference for cross connecting latter. The Output of the Pointer Retiming Block is also in Telecom Bus format, (path AIS is added in the event that an LOP-P or AIS-P has been detected as indicated in [1] R6-170, provided that the corresponding pointer tracking state machine is not bypassed). The telecom bus data is then passed to an AU-3/AU-4 cross connect where they can be time slot interchanged at the AU-3/AU-4 level and then applied to the POP-12 RX block. The POP-12 RX block processes the Path Overhead of up to four groups of 3xSTS-1-SPE or up to $4 \mathrm{xVC}-4 / \mathrm{STS}-3 \mathrm{c}-\mathrm{SPE}$ or any combination and passes FEBE and RDI information to the POP-12 TX block as shown in the following figure. Additionally, the RX Loss of Pointer and Path AIS alarms are routed to the appropriate RX POH processor according to the AUCC R control bit settings. e.g., If RX input STS-1 \#3 is routed to RX output STS-1 \#5, then the RX LOP and Path AIS from the Pointer Tracking State Machine that processes the input STS-1 \#3 are routed to the RX POH processor that corresponds to RX output STS-1 \#5.

From PHAST-12E

Figure 12. Block Diagram of POP-12 Device RX Direction

In the TX direction，basically the same functionality occurs．Telecom Bus data is accepted，and the pointers are processed and the payloads are aligned to a common frame reference，which is the PHAST－12E＇s TXCCLK and TXCFRM signals．This is mandatory since the PHAST－12E must be in AU－4 mode in order to trick it into accepting the STS－1－SPEs．The PHAST－12E can do this in AU－4 mode，because，in AU－4 mode it blindly accepts an AU－4 structure from its Telecom Bus interface．The AU－4 structure not only is capable of housing an AU－4，but it is capable of housing three byte interleaved STS－1s，and hence，three STS－1－SPE．The PHAST－ 12E requires that the data it receives be aligned to the TXCCLK and TXCFRM signals．So to compensate for the delays through the AUCC and POP－12 functions，a delay function has been added which allows the inter－ nal frame reference of the retiming circuit to be placed a programmable number of clock cycles ahead／behind of the TXCFRM signal from the PHAST－12E．If the TXCFRM（or RXCFRM）signal is not provided，then it must be tied low．Of course，in that case，the retiming circuit won＇t be aligned to anything in particular．However，the TXCCLK and RXCCLK clocks are always required．They are a $19.44 \mathrm{MHz} \pm 20$ ppm clock with a $45 \%-55 \%$ duty cycle．The POP－12 TX block takes alarm and error information from the RX side of the device and generates path FEBE and RDI．
The AUCC and AURT blocks are identical to those used on the RX side．The POP－12 TX and RX blocks are composed of four full duplex POH processing blocks．

Figure 13．Block Diagram of POP－12 Device TX Direction

DATA SHEET
TXC-06603

Also included in both the TX and RX directions are fail inputs and outputs. There are twelve in each direction. In STS-3 mode, by setting a fail input high, the corresponding STS payload are forced to all 1s. In STS-3c/STM-1 modes, fail inputs $1,4,7$, and 10 control all three of their respective STSs. Cross connects are also provided as shown in the figures above so that the fail signals can be cross connected to the fail output that corresponds to its associated STS from the input. The fail outputs go high when the corresponding Retimer detects either a Loss of Pointer or Path AIS when the Pointer Tracking State Machine is not bypassed, or when the corresponding Fail input is asserted.

AURT (AU/STS RETIMING BLOCK)

There are four AURT blocks in the TX direction and four AURT blocks in the RX direction of the POP-12. Each of these blocks accepts a byte wide Telecom Bus signal formatted as either an STM-1, STS-3c, or an STS-3, and performs pointer tracking and retiming to a common reference clock and optional reference frame input. For the TX direction, the reference clock and frame are called TXCCLK and TXCFRM. For the RX direction, the reference clock and frame are called RXCCLK and RXCFRM. If the frame pulses are used they must be one reference clock wide and occur once every 2430 cycles (i.e., 125 microseconds). The four corresponding Telecom Bus outputs will be aligned to the frame pulse according to the settings of the DELAYT or DELAYR bits and they will all be timed by the reference clock. The pointer tracking can be bypassed through software control. In this case, the Telecom Bus signals (SPE, J0J1, Data) are applied directly to the retiming logic.
The formats of the signals presented to the AURT are important for proper operation. Connecting the POP-12 to TranSwitch's PHAST-12E guarantee's the proper operation of the POP-12. However, for applications where the POP-12 may be used by itself, the following needs to be observed:

- Pointer tracking is not bypassed:
- The Telecom Bus Data needs to contain valid pointers
- The J0J1 input must contain either a J0 or an A23 byte pulse. J1 pulses are optional. V1 pulses will not interfere with normal operation.
- The SPE signal needs to be low during the J0 or A23 pulse/byte. It can be high all other times as the POP-12 regenerates the SPE signal internally based on the received pointers and J0/A23 position.
- Pointer tracking is bypassed:
- The Telecom Bus Data does not need to contain valid pointers
- The J0J1 input must contain J1 byte pulses (1 for each J1 byte). J0/A23 pulses are optional. V1 pulses will not interfere with normal operation.
- The SPE signal needs to be high during SPE/VC byte times and low during non-SPE/VC byte times. This includes when pointer adjustments occur.

Figure 14 below is a composite of the Bellcore and ITU-T specifications for one of the point Pointer Tracking State Machines (PTSM) used in the POP-12. Those bits can also generate a maskable interrupt to the external microprocessor. These specifications are found in Reference [1] as R3-89, R3-90, R3-91, R3-92, R3-93, R3-95, R3-96, R3-99 (performed by the muxes between the PTSM and FIFOs), R3-102 (performed by the muxes between the PTSM and FIFOs), R6-172, R6-173 (except that for STS-3c mode the concatenation indicators are not monitored, only the STS pointers are monitored) and Reference [2] sections 8.1.4, 8.1.6, and Reference [3] Annex C.1. Loss of Pointer and Path AIS are detected and reported via latched status bits. All 1s is inserted into the output of the AURT in the corresponding STS/VC when Loss of Pointer or Path AIS is detected, except when the PTSM is bypassed.

new＿point：Normal NDF AND（ss bits＝10 for VC－4 format OR ss bits ignored for NOT VC－4 format）AND pointer offset in range． NDF＿enable：NDF enabled AND（ss bits＝10 for VC－4 format OR ss bits ignored for NOT VC－4 format）AND pointer offset in range． AIS＿ind： H 1 H 2 pointer bytes set to all 1 s ．
inc＿ind：Normal NDF AND（ss bits＝10 for VC－4 format OR ss bits ignored for NOT VC－4 format）AND majority of I bits inverted AND no majority of D bits inverted．
dec＿ind：Normal NDF AND（ss bits＝10 for VC－4 format OR ss bits ignored for NOT VC－4 format）AND majority of D bits inverted AND no majority of I bits inverted．
inv＿point：Any other pointer or a new＿point with a pointer offset not equal to the current offset．
NDF enabled $=1001,0001,1101,1011,1000$.
Normal NDF $=0110,1110,0010,0100,0111$.
$3 \times$ AIS＿ind $=3$ consecutive AIS＿ind．
$8 \times$ inv＿point $=8$ consecutive inv＿point．
$8 \times$ NDF＿enable $=8$ consecutive NDF＿enable．
$3 \times n e w$＿point $=3$ consecutive and identical new pointers．
After reset，the PTSM block starts off in the LOP state．
LOP or AIS states cause all 1s to be generated at the output of the PTSM．
When the selected format is STM－1（VC－4）or STS－3c the PTSM for slots B and C always passes the data straight through．

Figure 14．Pointer Tracking State Machine

AUCC（AU／STS CROSS CONNECT BLOCK）

The POP－12 contains two non－blocking cross connects．One in the TX direction and one in the RX direction． Refer to Figure 1．These cross connects allow traffic at the AU－3 or AU－4 level to be cross connected to any co－ directional POP Function／Telecom Bus through software control．The AUCC cross connects allow data to be broadcast／bridged to multiple AU／STSs or selected from multiple AU／STSs for protection purposes．

POP（PATH OVERHEAD PROCESSING）

A high level block diagram of the POP functionality is shown below．A single POP function supports POH pro－ cessing for a single STS－1－SPE or a single VC－4／STS－3c－SPE as determined by the FORMAT $\$(2: 0)$ bits． Three of the POP functions are combined together to support STS－3 POH processing．The sequencer provides

DATA SHEET
TXC-06603
an enable signal which tells the POP function when there is valid data (i.e. it identifies the appropriate slots to process). In the RX direction the data is passed through unmodified unless a path AIS needs to be generated. The POH bytes are written to registers for microprocessor access. In the TX direction, the option exists to pass through or provide the POH bytes on a per POH byte option. The sections below describe in more detail the functions of the blocks in Figure 15 and Figure 16.

Figure 15. High Level Block Diagram of $1 / 12$ of POP-12 Function

Each POP Function can process either a STS-1-SPE or a VC-4/STS-3c-SPE.
The CMUX blocks can act as a 3:1 mux for 3xSTS-1-SPE

Figure 16. Muxing of 3 POP Functions for STS-3

TX J1 TRACE BUFFER

This is a 64 byte circular buffer that is used to transmit the Path Trace Message. These bytes are written by the microprocessor. This allows both a 64 byte and a 16 byte message (repeated 4 times of course) to be supported per Reference [1] R6-150 and Reference [2] section 9.3.1.1. The J1 Path Trace can be either be derived from the TX J1 Trace Buffer or from the input Telecom Bus signal under software control using the J1EN bit.

TX C2, F2, F3, K3, N1 INSERT

The C2, F2, F3, K3, and N1 bytes are written by the microprocessor, to their corresponding registers, from where they can be transmitted if enabled by their enable bits (C2EN, F2EN, F3EN, K3EN, N1EN). These bytes can also be derived from the input Telecom Bus signal if their enable bits are set accordingly.

TX H4 INSERT

The H4 Insert logic has three modes of operation. The first is pass through, that is, it passes the H 4 through that it receives on its Telecom Bus. The second mode is fixed pattern mode. In this mode, a fixed pattern written by the microprocessor is continuously transmitted. The third mode is VT (Virtual Tributary Mode). In this mode, a count which indicates the multiframe number is inserted based upon the position of a V1 pulse, in the J0J1 signal. Reference [1] section 3.4.1 and Reference [2] sections 8.3.1 and 8.3.8 indicate what is shown in the table below:

H4 Byte Bits								V1 through V4 byte in the next frame
1 (msb)	2	3	4	5	6	7	8 (lsb)	
0	0	0	0	0	0	0	0	V1
0	0	0	0	0	0	0	1	V2
0	0	0	0	0	0	1	0	V3
0	0	0	0	0	0	1	1	V4

On the input telecom bus signal, there is expected to be a V1 pulse following the J1 pulse in the same STS slot. A synchronizer circuit is used to reset the H 4 byte generator to follow the H 4 sequence in the table above. The V1 indication should cause the TX H4 byte to be initialized to 01 H , then in the next frame, as indicated by the J 1 pulse, it should be set to 02 H , etc. The two control bits, $\mathrm{H} 4 \mathrm{M}(1: 0)$, control the mode of operation.

TXG1 INSERT

This logic either allows the G1 to be passed through or to be generated based on RX alarms or errors. This is selected through the G1EN control bit. When in VC-4 mode and configured to generate the G1 based on RX alarms and errors an RDI will be generated as 100 in bits $5-7$ when either an externally indicated (from the PTSM) Path AIS or LOP occur as well as if an SLM (Path Signal Label Mismatch), UNEQ (Unequipped), or TIM (Path Trace Identifier Mismatch) is detected and their appropriate control bits are set. SLMEN is used to enable/inhibit SLM from causing RDI to be transmitted apart from the C2PEN bit since SLM is not supposed to cause RDI to be generated but it is supposed to cause AIS to be generated when in SDH mode; but in SONET mode, it causes both RDI and path AIS to be generated. If no alarms are detected in SDH mode then the RDI bits are transmitted as 000 . In STS-3 or STS-3c mode, the RDI will be a three bit RDI. If LOP or Path AIS is detected the RDI is 101 ; if TIM is detected and TIMEN=1 then the transmitted RDI=110; if SLM is detected then the transmitted RDI is 010 and if no alarms are detected then the RDI bits are transmitted as 001 . Bit 8 is always set to a 0 .
For TX RDI generation, the following Bellcore requirements are supported per reference [1]: O6-208, R6-209, O6-210, R6-211, R6-212, R6-214, O6-215. A paraphrase of Table 6-4 in [1] is given below for convenient reference.

3-Bit RDI for STS-3c/STS-3 modes

G1 Bits 5-7	Priority	Trigger	
000	Not Applicable	No defects	This code is transmitted by devices not supporting 3-bit RDI.
001	4	No defects	
010	3	SLM	
011	Not Applicable	No defect	This code is transmitted by devices not supporting 3-bit RDI.
100	Not Applicable	No Defect	This code is transmitted by devices not supporting 3-bit RDI. This code is detected by devices that support 3-bit RDI.
101	1	AIS-P, LOP-P	
110	2	UNEQ, TIM	RDI based upon TIM is transmitted only when TIM is activated.
111	Not Applicable		This code is detected by devices that support 3-bit RDI.

Bits 1－4 transmit the REI as provided by the RX B3 Checker．A small FIFO of 10 nibbles deep is used to buffer the data and take care of any clock frequency differences between the TX and RX sides．This will allow the REI generation logic to sustain a continuos burst of B3 errors for over 30 seconds（i．e．240，000＋frames of errored B3）．When the FIFO is empty，zeros are transmitted in bits 1－4．The read port of the FIFO contains synchroni－ zation logic to synchronize it to the TX clock．

For TX REI generation，the following Bellcore standard is supported per reference［1］：R3－24．
For both TX REI and RDI generation，the POP－12 complies with ITU－T recommendation reference［2］section 9．3．1．4 and Reference［3］sections 2．2．3．2，2．2．3．3，2．2．3．4，6．2．1．1，6．2．1．2，6．2．3．1，and 6．2．3．2．

TX B3 GENERATOR

This logic either allows the B3 to be passed through or to be recalculated．This is selected through the B3EN control bit．The B3 calculation，when performed，is performed after all of the other POH bytes have been inserted，including the B3（which should have been calculated during the previous frame．The B3 calculation is performed over all of the bits of the previous STS－1－SPE／VC－4／STS－3c－SPE using even parity as per Refer－ ence［2］section 9．3．2．1．and Reference［1］R3－21．

Although a misnomer，frame boundaries will be determined by the J1 byte position．

TX ALL ZEROS GENERATOR

A control bit AZSPE is provided to force the TX input data to the POP－12 to all zeros on a per VC／STS basis． When used with the control bits in the TXCNTL1 and 2 register either Unequipped or Supervisory Unequipped signals can be inserted into any of the TX STS－1－SPE，STS－3c－SPE or VC－4 signals．The unequipped and supervisory unequipped signals are defined as follows per Reference［2］sections 6．2．4．2．2 and 6．2．4．3．2：

Unequipped for network not supporting Tandem Connection Signals：The VC－3／4 C2 and J1 bytes are all Os． The B3 is valid．The payload and remaining POH bytes are unspecified．
Supervisory Unequipped for network not supporting Tandem Connection Signals：The VC－3／4 C2 byte is all Os． The J1，B3，and G1 bytes are valid．The remaining POH bytes are for further study．The payload is unspecified．
Unequipped as mentioned Reference［1］，R3－23 is defined as an all zeros SPE（Synchronous Payload Enve－ lope）．
The Table below shows the settings of the bits in the TXCNTL1 and 2 registers in order to transmit the unequipped or supervisory unequipped signals when the AZSPE bit is set to a 1 ．

J1EN	B3EN	C2EN	G1EN	F2EN	H4M1	H4M0	F3EN	K3EN	N1EN	TYPE OF TX UNEQUIPPED SIGNAL
0	1	0	0	0	0	0	0	0	0	Unequipped（Bellcore or ITU－T modes of operation）
1	1	0	$1^{\text {a }}$	0	0	0	0	0	0	Supervisory（defined only for ITU－T）

a．The corresponding REIEN，C2PEN，and TIMEN bits should be set to 1 as appropriate to ensure that the path RDI and REI functions are operating．

RX J1 TRACE BUFFER

The Received J1 bytes are written in circular fashion into this 64 byte buffer if TIM processing is not enabled． The microprocessor has access to it and can read the bytes．A separate 64 byte buffer is provided for checking if the received J 1 message matches an expected value if TIM processing is enabled．When TIM processing is

DATA SHEET
TXC-06603
enabled, the received J 1 byte is compared byte by byte with the expected J 1 byte. If all 64 bytes match then the TIM clears. If two out of 64 bytes don't match then TIM is set. TIM is also set after reset while initially acquiring the message if TIM processing is enabled via the TIMEN bit. Also long as TIM persists, an all 1s signal will be generated downstream.

RX C2

The RX C2 bytes are written frame by frame into a register for access by the microprocessor. The C2 byte is monitored for SLM (signal label mismatch) and UNEQ (unequipped). SLM is declared/cleared when the RX C2 byte, does not match / does match, a microprocessor written C2 compare register or a hard coded 01H value for 5 consecutive frames. UNEQ is declared/cleared when the RX C2 byte, does not match / does match, 00H for 5 consecutive frames. Also long as SLM or UNEQ persists, an all 1 s signal will be generated downstream. RX C2 byte processing can be enabled or disabled via the C2PEN bit.

RX C2 processing is performed per Reference [1] R6-124, O6-125, R6-126, O6-127, R6-131, O6-132, R6-133, and 06-134 and Reference [3] sections 2.2.2.2 and 2.2.2.7.

RX F2, F3, K3, N1 BYTES

These bytes are simply written to registers for access by the microprocessor.

RX B3 CHECKER

The RX B3 byte is checked against a B3 byte calculated for the previously received STS-1-SPE/VC-4/STS-3cSPE. If any errors are found, the number of bits that are in error are summed up and added to a 16-bit B3 error counter and are also passed to the TX G1 Insert logic for transmission as Path REI. The RX B3 byte is also written to a register for access by the microprocessor. B3 Processing can be enabled or disabled through the REIEN bit.

RX G1

In VC-4 mode, bit 5 of the RX G1 byte will be examined for RDI. If it is set to a 1 for 10 consecutive frames, while the LOP and Path AIS alarms are not active, then the PRDI bit will be set to 1 . If it is set to 0 for 10 consecutive frames or the LOP or Path AIS alarms are active, then the PRDI alarm will go inactive.
In STS-3c-SPE or STS-1-SPE modes, bits 5-7 of the RX G1 byte will be examined for RDI. If one of the following 3-bit RDI codes: 010, 100, 101, 110, 111 is detected for 10 consecutive frames, while the LOP and Path AIS alarms are not active, then the corresponding PRDI bit (STS-3c) or bit(s) (STS-3) will be set to 1. If bits 5 7 are set to 000,001 , or 011 for 10 consecutive frames or the LOP or Path AIS alarms are active, then the PRDI alarm will go inactive.

RX RDI processing is performed per Reference [1] R6-218 and R6-220 and Reference [3] section 2.2.2.6.
Bits 1-4 will be monitored for REI. Any count less than but not equal to 9 H will be added to a 16 -bit REl counter which can be accessed by the microprocessor.

RX H4 BYTE

Under the control of the RV1EN bit an optional V1 pulse can be generated and added to the RX J0J1 signal. This is accomplished by synching up to the H 4 byte and noticing when the 2 LSBs are 00 . When this occurs an extra pulse is output after the J 1 pulse (3 clocks after J1 pulse in STS-1-SPE mode or VC-4/STS-3c-SPE mode).

SEQUENCER

The sequencer block receives its synchronization from the TX AURTs and controls the muxing function．It uses the enable bytes to determine which POH bytes are passed through and which ones are processed．It also performs the timing of when to insert the bytes when in STS－1－SPE and VC－4／STS－3c－SPE mode．

CMUX

The CMUX blocks basically take the Telecom Bus streams and recombine them．If a POP Function is pro－ grammed for VC－4／STS－3c－SPE mode then the CMUX just passes the data from POP 1 through；this includes all control signals．If the POP functions are programmed to support STS－1－SPEs then the CMUX byte inter－ leaves STS－1 1 from POP1，with STS－1 2 from POP 2，with STS－1 3 of POP 3．The CMUX gets its synchroni－ zation from POP Function 1；although it could get it from any of the other POP functions since the entire Telecom Bus is passed through including the synchronization signals；only the POH of the selected VC／STS is modified．The CMUX block is controlled by the FORMAT\＄（2：0）control bits．

MICROPROCESSOR INTERFACE

The POP－12 can support either Motorola or Intel microprocessor bus types．All of the bus transactions are asynchronous with respect to the microprocessor clock and signals are synchronized internally to the external PCLK signal．
An internal watchdog timer is provided to allow transactions to a specific block to be terminated when a timer runs out，even if the clock for the block being accessed is not present．If a timeout occurs（ 255 PCLK cycles） the READY／DTACK signal goes active to terminate the cycle．

BOUNDARY SCAN INTERFACE

A boundary scan interface compliant with IEEE Standard 1149．1－1994（JTAG）is provided for board level test－ ing of the POP－12．Details of the POP－12 boundary scan operation are provided in＂Boundary Scan＂on page 88.

THROUGHPUT DELAY

The worst case throughput delays for the POP－12 are listed in the table below．

Path that Data Travels	Worst Case Throughput Delay in microseconds
TX Telecom Bus in to TX Telecom Bus out	12
RX Telecom Bus in to RX Telecom Bus out	12

MEMORY MAP

This section contains the address map and register bit descriptions for the internal memory locations of the POP-12 device. The Access columns of the tables specify bit access as Read-only (R), Write-only (W) or Read/Write (R/W). When writing to registers that contain bits designated in the following tables as Reserved or Not Used, care should be taken to write those bits with their default values (if specified), or with 0 if no default value is specified.

The POP-12 is controlled through its microprocessor interface; through which control bits, performance counters, and status bits can be accessed. A high level representation of the POP-12's memory map is shown below.

POP-12 Memory Map

Virtual Address Offset (Hex)		Functional Block	Notes	
0000	-	OFFF	Common Control	These Function Are Common to all blocks.
1000	-	1FFF	POP Function 1	
2000	-	2FFF	POP Function 2	
3000	-	3 FFF	POP Function 3	
4000	-	4FFF	POP Function 4	
5000	-	5 FFF	POP Function 5	
6000	-	6FFF	POP Function 6	
7000	-	7FFF	POP Function 7	
8000	-	8FFF	POP Function 8	
9000	-	9FFF	POP Function 9	
A000	-	AFFF	POP Function 10	
B000	-	BFFF	POP Function 11	
C000	-	CFFF	POP Function 12	

The memory map is accessible through a 16-bit address register and an 8-bit data register. All of the POP-12 registers are accessed through these three registers. To access one of the virtual addresses, the 16-bit address register is written with the virtual address. Then whatever is written to or read from the 8 -bit data register, is written or read from the virtual address. These registers are mapped as shown below.

Address and Data Registers

Physical Address (hex)	Register
00	lower 8-bits of virtual address
01	upper 8-bits of virtual address
02	data register

Control and Status Registers（ $\mathrm{y}=1,2, . . \mathrm{B}, \mathrm{C}$ ）

Virtual Address Offset（Hex）	Register Name	Access	Bit Names							
			7	6	5	4	3	2	1	0
0000	GCNLT1	R／W			CPOST	DELAYT（4：0）				
0001	GCNTL2	R／W			CPOSR	DELAYR（4：0）				
0002	FMT1	R／W	－－	FORMATB（2：0）			－－	FORMATA（2：0）		
0003	FMT2	R／W	－－	FORMATD（2：0）			－－	FORMATC（2：0）		
0004	TCC1	R／W	TCC1B（3：0）				TCC1A（3：0）			
0005	TCC2	R／W	TCC1D（3：0）				TCC1C（3：0）			
0006	TCC3	R／W	TCC2B（3：0）				TCC2A（3：0）			
0007	TCC4	R／W	TCC2D（3：0）				TCC2C（3：0）			
0008	TCC5	R／W	TCC3B（3：0）				TCC3A（3：0）			
0009	TCC6	R／W	TCC3D（3：0）				TCC3C（3：0）			
000A	RCC1	R／W	RCC1B（3：0）				RCC1A（3：0）			
000B	RCC2	R／W	RCC1D（3：0）				RCC1C（3：0）			
000C	RCC3	R／W	RCC2B（3：0）				RCC2A（3：0）			
000D	RCC4	R／W	RCC2D（3：0）				RCC2C（3：0）			
000E	RCC5	R／W	RCC3B（3：0）				RCC3A（3：0）			
000F	RCC6	R／W	RCC3D（3：0）				RCC3C（3：0）			
0010	TBP1	R／W	TB4	TB3	TB2	TB1	RB4	RB3	RB2	RB1
0011－00EF	－－	－－	Not Used							
00F0	ID1	R	M16＝1	MI5＝1	M14＝0	MI3＝1	M12＝0	$\mathrm{MIT}=1$	$\mathrm{MIO}=1$	1
00F1	ID2	R	PN3＝1	PN2＝0	PN1＝1	PNO＝1	M110＝0	M19＝0	M18＝0	MI7＝0
00F2	ID3	R	PN11＝1	PN10＝0	PN9＝0	PN8＝1	PN7＝1	PN6＝1	PN5＝0	PN4＝0
00F3	ID4	R	RN3＝0	RN2＝0	RN1 $=0$	RN0＝1	PN15＝0	PN14＝0	PN13＝0	PN12＝1
00F4	ID5	R	0	0	0	0	0	0	0	0
00F5－0FFF	－－	－－	Not Used							
y000	STAT1	R	LOPR	PAISR	LOPT	PAIST	PRDI	SLM	UNEQ	TIM
y001	STAT1＿M	R／W	LOPR＿M	PAISR＿M	LOPT＿M	PAIST＿M	PRDI＿M	SLM＿M	UNEQ＿M	TIM＿M
y002	TEST	R	TEST							
y003－y1FF	－－	－－	Not Used							
y200	B3CNT	R	B3 Error Counter（lower 8－bits）							
y201	REICNT	R	REI Counter（lower 8－bits）							
y202	PJTCNT	R	＋PAT							
y203	NJTCNT	R	－PAT							
y204	PJRCNT	R	＋PAR							
y205	NJRCNT	R	－PAR							
y206－y3FE	－－	－－	Not Used							
y3FF	CHB	R	Common High Byte（for 16－bit counters）							
y400－y43F	TXJ1	R／W	TX J1 Buffer							
y440	－－	－－	Not Used							

Control and Status Registers ($\mathrm{y}=1,2, . . \mathrm{B}, \mathrm{C}$)

Virtual Address Offset (Hex)	Register Name	Access	Bit Names							
			7	6	5	4	3	2	1	0
y441	TXC2	R/W	TX C2 Byte							
y442	--	--	Not Used							
y443	TXF2	R/W	TX F2 Byte							
y444	TXH4	R/W	TX H4 Byte							
y445	TXF3	R/W	TX F3 Byte							
y446	TXN1	R/W	TX N1Byte							
y447	TXK3	R/W	TX K3 Byte							
y448	TXCNTL1	R/W	J1EN	B3EN	C2EN	G1EN	F2EN	F3EN	K3EN	N1EN
y449	TXCNTL2	R/W	--	--	--	--	--	--	H4M1	H4M0
y44A-y5FF	--	--	Not Used							
y600-y63F	RXJ1	R	RX J1 Buffer							
y640	RXB3	R	RX B3 Byte							
y641	RXC2	R	RX C2 Byte							
y642	RXG1	R	RX G1 Byte							
y643	RXF2	R	RX F2 Byte							
y644	RXH4	R	RX H4 Byte							
y645	RXF3	R	RX F3 Byte							
y646	RXN1	R	RX N1Byte							
y647	RXK3	R	RX K3 Byte							
y648-y68F	--	--	Not Used							
y690	EXC2	R/W	Expected C2 Byte							
y691	RXCNTL1	R/W	--	--	AZSPE	SLMEN	RV1EN	REIEN	C2PEN	TIMEN
y692-y6BF	--	--	Not Used.							
y6C0-y6FF	EXJ1	R/W	Expected J1 Message							
y700-yFFF	--	--	Not Used.							

R= Read only, R/W = Read and Write access.

CONTROL AND STATUS REGISTERS

GCNTL1 Register（0000H）

Bit Name	Bit Number	Default	Description					
－－	7－6	00	Not Used．These bits must always be written with a zero．					
CPOST	5	0	$0=$ The pulse on the J0J1 input to the AUCC T block while the SPE input is low，is aligned to the A_{3} byte．If there is also a pulse on the J 0 J 1 input that identifies the location of the J 1 bytes，then the SPE signal must be high during those byte positions． $1=$ The pulse on the J0J1 input to the AUCC T block while the SPE input is low，is aligned to the J 0 byte．If there is also a pulse on the J0J1 input that identifies the location of the J1 bytes，then the SPE signal must be high during those byte positions．					
DELAYT4 DELAYT3 DELAYT2 DELAYT1	4 3 2 1	0 0 0 0	The AURT T blocks have a reference clock and frame input which is used to generate the output frame．The DELAYT bits are used to control the delay between the output J0 byte position and the reference frame input． Start of AURT T Frame Reference					
DELAYT0			DELAYT4	DELAYT3	DELAYT2	DELAYT1	DELAYTO	Output JO byte position with respect to the reference frame input（bytes）
			0	0	0	0	0	1
			0	0	0	0	1	4
			0	0	0	1	0	7
			0	0	0	1	1	10
			0	0	1	0	0	13
			0	0	1	0	1	16
			0	0	1	1	0	19
			0	0	1	1	1	Do Not Use
			X	1	X	X	X	Do Not Use
			1	X	X	X	X	Do Not Use．

GCNTL2 Register（0001H）

Bit Name	Bit Number	Default	Description
--	$7-6$	00	Not Used．These bits must always be written with a zero．
CPOSR	5	0	$0=$ The pulse on the JOJ 1 input to the AUCC R block while the SPE input is low，is aligned to the $\mathrm{A2}_{3}$ byte．If there is also a pulse on the J0J1 input that identifies the location of the J 1 bytes，then the SPE signal must be high during those byte positions． $1=$ The pulse on the JOJ1 input to the AUCC R block while the SPE input is low，is aligned to the J0 byte．If there is also a pulse on the J0J1 input that identifies the location of the J1 bytes，then the SPE signal must be high during those byte positions．

GCNTL2 Register (0001H)

Bit Name	Bit Number	Default	Description					
DELAYR4 DELAYR3 DELAYR2 DELAYR1	4 3 2 1	0 0 0 0	The AURT R blocks have a reference clock and frame input which is used to generate the output frame. The DELAYR bits are used to control the delay between the output J0 byte position and the reference frame input. Start of AURT R Frame Reference					
DELAYRO	0	0	DELAYR4	DELAYR3	DELAYR2	DELAYR1	DELAYR0	Output JO byte position with respect to the reference frame input (bytes)
			0	0	0	0	0	1
			0	0	0	0	1	4
			0	0	0	1	0	7
			0	0	0	1	1	10
			0	0	1	0	0	13
			0	0	1	0	1	16
			0	0	1	1	0	19
			0	0	1	1	1	Do Not Use
			X	1	X	X	X	Do Not Use
			1	X	X	X	X	Do Not Use.

FMT1 Register (0002H)

Bit Name	Bit Number	Default	Description			
--	7	0	Not used. Always write a 0 to this bit.			
FORMATB(2:0)	$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Format of TX and RX Telecom Bus B Data			
			FORMATB2	FORMATB1	FORMATB0	Description
			0	0	0	STS-1-SPE (i.e. 3 byte interleaved STS-1-SPEs)
			0	0	1	STS-3c-SPE
			0	1	0	Reserved for Future Use.
			0	1	1	Reserved for Future Use.
			1	0	0	Reserved for Future Use.
			1	0	1	VC-4
			1	1	0	Reserved for Future Use.
			1	1	1	Reserved for Future Use.
--	3	0	Not used. Always write a 0 to this bit.			

FMT1 Register（0002H）

Bit Name	Bit Number	Default	Description			
FORMATA（2：0）	$\begin{aligned} & \hline 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$				
				Ormat of	X and RX	Telecom Bus A Data
			FORMATA2	FORMATA1	FORMATAO	Description
			0	0	0	STS－1－SPE（i．e．， 3 byte interleaved STS－1－SPEs）
			0	0	1	STS－3c－SPE
			0	1	0	Reserved for Future Use．
			0	1	1	Reserved for Future Use．
			1	0	0	Reserved for Future Use．
			1	0	1	VC－4
			1	1	0	Reserved for Future Use．
			1	1	1	Reserved for Future Use．

FMT2 Register（0003H）

Bit Name	Bit Number	Default				Description
－－	7	0	Not used．Always write a 0 to this bit．			
FORMATD（2：0）	$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Format of TX and RX Telecom Bus D Data			
			FORMATD2	FORMATD1	FORMATDO	Description
			0	0	0	STS－1－SPE（i．e． 3 byte interleaved STS－1－SPEs）
			0	0	1	STS－3c－SPE
			0	1	0	Reserved for Future Use．
			0	1	1	Reserved for Future Use．
			1	0	0	Reserved for Future Use．
			1	0	1	VC－4
			1	1	0	Reserved for Future Use．
			1	1	1	Reserved for Future Use．
－－	3	0	Not used．Always write a 0 to this bit．			

FMT2 Register (0003H)

1. Please note that for STM-1 or STS-3c applications TCC1-TCC6 and RCC1-RCC6 should be set to route the three slots from the input Telecom Bus together to the same output Telecom Bus.

TCC1 Register (0004H)

Engines for Global Connectivity

TCC1 Register (0004H)

TCC2 Register (0005H)

Bit Name	Bit Number	Default	Description				
TCC1D3	7	0	Source of Slot 1 Data for TX Telecom Bus 4				
TCC1D2	6	0					
TCC1D1	5	0					
TCC1D0	4	0	TCC1D3	TCC1D2	TCC1D1	TCC1S0	Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0	TX TBT 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1	Not used.

TCC2 Register (0005H)

Bit Name	Bit Number	Default	Description				
$\begin{array}{\|l} \hline \text { TCC1C3 } \\ \text { TCC1C2 } \\ \text { TCC1C1 } \\ \text { TCC1C0 } \end{array}$	3210	0000	Source of Slot 1 Data for TX Telecom Bus 3				
			TCC1C3	TCC1C2	TCC1C1	TCC1C0	Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0	TX TBT 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1	Not used.

TCC3 Register (0006H)

Bit Name	Bit Number	Default	Description					
TCC2B3	7	0	Source of Slot 2 Data for TX Telecom Bus 2					
TCC2B2	6	0						
TCC2B1	5	0						
TCC2B0	4	0		TCC2B3	TCC2B2	TCC2B1	TCC2B0	Description
				0	0	0	0	TX TBT 1 Slot 1
				0	0	0	1	TX TBT 1 Slot 2
				0	0	1	0	TX TBT 1 Slot 3
				0	0	1	1	Not used.
				0	1	0	0	TX TBT 2 Slot 1
				0	1	0	1	TX TBT 2 Slot 2
				0	1	1	0	TX TBT 2 Slot 3
				0	1	1	1	Not used.
				1	0	0	0	TX TBT 3 Slot 1
				1	0	0	1	TX TBT 3 Slot 2
				1	0	1	0	TX TBT 3 Slot 3
				1	0	1	1	Not used.
				1	1	0	0	TX TBT 4 Slot 1
				1	1	0	1	TX TBT 4 Slot 2
				1	1	1	0	TX TBT 4 Slot 3
				1	1	1	1	Not used.

TCC3 Register (0006H)

TCC4 Register（0007H）

Bit Name	Bit Number	Default	Description				
TCC2D3	7	0	Source of Slot 2 Data for TX Telecom Bus 4				
TCC2D2	6	0					
TCC2D1	5	0					
TCC2D0	4	0	TCC2D3	TCC2D2	TCC2D1	TCC2S0	－Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0	TX TBT 1 Slot 3
			0	0	1	1	Not used．
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used．
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used．
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1	Not used．
$\begin{array}{\|l\|} \hline \text { TCC2C3 } \\ \text { TCC2C2 } \\ \text { TCC2C1 } \\ \text { TCC2C0 } \end{array}$	3	0	Source of Slot 2 Data for TX Telecom Bus 3				
	2	0					
	1	0					
	0	0	TCC2C3	TCC2C2	TCC2C1	TCC2C0	Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0	TX TBT 1 Slot 3
			0	0	1	1	Not used．
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used．
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used．
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1	Not used．

TCC5 Register (0008H)

Bit Name	Bit Number	Default	Description				
$\begin{array}{\|l} \text { TCC3B3 } \\ \text { TCC3B2 } \\ \text { TCC3B1 } \\ \text { TCC3B0 } \end{array}$	7654	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Source of Slot 3 Data for TX Telecom Bus 2				
			TCC3B3	тCC3B2	TCC3B1	тсС3в0	Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0	TX TBT 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1	Not used.
TCC3A3	3	0	Source of Slot 3 Data for TX Telecom Bus 1				
TCC3A2	2	0					
TCC3A1	1	0					
TCC3A0	0	0	TCC3A3	TCC3A2	TCC3A1	tCC3A0	Description
			0	0	0	0	TX TBT 1 Slot 1
			0	0	0	1	TX TBT 1 Slot 2
			0	0	1	0 TX	TX TBT 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	TX TBT 2 Slot 1
			0	1	0	1	TX TBT 2 Slot 2
			0	1	1	0	TX TBT 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	TX TBT 3 Slot 1
			1	0	0	1	TX TBT 3 Slot 2
			1	0	1	0	TX TBT 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	TX TBT 4 Slot 1
			1	1	0	1	TX TBT 4 Slot 2
			1	1	1	0	TX TBT 4 Slot 3
			1	1	1	1 N	Not used.

TCC6 Register (0009H)

RCC1 Register (000AH)

RCC2 Register (000BH)

Engines for Global Connectivity

RCC3 Register (000CH)

Bit Name	Bit Number	Default	Description				
RCC2B3	7	0	Source of Slot 2 Data for RX Telecom Bus 2				
RCC2B2	6	0					
RCC2B1	5	0					
RCC2B0	4	0	RCC2B3	RCC2B2	RCC2B1	RCC2B0	Description
			0	0	0	0	RX TBCC 1 Slot 1
			0	0	0	1	RX TBCC 1 Slot 2
			0	0	1	0	RX TBCC 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	RX TBCC 2 Slot 1
			0	1	0	1	RX TBCC 2 Slot 2
			0	1	1	0	RX TBCC 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	RX TBCC 3 Slot 1
			1	0	0	1	RX TBCC 3 Slot 2
			1	0	1	0	RX TBCC 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	RX TBCC 4 Slot 1
			1	1	0	1	RX TBCC 4 Slot 2
			1	1	1	0	RX TBCC 4 Slot 3
			1	1	1	1	Not used.
RCC2A3 RCC2A2 RCC2A1 RCC2AO	3	0	Source of Slot 2 Data for RX Telecom Bus 1				
	2	0					
	1	0					
	0	0	RCC2A3	RCC2A2	RCC2A1	RCC2A0	Description
			0	0	0	0	RX TBCC 1 Slot 1
			0	0	0	1	RX TBCC 1 Slot 2
			0	0	1	0	RX TBCC 1 Slot 3
			0	0	1	1	Not used.
			0	1	0	0	RX TBCC 2 Slot 1
			0	1	0	1	RX TBCC 2 Slot 2
			0	1	1	0	RX TBCC 2 Slot 3
			0	1	1	1	Not used.
			1	0	0	0	RX TBCC 3 Slot 1
			1	0	0	1	RX TBCC 3 Slot 2
			1	0	1	0	RX TBCC 3 Slot 3
			1	0	1	1	Not used.
			1	1	0	0	RX TBCC 4 Slot 1
			1	1	0	1	RX TBCC 4 Slot 2
			1	1	1	0	RX TBCC 4 Slot 3
			1	1	1	1	Not used.

RCC4 Register（000DH）

Bit Name	Bit Number	Default	Description				
RCC2D3	7	0	Source of Slot 2 Data for RX Telecom Bus 4				
RCC2D2	6	0					
RCC2D1	5	0					
RCC2D0	4	0	RCC2D3	RCC2D2	RCC2D1	RCC2S0	Description
			0	0	0	0	RX TBCC 1 Slot 1
			0	0	0	1	RX TBCC 1 Slot 2
			0	0	1	0	RX TBCC 1 Slot 3
			0	0	1	1	Not used．
			0	1	0	0	RX TBCC 2 Slot 1
			0	1	0	1	RX TBCC 2 Slot 2
			0	1	1	0	RX TBCC 2 Slot 3
			0	1	1	1	Not used．
			1	0	0	0	RX TBCC 3 Slot 1
			1	0	0	1	RX TBCC 3 Slot 2
			1	0	1	0	RX TBCC 3 Slot 3
			1	0	1	1	Not used．
			1	1	0	0	RX TBCC 4 Slot 1
			1	1	0	1	RX TBCC 4 Slot 2
			1	1	1	0	RX TBCC 4 Slot 3
			1	1	1	1	Not used．
$\begin{aligned} & \mathrm{RCC} 2 \mathrm{C} 3 \\ & \mathrm{RCC} 2 \mathrm{C} 2 \\ & \mathrm{RCC} 2 \mathrm{C} 1 \\ & \mathrm{RCC} 2 \mathrm{C} 0 \end{aligned}$	3	0	Source of Slot 2 Data for RX Telecom Bus 3				
	2	0					
	1	0					
	0	0	RCC2C3	RCC2C2	RCC2C1	RCC2C0	Description
			0	0	0	0	RX TBCC 1 Slot 1
			0	0	0	1	RX TBCC 1 Slot 2
			0	0	1	0	RX TBCC 1 Slot 3
			0	0	1	1	Not used．
			0	1	0	0	RX TBCC 2 Slot 1
			0	1	0	1	RX TBCC 2 Slot 2
			0	1	1	0	RX TBCC 2 Slot 3
			0	1	1	1	Not used．
			1	0	0	0	RX TBCC 3 Slot 1
			1	0	0	1	RX TBCC 3 Slot 2
			1	0	1	0	RX TBCC 3 Slot 3
			1	0	1	1	Not used．
			1	1	0	0	RX TBCC 4 Slot 1
			1	1	0	1	RX TBCC 4 Slot 2
			1	1	1	0	RX TBCC 4 Slot 3
			1	1	1	1	Not used．

Engines for Global Connectivity

RCC5 Register (000EH)

RCC6 Register (000FH)

BP Register（0010H）

Bit Name	Bit Number	Default	Description
TB4	7	0	Transmit Retimer Bypass Control： $0=$ The Pointer Tracking State Machines in the corresponding TX
TB3	6	0	Telecom Bus are used．A valid pointer byte and valid framing pulse are required．The SPE signal should
be 0 during the frame pulse and high during the J1 pulses．The J1 pulses are ignored．1＝The Pointer			
TB2	5	0	Tracking State Machines in the corresponding TX Telecom Bus are bypassed．Valid pointer bytes are not TB1
needed．However，a valid SPE，and J0J1 are required．			
RB4	3	0	0
RB3	2	0	Receive Retimer Bypass Control： $0=$ The Pointer Tracking State Machines in the corresponding RX Telecom Bus are used．A valid pointer byte and valid framing pulse are required．The SPE signal should RB2
RB1	1	0	Tracking the frame pulse and high during the J1 pulses．The J1 pulses are ignored．1＝The Pointer Track State Machines in the corresponding RX Telecom Bus are bypassed．Valid pointer bytes are not RB1

ID Registers（00FOH－00F4H）

Description

The manufacturers ID（MI），part number（PN），and revision number（RN）are included in these registers．The manufacturer＇s ID for TranSwitch is 06BH．The part number for the POP－12 is $06603=19 \mathrm{CBH}$ ．

STAT1 Register (y000H) ${ }^{\text {a }}$

STAT1 Register（y000H）${ }^{\text {a }}$

DATA SHEET
TXC-06603

STAT1 Register ($\mathbf{y} 000 \mathrm{H})^{\text {a }}$

Bit Name	Bit Number	Default	Description
LOPT	5	--	The definition of this bit depends on the format selected through the format bits and which POP function is being read as follows: Definition of LOPT bit This bit should be ignored when the corresponding TX PTSM is bypassed.
PAIST	4	--	The definition of this bit depends on the format selected through the format bits as follows: Definition of PAIST bit This bit should be ignored when the corresponding TX PTSM is bypassed.
PRDI	3	0	VC-4 Mode: $0=$ Bit 5 of the RX G1 byte is detected as 0 , for 10 consecutive frames or LOP or Path AIS have been detected. $1=$ Bit 5 of the RX G1 byte is detected as 1 , for 10 consecutive frames in the absence of LOP and Path AIS. STS-3c-SPE/STS-1-SPE Mode: $0=$ Bits 5-7 of the RX G1 byte is detected as 000,001 , or 011 for 10 consecutive frames or LOP or Path AIS have been detected. $1=$ Bits $5-7$ of the RX G1 byte is detected as $010,100,101,110$, or 111 for 10 consecutive frames in the absence of LOP and Path AIS. For VC-4 or STS-3c modes this bit is only valid for the POH processors 1, 4, 7, and 10.
SLM	2	0	$0=$ Either the C2PEN bit is set to 0 , or the C2PEN bit is set to 1 and the RXC2 bytes match the contents of the EXC2 register or 01 H for 5 consecutive frames. 1 = The RX C2 bytes do not match the contents of the EXC2 register or 01 H for 5 consecutive frames. For VC-4 or STS-3c modes this bit is only valid for the POH processors $1,4,7$, and 10.
UNEQ	1	0	$0=$ Either the C2PEN bit is set to 0 , or the C2PEN bit is set to 1 and the $R X C 2$ bytes are set to a value other than 00 H for 5 consecutive frames. $1=$ The RX C2 bytes are received as 00 H for 5 consecutive frames. For VC-4 or STS-3c modes this bit is only valid for the POH processors 1, 4, 7, and 10.
TIM	0	0	$0=$ Either the TIMEN bit is set to 0 or the TIMEN bit is set to 1 and the RX J 1 message has 1 or less errors out of 64 bytes, after 64 bytes with no errors have been received. $1=$ The RX J1 message has 2 or more bytes in error out of 64 bytes. For VC-4 or STS-3c modes this bit is only valid for the POH processors $1,4,7$, and 10.

a. The bits in the STAT1 registers are latched bits and clear on read. If the alarm is still present the corresponding bit will become set again.

STAT1_M Register (y001H)

Bit Name	Bit Number	Default	Description
LOPR_M	7	0	Interrupt mask bit.
PAISR_M	6	0	$0=$ Interrupt signal not sent to the microprocessor if the corresponding bit in STAT1 register is 1.
LOPT_M	5	0	1 = Interrupt signal sent to the microprocessor if the corresponding bit in STAT1 register is 1.
PAIST_M	4	0	These bits are AND gated with the corresponding bit in the STAT1 register, the resulting signals are
PRDI_M	3	0	OR gated together, and the resulting signal is sent to the INT/RQ lead with the appropriate polarity
SLM_M	2	0	based upon the state of the MOTO lead.
UNEQ_M	1	0	
TIM_M	0	0	

TEST (y002H)

Bit Name	Bit Number	Default	Description
--	$7-0$	--	These are test bits for internal TranSwitch use only.

B3 Error Counter (y200H)

Bit Name	Bit Number	Default	Description
B3CNT	$7-0$	--	When this register is read, the lower 8-bits of the 16-bit B3 Error Count is returned. The upper 8-bits can then be read from Offset y3FFH.

REI Error Counter (y201H)

Bit Name	Bit Number	Default	Description
REICNT	$7-0$	--	When this register is read, the lower 8-bits of the 16-bit of received REI Count is returned. The upper 8 -bits can then be read from Offset y3FFH. This counter is enabled when the REIEN bit is set to a 1.

+PAT Counter (y202H)

Bit Name	Bit Number	Default	
PJTCNT	$7-0$	--	Count of positive pointer justifications input to the AURT T. This is an 8-bit counter. The value of this counter is not valid when the corresponding TX PTSM is bypassed.

-PAT Counter (y203H)

Bit Name	Bit Number	Default	Description
NJTCNT	$7-0$	--	Count of negative pointer justifications input to the AURT T. This is an 8-bit counter. The value of this counter is not valid when the corresponding TX PTSM is bypassed.

+PAR Counter (y204H)

Bit Name	Bit Number	Default	Description
PJRCNT	$7-0$	--	Count of positive pointer justifications input to the AURT R. This is an 8-bit counter. The value of this counter is not valid when the corresponding RX PTSM is bypassed.

-PAR Counter (y205H)

Bit Name	Bit Number	Default	
PJRCNT	$7-0$	--	Count of positive pointer justifications input to the AURT R. This is an 8-bit counter. The value of this counter is not valid when the corresponding RX PTSM is bypassed.

Common High Byte (y3FFH)

Bit Name	Bit Number	Default	
CHB	$7-0$	--	Upper 8-bits of 16-bit counters are stored in this register when their lower 8-bits are read.

TXJ1 (y400H-y43FH)

Bit Name	Bit Number	Default	
TX J1 Buffer	$7-0$	00	This 64-byte buffer is continuously transmitted in the J1 byte stream when the J1EN bit is set to 1. For applications requiring a repeating 16 byte message, the message can be repeated in this buffer four times.

TXC2 (y 441 H)

Bit Name	Bit Number	Default	
TXC2	$7-0$	00	The contents of this register is continuously transmitted in the C2 byte stream when the C2EN bit is set to 1; otherwise the C2 byte from the Telecom Bus is passed through.

TXF2 (y 443 H)

Bit Name	Bit Number	Default	Description
TXF2	$7-0$	00	The contents of this register is continuously transmitted in the F2 byte stream when the F2EN bit is set to 1; otherwise the F2 byte from the Telecom Bus is passed through.

TXH4 (y444H)

Bit Name	Bit Number	Default	Description
TXH4	$7-0$	00	The contents of this register is continuously transmitted in the H4 byte stream when the $\mathbf{H 4 M}(1: 0)$ bits are set to 01. If the $\mathbf{H 4 M}(1: 0)$ bits are set to 00 the H 4 byte from the Telecom Bus is passed through. If the $\mathbf{H 4 M}(1: 0)$ bits are set to 1 X then the H4 is internally generated as a multiframe indicator and is synchronized to the V1 pulse on the TX Telecom Bus.

TXF3 (y 445 H)

Bit Name	Bit Number	Default	Description
TXF3	$7-0$	00	The contents of this register is continuously transmitted in the F3 byte stream when the F3EN bit is set to 1; otherwise the F3 byte from the Telecom Bus is passed through.

TXN1 (y446H)

Bit Name	Bit Number	Default	Description
TXN1	$7-0$	00	The contents of this register is continuously transmitted in the N1 byte stream when the N1EN bit is set to $1 ;$ otherwise the N1 byte from the Telecom Bus is passed through.

TXK3 (y447H)

Bit Name	Bit Number	Default	Description
TXK3	$7-0$	00	The contents of this register is continuously transmitted in the K3 byte stream when the K3EN bit is set to 1; otherwise the K3 byte from the Telecom Bus is passed through.

For STM-1 and STS-3c modes the TXCNTL1 bits for POH processors 2, 3, 5, 6, 8, 9, 11, and 12 should be set to FFH and the corresponding TX POH bytes set to 00 H . Also, when TX path AIS is being generated due to the detection of TX LOP or TX Path AIS, and one of the bits in the TXCNTL1 register is set to a 1 , then that POH byte will be overwritten with the POH RAM value or processed value and transmitted. The TX H1H2 bytes will still be all 1s. To be sure that the POH bytes are transmitted as FFH in that case, an FFH should be written at that time to the POH byte registers, and then returned back to their previous settings at the end of the alarm condition. The situations where this has to be done is rare since the PTSM is generally always bypassed in the TX direction.

TXCNTL1 $(\mathrm{y} 448 \mathrm{H})$

Bit Name	Bit Number	Default	Description
J1EN	7	0	$0=\mathrm{J} 1$ from Telecom Bus is passed through. 1=J1 from TXJ1 buffer is transmitted.
B3EN	6	0	$0=B 3$ from Telecom Bus is passed through. $1=\mathrm{B} 3$ is calculated and inserted.
C2EN	5	0	$0=\mathrm{C} 2$ from Telecom Bus is passed through. $1=\mathrm{C} 2$ from TXC2 register is transmitted.
G1EN	4	0	$0=\mathrm{G} 1$ from Telecom Bus is passed through. $1=\mathrm{G} 1$ is derived from RX side alarms and errors. Bits $5-8$ are transmitted as 0000 in SDH mode when no RX side alarms are detected. Bits 5-8 are transmitted as 0010 in SONET mode when no RX side alarms are detected.
F2EN	3	0	$0=F 2$ from Telecom Bus is passed through. 1=F2 from TXF2 register is transmitted.
F3EN	2	0	$0=F 3$ from Telecom Bus is passed through. 1=F3 from TXF3 register is transmitted.
K3EN	1	0	$0=K 3$ from Telecom Bus is passed through. 1=K3 from TXK3 register is transmitted.
N1EN	0	0	$0=\mathrm{N} 1$ from Telecom Bus is passed through. $1=\mathrm{N} 1$ from TXN1 register is transmitted.

For STM-1 and STS-3c modes the TXCNTL2 bits for POH processors 2, 3, 5, 6, 8, 9, 11, and 12 should be set to 01 H and the corresponding TX H 4 bytes set to 00 H .

TXCNTL2 $(\mathrm{y} 449 \mathrm{H})$

Bit Name	Bit Number	Default	
--	$7-2$	000000	Not used. These bits must always be written with 0s.

TXCNTL2 (y449H)

Bit Name	Bit Number	Default	Description		
H4M1	1	0			
H4M0	0	0	H4M1	H4M0	Operation
			0	0	H4 from Telecom Bus is passed through.
			0	1	H4 from TXH4 register is transmitted.
			1	X	H 4 is synchronized to external V1 pulse on the Telecom Bus J0J1 signal and is internally generated and transmitted as a multiframe indicator.

RXJ1 (y600H-y63FH)

Bit Name	Bit Number	Default	
RX J1 Buffer	$7-0$	--	This 64 byte buffer contains the received J1 Path Trace bytes as received, in circular fashion when the corresponding TIMEN bit is set to 0. When the TIMEN bit is set to 1, and a match is found between the received J1 message and the corresponding RX Expected J1message, then the received J1 bytes are written into this buffer aligned to the RX Expected J1 message with a one byte shift. i.e. the first byte of the message is written into y601H, the 2nd is written into y602H, the last byte is written into y600H.

RXB3 (y640H)

Bit Name	Bit Number	Default	
RXB3	$7-0$	--	The contents of this register is the received B3 byte.

RXC2 (y641H)

Bit Name	Bit Number	Default	
RXC2	$7-0$	--	The contents of this register is the received C2 byte.

RXG1 (y 642 H)

Bit Name	Bit Number	Default	
RXG1	$7-0$	--	The contents of this register is the received G1 byte.

RXF2 ($\mathbf{y} 643 \mathrm{H}$)

Bit Name	Bit Number	Default	
RXF2	$7-0$	--	The contents of this register is the received F2 byte.

RXH4（y644H）

Bit Name	Bit Number	Default	
RXH4	$7-0$	--	The contents of this register is the received H4 byte．

RXF3（y645H）

Bit Name	Bit Number	Default	
RXF3	$7-0$	--	The contents of this register is the received F3 byte．

RXN1（y646H）

Bit Name	Bit Number	Default	
RXN1	$7-0$	--	The contents of this register is the received N1 byte．

RXK3（y $\mathbf{y} 47 \mathrm{H}$ ）

Bit Name	Bit Number	Default	
RXK3	$7-0$	--	The contents of this register is the received K3 byte．

EXC2（y690H）

Bit Name	Bit Number	Default	Description
Expected C2	$7-0$	00	This register contains the expected J1 Path Trace message．The incoming C2 byte is compared against this byte and an internal 01H value．If the C2PEN bit is set to a 1，and the received C2 byte does not match the byte in this register，or 01H，for 5 consecutive frames，then the SLM bit will become set．If the incoming C2 byte matches the value in this register，or 01H，then the SLM bit will clear，or stay cleared．

RXCNTL1（ $\mathbf{y} 691 \mathrm{H}$ ）

Bit Name	Bit Number	Default	Description
--	$7-6$	00	Not used．These bits should always be set to 0.

RXCNTL1（ $\mathbf{y} 691 \mathrm{H}$ ）

AZSPE	Bit Number	Default	Description										
	5	0	0＝Normal Operation． $1=$ TX Telecom Bus Input Data is set to all 0 s ．This setting is used in conjunction with the bits in the TXCNTL1 and TXCNTL2 registers to force an unequipped or supervisory unequipped in the corresponding STS－1－SPE／VC－4／STS－3c－SPE of the TX Telecom Bus．										
			J1EN	B3EN	C2EN	G1EN	F2EN	H4M1	H4M0	F3EN	K3EN	N1EN	TYPE OF TX UNEQUIPPED SIGNAL
			0	1	0	0	0	0	0	0	0	0	Unequipped （Bellcore or ITU－T modes of operation）
				1	0	1^{a}	0	0	0	0	0	0	Supervisory （defined only for ITU－T）
				The co ensure	orrespon that th	nding R e path	IEN， DI and	PEN， REl fun	and TIM ctions	EN shou are ope	uld be ating．	set to 1	s appropriate
SLMEN	4	0	$\begin{aligned} & 0=\text { Inhibits } \\ & 1=\text { Enable } \end{aligned}$	$\begin{aligned} & \text { SLM fr } \\ & \text { SLM t } \end{aligned}$	om gen o gene	erating rate TX	TX path path R	h RDI.					
RV1EN	3	0	$\begin{aligned} & 0=\text { Only J J } \\ & 1=\text { A V1 p p } \\ & \text { the receiv } \end{aligned}$	and JI ulse and ed H 4 b			utput on ses ar	the RX outpu	J0J1 on the	ine． RX JO	1 line	The V	pulse is synchronized to
REIEN	2	0	$\begin{aligned} & 0=\text { REI co } \\ & 1=\text { REI co } \end{aligned}$	unter is unter is	disabled enable	ed．REI d．REI	transfe is trans	rred to ferred	$\begin{aligned} & \text { TX G1 } \\ & \text { to TX G } \end{aligned}$		Os． based	on rec	eived B3 Errors．
C2PEN	1	0	$\begin{aligned} & 0=R X C 2 \\ & 1=R X C 2 \end{aligned}$			disabled nabled		$\begin{aligned} & \mathbf{Q} \text { and } \mathbf{S} \\ & \mathbf{Q} \text { and } \mathrm{I} \end{aligned}$	LM bit LM bits	are fo are se	rced to based	0. on the	RX C2 byte．
TIMEM	0	0	$\begin{aligned} & 0=R X ~ J 1 \\ & 1=R X ~ J 1 \end{aligned}$	$\begin{aligned} & \text { rocess } \\ & \text { process } \end{aligned}$	ing is d ing is e	isabled nabled	$\begin{aligned} & \text { TIM is } \\ & \text { TIM is } \end{aligned}$	forced set ba	to 0. ed on	the RX	J1 byte		

EXJ1（y6C0H－y6FFH）

Bit Name	Bit Number	Default	Description
Expected J1	$7-0$	00	This 64 byte buffer contains the expected J1 Path Trace message．The incoming J1 Path Trace is compared against this message when the TIMEN bit is se to a 1 ；if a mismatch occurs，the TIM bit is set to a 1．If the TIMEN is set to a 0 ，the TIM bit is set to 0 and the J1 path trace comparison message function is disabled．

BOUNDARY SCAN

BOUNDARY SCAN INTRODUCTION

The IEEE 1149.1 Standard defines the requirements of a boundary scan architecture that has been specified by the IEEE Joint Test Action Group (JTAG). Boundary scan is a specialized scan architecture that provides observability and controllability for the interface leads of the device. The Test Access Port block, which implements the boundary scan functions, consists of a Test Access Port (TAP) controller, instruction and test data registers, and a boundary scan register path bordering the input and output leads, as illustrated in Figure 17. The boundary scan test bus interface consists of four input signals (i.e., the Test Clock (TCK), Test Mode Select (TMS), Test Data Input (TDI) and Test Reset (TRS) input signals) and a Test Data Output (TDO) output signal. A brief description of boundary scan operation is provided below; further information is available in the IEEE Standard document.

The TAP controller receives external control information via a Test Clock (TCK) signal, a Test Mode Select (TMS) signal, and a Test Reset (TRS) signal, and it sends control signals to the internal scan paths. The scan path architecture consists of a sixteen-bit serial instruction register, a one-bit bypass register and a boundary scan register. The instruction and data registers are connected in parallel between the serial Test Data Input (TDI) and Test Data Output (TDO) signals. The TDI signal is routed to the instruction, bypass and boundary scan registers and is used to transfer serial data into a register during a scan operation. The data to the TDO signal is selected from either register during a scan operation. When boundary scan testing is not being performed, the boundary scan register is transparent, allowing the input and output signals at the device leads to pass to and from the POP-12 device's internal logic, as illustrated in Figure 17. During boundary scan testing, the boundary scan register disables the normal flow of input and output signals to allow the device to be controlled and observed via scan operations. A timing diagram for the boundary scan feature is provided in Figure 11.

Boundary Scan Support

The maximum frequency the POP-12 device will support for boundary scan is 20 MHz . The POP-12 device performs the following boundary scan test instructions:

- EXTEST
- SAMPLE/PRELOAD
- BYPASS
- IDCODE

EXTEST Test Instruction:

One of the required boundary scan tests is the external boundary test (EXTEST) instruction. When this instruction is shifted in, the POP-12 device is forced into an off-line test mode. While in this test mode, the test bus can shift data through the boundary scan registers to control the external POP-12 input and output leads.
SAMPLE/PRELOAD Test Instruction:
When the SAMPLE/PRELOAD instruction is shifted in, the POP-12 device remains fully operational. While in this test mode, POP-12 input data, and data destined for device outputs, can be captured and shifted out for inspection. The data is captured in response to control signals sent to the TAP controller.
BYPASS Test Instruction:
When the BYPASS instruction is shifted in, the POP-12 device remains fully operational. While in this test mode, a scan operation will transfer serial data from the TDI input, through an internal scan cell, to the TDO lead. The purpose of this instruction is to abbreviate the scan path through the circuits that are not being tested to only a single clock delay.

DATA SHEET
TXC-06603

IDCODE Test Instruction:
When the IDCODE instruction is shifted in, the contents of the IDCODE register can be read.

Boundary Scan Reset:

Specific control of the TRS lead is required in order to ensure that the boundary scan logic does not interfere with normal device operation. This lead should be held low whenever boundary scan operations are not being performed and also during power up.

Figure 17. Boundary Scan Schematic

BOUNDARY SCAN CHAIN

Bidirectional device leads have combined input/output scan cells. Additional scan cells are used for direction control as needed.

BSDL FILE

A BSDL file for use with the POP-12 is available from the TranSwitch Internet Web Site at www.transwitch.com.

APPLICATION EXAMPLES

A list of applications for the POP-12 are given below:

- Enabler for PHAST-12E.
- Interconnect between multiple or single SONET/SDH Overhead Terminators and mapper devices.
- IXC/ILEC Central Office Equipment
- OC-12/48 Add/Drop Mux
- Multiple STM-1/STS-3c/STS-3 Add/Drop Mux
- Grooming Switching for Metro Networks
- Transmux for DS-3 to VT mapping
- High density T3/E3 applications
- Protection applications

The following subsections graphically depict some POP-12 applications.

TRANSMUX

The Transmux is used to insert/extract T1 traffic into/from a DS-3 signal and de-map/map them directly from/into VT1.5 containers.

Figure 18．TransMux Application for the POP－12

TERMINAL MUX FOR HIGH DENSITY DS－3／E3 ACCESS

Figure 19．Terminal Mux Application for the POP－12

1＋1 APS FOR OC－12／STM－4 MULTIPLEX SECTION／LINE PROTECTION

The two PHAST－12E devices terminate their respective Multiplex Section／Line．POP－12 B does the POH pro－ cessing for the selected working PHAST－12E device．POP－12 A is simply used as an inexpensive retiming ele－ ment so that the transmitted data is aligned also to PHAST－12E A＇s TX clock and frame．

Figure 20．1＋1 APS Application for Multiplex Section／Line Protection

LINEAR ADD／DROP MUX

Figure 21．Linear Add／Drop Mux

DATA SHEET

DUAL RING ADD/DROP MUX

Figure 22. Dual-Ring Add/Drop Mux with Path Protection

POP－12s 1 and 2 in Figure 22 perform the function of sending the path layer alarms back to the source．In POP－12s 1 and 2，the Rx buses are only monitored．

Operation example：
a．Counter Clock Wise（CCW）ring is active．
b．Fiber cut occurs on incoming STM4
c．POP12 \＃3 sends path RDI forward to the CCW ring．POP12\＃1 is in pass trough．
d．also POP－12 \＃2 is monitoring the telecom buses from the CCW PHAST－12E（the one on the left），and is able to send path RDI to the Clock Wise（CW）PHAST－12E and therefore backwards，on the clockwise ring．

In other words，POP－12 \＃2＂mixes＂i）the payload coming from the protection buses（the B buses in the picture） with ii）the path status calculated upon monitoring the active line（in this case the counter clockwise STM4）．

DATA SHEET
TXC-06603

ADM FOR SINGLE VC-4

Figure 23. Path Protection for one VC-4 path

Figure 23 shows Path protection for one VC4 path，which will be called＂VC4＿X＂．It can be extended to two paths if desired without adding extra components．PHAST－12E A，POP－12 A，Telecom Bus A are working． PHAST－12E B，POP－12 B，Telecom Bus B are protecting．The same data is added to both ADDA and ADDB Telecom Busses via TDM mapper devices such as TranSwitch＇s TEM×28 or TL3M．This application makes use of the ability of the POP－12 to pass through traffic in its TX direction or to insert path REI and RDI based on received alarms and errors．

Normal operation：In the east direction，VC4＿X is selected via tristate controls within PHAST－12E A to Telecom Bus A＿Rx＿1 and B＿Rx2．The other three VC－4 that are not selected are passed through the PHAST－12E A＇s internal VC－4 cross connect．Lower Order（LO）tributaries from the mapper devices are added and dropped from DROPA and ADDA．A mux which uses the mappers $\overline{\text { ADDA }}$ signal and a delay element，are used to add the traffic from the ADDA bus and pass through unaffected LO tributaries from the DROPA bus．This traffic is sent to POP－12 A twice through two loops．The first loop（A＿Tx＿2）does not do anything to the data during nor－ mal operation，the POP－12 is programmed to just pass this data straight through．The 2nd time through the POP－12（A＿Tx＿1），path RDI and REI are added to the signal based upon alarms and errors received at A＿Rx＿1．In the west direction a similar operation occurs，except that POP－12 B is programmed to insert path RDI and REI based on the alarms and errors it receives at B＿Rx2（i．e the 1st loop through POP－12 B）．During the 2nd loop（ B_{-}Tx＿1）through POP－12 B the data is just passed through．Thus，the same data and path alarms are provided to both the east and west directions of the RING．Additionally note that simultaneous mon－ itoring of the paths of both directions is provided．
Switch：A similar operation exists when a switch takes place．The TX Telecom Busses in the POP－12s are pro－ grammed such that the channels that passed data through before，now add path RDI and REI，and channels that added path RDI and REI now do not．Also，note that the channels that add the path RDI and REI are add－ ing them based on alarms and errors received from the west Ring．In such a case，the data from MUX A has path RDI and REI added based on alarms detected on A＿Rx＿2．This data is then passed through to A＿Tx＿2 which is looped around and passed through POP－12 A，unmodified，via A_{-}Tx＿1．The data from MUX B is passed through POP－12 B unmodified to B＿Tx＿2 which is then fed back to PHAST－12E B via B＿Tx＿1 which has Path RDI and REI added by POP－12 B based on alarms and errors received on B＿Rx＿1．

MULTISERVICE ADM WITH PASS THROUGH

Figure 24. ADM with pass through of two Telecom Bus channels, ADD/DROP of one tributary, and termination of one VC-4/STS-3c into the UTOPIA Level 2 Bus

Engines for Global Connectivity

The application above in Figure 24 allows two Telecom Bus payloads to be passed through while terminating the other two payloads into a UTOPIA Level 2 Bus and a dual ADD／Drop Bus．
Payloads are terminated as follows：
－\＃1 can have lower order VCs or STS－1 or VTs dropped or added via the dual ADD／DROP bus and TranSwitch Mapper Device＇s such as the TEMx28 and TL3M．The path layer is $1+1$ protected，on the opposite ring．The POP－12 allows STS－3c－SPE，STS－1－SPE（via STS－3－SPE），or VC－4 to be processed．Either Telecom Bus 1 or 2 can be selected via the PHAST－12E depending upon which one is carrying ATM traffic and which one is car－ rying TDM traffic．
－\＃2 carries ATM traffic and goes on the UTOPIA Level 2 bus and does NOT go through POP－12．This path is also $1+1$ protected on the opposite ring．The RING port of the PHAST－12E devices，with a mux（not shown），is used to communicate path ring data．
－\＃3 and \＃4 are passed through the POP－12 devices．In this application the pass－through traffic go through the POP－12 A and B，supposing that the NE must terminate，monitor and generate also the path layer．If the NE only must terminate，monitor and generate the RSOH and MSOH layer，PHAST－12E A and PHAST－12E B you can be connected directly（basically the drawing would have a shallower loop）．The payload of the pass－ through Telecom Busses can be either TDM or ATM；the granularity can go down to the AU－3 level and be cross connected as well because the traffic goes through the POP－12．

DATA SHEET
TXC-06603

PACKAGE INFORMATION

The POP-12 device is packaged in a 456-lead, $27 \mathrm{~mm} \times 27 \mathrm{~mm}$, plastic ball grid array package suitable for surface mounting, as illustrated in Figure 25 below.

Bottom View

Notes:

1. All dimensions are in millimeters. Values shown are for reference only.
2. Identification of the solder ball A1 corner is contained within this shaded zone. Package corner may not be a 90° angle.

Dimension (Note 1)	Min	Max
A (Nom)	2.23	
A1	0.40	0.60
A2 (Nom)	1.12	1.22
A3 (Nom)	0.56	
b (Ref.)	0.63	
D	27.00	
D1 (Nom)	25.00	
D2	23.95	24.70
E	27.00	
E1 (Nom)	25.00	
E2	23.95	24.70
e (Ref.)	1.00	

Figure 25. POP-12 TXC-06603 456-Lead Plastic Ball Grid Array Package

ORDERING INFORMATION

Part Number：TXC－06603AIOG
456－lead Plastic Ball Grid Array package（PBGA）

RELATED PRODUCTS

TXC－02020，ART VLSI Device（Advanced STS－1／DS3 Receiver／Transmitter）．ART performs the transmit and receive line interface functions required for transmission of STS－1（ $51.840 \mathrm{Mbit} / \mathrm{s}$ ）and DS3（ $44.736 \mathrm{Mbit} / \mathrm{s}$ ）signals across a coaxial interface．
TXC－02021，ARTE VLSI Device（Advanced STS－1／DS3 Receiver／Transmitter）．ARTE has the same functionality as ART，plus extended features．
TXC－02050，MRT Multi－Rate Line Interface VLSI Device．The MRT provides the functions for terminating ITU－specified $8448 \mathrm{kbit} / \mathrm{s}$（E2）and $34368 \mathrm{kbit} / \mathrm{s}$（E3）line rate signals，or 6312 kbit／s（JT2）line signals specified in the Japanese NTT Technical Reference for High Speed Digital Leased Circuits．An optional HDB3 codec is provided for the two ITU line rates．
TXC－03003B，SOT－3 VLSI Device（STM－1／STS－3／STS－3c Overhead Terminator）．This is a dual－mode device，which can be configured either to emulate the TXC－03003 device or to provide additional capabilities．
TXC－03305，M13X VLSI Device（DS3／DS1 Mux／Demux）．This single－chip device provides the functions needed to multiplex and demultiplex 28 independent DS1 signals to and from a DS3 signal with either an M13 or C－bit frame format．It includes some enhanced features relative to the M13E device．
TXC－03452B，L3M VLSI Device（Level 3 Mapper／Desynchronizer）－L3M maps a DS3 or E3 signal into an SDH／SONET signal formatted for STM－n（VC－3 via TU－3）or STS－n（via STS－1 SPE）．
TXC－03453，TL3M VLSI Device（Triple Level 3 Mapper）．Maps three 44．736 Mbit／s DS3 to an STM－1，TUG－3 or STS－3 STS－1 SPE SDH／SONET signal．An 34.368 Mbit／s E3 signal is mapped in to an STM－1 TUG－3．The TL3M＇s SDH／SONET interface format is COMBUS， byte wide parallel．The TL3M supports drop bus and add bus SDH／SONET timing modes． Drop bus timing provides timing signals for the add side while timing for both busses is independent for the add bus timing mode．
TXC－03456，L4M VLSI Device（Level 4 Mapper／Desynchronizer）－L4M Maps a 139.264 Mbit／s asynchronous line signal into an AU－4 VC－4／STS－3c SPE signal．The SONET／SDH signal is transmitted via the add bus with timing derived from the drop bus，add bus or an external source．The L4M provides test features such as line loopback，SONET／SDH loopback and on－chip test pattern generator and analyzer．The L4M meets strict jitter requirements to transport broadcast grade video signals．
TXC－04201B，DS1MX7 VLSI Device（DS1 Mapper 7－Channel）．The DS1MX7 maps seven DS1 signals into any seven selected asynchronous or byte－synchronous mode VT1．5 or TU－11 tributaries in a SONET／SDH synchronous payload envelope．
TXC－04216，E1Mx16 VLSI Device（Sixteen channel E1 to AU－4／VT2 or TU－12 Async Mapper－Desync）．Interconnects sixteen E1 signals with any sixteen asynchronous mode VT2 or TU－12 tributaries carried in SDH AU－4／AU－3 rate payload interface．
TXC－04222，TEMx28 VLSI Device（21／28 Channel Dual Bus High Density Mapper）．An add／drop multiplexer，terminal multiplexer，and dual and single unidirectional ring applications．Up to 28 E1，DS1，or VT／TU payloads are mapped to and from VT1．5／TU－11s and VT2／TU－12s carried in an STM－1 VC－4 or STS－3 format．

TXC-04228, T1Mx28 VLSI Device (DS1 Mapper 28-CHannel Device). The DS1MX28 maps twenty eight DS1 signals into any seven selected asynchronous or byte-synchronous mode VT1.5 or TU-11 tributaries in a SONET/SDH synchronous payload envelope.
TXC-04251, QT1M VLSI Device (Quad DS1 to VT1.5 or TU-11 Async Mapper-Desync). Interconnects four DS1 signals with any four asynchronous mode VT1.5 or TU-11 tributaries carried in SONET STS-1 or SDH AU-3 rate payload interface.
TXC-04252, QE1M VLSI Device (Quad E1 to AU-4/VT2 or TU-12 Async Mapper-Desync). Interconnects four E1 signals with any four asynchronous mode VT2 or TU-12 tributaries carried in SDH AU-4/AU-3 rate payload interface.
TXC-05802B, CUBIT-Pro VLSI Device (ATM CellBus Switch). Implements cost effective ATM multiplexing and switching systems, based on the 32-bit CellBus architecture. A singlechip solution, the CUBIT-Pro has the ability to send and also receive cells for control purposes over the same CellBus. CellBus technology works at aggregate rates of up to 1 Gbit/s and provides header translation, multiplexing, concentration and switching functions for a wide variety of small-to-medium size ATM systems. This is a successor to the TXC-05802 device.
TXC-05804, CUBIT-3 is a single-chip solution for implementing low-cost ATM multiplexing and switching systems, based on the CellBus architecture. Such systems are constructed from a number of CUBIT-3 devices, all interconnected by a 37 -line common bus, the CellBus. CUBIT-3 supports unicast, broadcast and spatial multicast transfers, and has all necessary functions for implementing a switch: cell address translation, cell routing and outlet cell queuing. The CUBIT-3 is a VLSI product designed to interface directly on the terminal side with UTOPIA Level $1 / 28 / 16$-bit compliant devices such as the CUBIT-Pro (TXC-05802B). The CUBIT-3 switch side interface is a CellBus interface which interfaces directly with CellBus devices such as the CUBIT-Pro (TXC-05802B).
TXC-06101, PHAST-1 VLSI Device (SONET STS-1 Overhead Terminator). This device performs section, line and path overhead processing for STS-1 SONET signals. It has programmable STS-1 or STS-N modes. It operates from a 3.3 volt supply and consumes less power than the SOT-1E TXC-03011 device with similar capability.
TXC-06103, PHAST-3N Device (STM-1/STS-3/STS-3c SDH/SONET Overhead Terminator). This device performs STM-1/STS-3/STS-3c termination into a Telecom Bus interface. Section, line, and path overhead byte processing is performed. A serial and byte parallel line interface is provided. TX and RX retiming and clock synthesis/recovery at 155.52 Mbit/s is provided on chip. Alarm and error processing is provided along with STS-1 loopback capability.
TXC-06203, PHAST-3P Device (STM-1/STS-3c SDH/SONET Overhead Terminator with CDB/PPP UTOPIA Interface). This device performs STM-1/STS-3c termination into a UTOPIA Level 2 for ATM cell data, or a UTOPIA Level 2P interface for PPP data. SinglePHY or Multi-PHY operation is supported. A serial and byte parallel line interface is provided. Section, line, and path overhead byte processing is performed. Clock synthesis/recovery at $155.52 \mathrm{Mbit} / \mathrm{s}$, alarm and error processing, as well as TX and RX retiming is provided.
TXC-06212, PHAST-12E VLSI Device (Programmable, High-Performance ATM/Packet/Transmission SONET/SDH Terminator for Level 12). A highly integrated SONET/SDH terminator device designed for ATM cell, frame, higher-order multiplexing, and transmission applications. This PHAST-12 VLSI device provides a Telecom Bus interface for downstream devices and operates from a power supply of 3.3 volts.

STANDARDS DOCUMENTATION SOURCES

Telecommunication technical standards and reference documentation may be obtained from the following organizations：
ANSI（U．S．A．）：

American National Standards Institute 25 West $43^{\text {rd }}$ Street
New York，New York 10036
The ATM Forum（U．S．A．，Europe，Asia）：
404 Balboa Street
San Francisco，CA 94118

ATM Forum Europe Office

Kingsland House－ $5^{\text {th }}$ Floor
361－373 City Road
London EC1 1PQ，England

ATM Forum Asia－Pacific Office

Hamamatsucho Suzuki Building 3F
1－2－11，Hamamatsucho，Minato－ku
Tokyo 105－0013，Japan

Bellcore（See Telcordia）

CCITT（See ITU－T）

EIA（U．S．A．）：
Electronic Industries Association
Global Engineering Documents
15 Inverness Way East
Englewood，CO 80112

ETSI（Europe）：

European Telecommunications
Standards Institute
650 route des Lucioles
06921 Sophia－Antipolis Cedex，France
GO－MVIP（U．S．A．）：
The Global Organization for Multi－Vendor Integration Protocol（GO－MVIP）
3220 N Street NW，Suite 360
Washington，DC 20007

Tel：（212）642－4900
Fax：（212）398－0023
Web：www．ansi．org

Tel：（415）561－6275
Fax：（415）561－6120
Web：www．atmforum．com

Tel： 2078377882
Fax： 2074177500

Tel： 334383694
Fax： 334383698

Tel：（800）854－7179（within U．S．A．）
Tel：（303）397－7956（outside U．S．A．）
Fax：（303）397－2740
Web：www．global．ins．com

Tel： 492944200
Fax： 493654716
Web：www．etsi．org

Tel：（800）669－6857（within U．S．A．）
Tel：（903）769－3717（outside U．S．A．）
Fax：（903）769－3818
Web：www．mvip．org

DATA SHEET

IEEE（Corporate Office）：

American Institute of Electrical Engineers 3 Park Avenue，17th Floor
New York，New York 10016－5997 U．S．A．

ITU－T（International）：

Publication Services of International Telecommunication Union
Telecommunication Standardization Sector
Place des Nations，CH 1211
Geneve 20，Switzerland

JEDEC（International）：

Joint Electron Device Engineering Council 2500 Wilson Boulevard
Arlington，VA 22201－3834
MIL－STD（U．S．A．）：
DODSSP Standardization Documents
Ordering Desk
Building 4 ／Section D
700 Robbins Avenue
Philadelphia，PA 19111－5094

PCI SIG（U．S．A．）：

PCI Special Interest Group
5440 SW Westgate Dr．，\＃217
Portland，OR 97221

Telcordia（U．S．A．）：

Telcordia Technologies，Inc．
Attention－Customer Service
8 Corporate Place Rm 3A184
Piscataway，NJ 08854－4157

TTC（Japan）：

TTC Standard Publishing Group of the Telecommunication Technology Committee Hamamatsu－cho Suzuki Building
1－2－11，Hamamatsu－cho，Minato－ku Tokyo 105－0013，Japan

Tel：（212）419－7900（within U．S．A．）
Tel：（800）678－4333（Members only）
Fax：（212）752－4929
Web：www．ieee．org

Tel： 227305852
Fax： 227305853
Web：www．itu．int

Tel：（703）907－7559
Fax：（703）907－7583
Web：www．jedec．org

Tel：（215）697－2179
Fax：（215）697－1462
Web：www．dodssp．daps．mil

Tel：（800）433－5177（within U．S．A．）
Tel：（503）291－2569（outside U．S．A．）
Fax：（503）297－1090
Web：www．pcisig．com

Tel：（800）521－2673（within U．S．A．）
Tel：（732）699－2000（outside U．S．A．）
Fax：（732）336－2559
Web：www．telcordia．com

Tel： 334321551
Fax： 334321553
Web：www．ttc．or．jp

LIST OF DATA SHEET CHANGES

This change list identifies those areas within this updated PRELIMINARYPOP－12 Data Sheet that have signif－ icant differences relative to the previous and now superseded PRODUCT PREVIEW POP－12 Data Sheet：

Updated POP－12 Data Sheet：PRELIMINARY Ed．5，October 2003
Previous POP－12 Data Sheet：PRELIMINARY Ed．4，June 2002

The page numbers indicated below of this updated Data Sheet include changes relative to the previous Data Sheet．

Page Number of
 Updated Data Sheet

Summary of the Change

All Changed edition number and date．
16 Modified Lead Description column for Lead Names TTBDATAOUTA（7－0），and TTBCLKOUTA．

17 Modified Lead Description column for Lead Names TTBDATAOUTB（7－0）， TTBCLKOUTB，TTBDATAOUTC（7－0）and TTBCLKOUTC．
18 Modified Lead Description column for Lead Names TTBDATAOUTD（7－0），and TTBCLKOUTD．
19 Modified Lead Description column for Lead Names RXCCLK，RTBDATAOUTA（7－ 0 ）and RTBCLKOUTA．

20 Modified Lead Description column for Lead Names RTBDATAOUTB（7－0）and RTBCLKOUTB．

21 Modified Lead Description column for Lead Names RTBDATAOUTC（7－0）， RTBCLKOUTC，RTBDATAOUTD（7－0）and RTBCLKOUTD．
$40 \quad$ Changed Min value for Symbols $\mathrm{t}_{\mathrm{SU}(2)}$ and $\mathrm{t}_{\mathrm{H}(4)}$ ．
44
Changed Min value for Symbol $\mathrm{t}_{\mathrm{H}(4)}$ ．
105 Added IEEE（Corporate Office）contact information．
106 Changed List of Data Sheet Changes section．

-NOTES-

[^0]PRELIMINARY information documents contain information on products in the sampling, pre-production, or early production phases of the product life cycle. Characteristic and other specifications are subject to change. Contact TranSwitch Applications Engineering for current information on this product.

TranSwitch Corporation • 3 Enterprise Drive•Shelton, CT 06484 USA • Tel: 203-929-8810•Fax: 203-926-9453 • www.transwitch.com

[^0]: TranSwitch reserves the right to make changes to the product(s) or circuit(s) described herein without notice. No liability is assumed as a result of their use or application. TranSwitch assumes no liability for TranSwitch applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TranSwitch warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TranSwitch covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

