SIEMENS

Microcomputer Components

8-Bit CMOS Microcontroller

C515A

C515A Data Sheet								
Revision History: Current Version: 10.97								
Previous Vei	rsion:	none						
Page (in previous Version)	Page (in current Version)	Subjects (major changes since last revision)						

Edition 10.97

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1997.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

8-Bit CMOS Microcontroller

C515A

Advance Information

- Full upward compatibility with SAB 80C515A/83C515A-5
- Up to 24 MHz external operating frequency
 - 500 ns instruction cycle at 24 MHz operation
- 32K byte on-chip ROM (with optional ROM protection)
 - alternatively up to 64K byte external program memory
- Up to 64K byte external data memory
- 256 byte on-chip RAM
- 1K byte on-chip RAM (XRAM)
- Six 8-bit parallel I/O ports
- One input port for analog/digital input
- Full duplex serial interface (USART)
 - 4 operating modes, fixed or variable baud rates
- Three 16-bit timer/counters
 - Timer 0 / 1 (C501 compatible)
 - Timer 2 for 16-bit reload, compare, or capture functions

(further features are on next page)

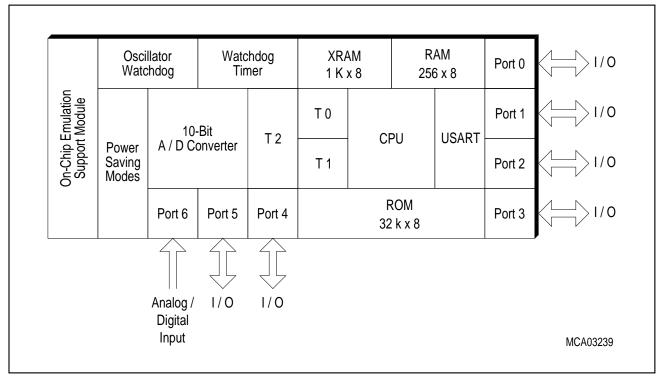


Figure 1 C515A Functional Units

Features (cont'd):

- 10-bit A/D converter
 - 8 multiplexed analog inputs
 - Built-in self calibration
- 16-bit watchdog timer
- Power saving modes
 - Slow down mode
 - Idle mode (can be combined with slow down mode)
 - Software power down mode with wake-up capability through INTO pin
 - Hardware power down mode
- 12 interrupt sources (7 external, 5 internal) selectable at 4 priority levels
- ALE switch-off capability
- On-chip emulation support logic (Enhanced Hooks Technology TM)
- P-MQFP-80-1 package
- Temperature Ranges: SAB-C515A T_A = 0 to 70 °C

SAF-C515A $T_A = -40$ to 85 °C SAH-C515A $T_A = -40$ to 85 °C

SAK-C515 $T_A = -40$ to 110 °C (max. operating frequency: 18 MHz)

The C515A is an upward compatible version of the SAB 80C515A/83C515A-5 8-bit microcontroller which additionally provides an improved 10-bit A/D converter, ALE switch-off capability, on-chip emulation support, ROM protection, and enhanced power saving mode capabilities. With a maximum external clock rate of 24 MHz it achieves a 500 ns instruction cycle time (1 μ s at 12 MHz). The C515A is mounted in a P-MQFP-80 package.

Ordering Information

Туре	Ordering Code	Package	Description (8-Bit CMOS microcontroller)	
SAB-C515A-4RM	Q67121-DXXXX	P-MQFP-80-1	with mask programmable ROM (18 MHz)	
SAF-C515A-4RM	Q67121-DXXXX	P-MQFP-80-1	with mask programmable ROM (18 MHz) ext. temp. – 40 °C to 85 °C	
SAB-C515A-4R24M	Q67121-DXXXX	P-MQFP-80-1	with mask programmable ROM (24 MHz)	
SAF-C515A-4R24M	Q67121-DXXXX	P-MQFP-80-1	with mask programmable ROM (24 MHz) ext. temp. – 40 °C to 85 °C	
SAB-C515A-LM	Q67121-C1068	P-MQFP-80-1	for external memory (18 MHz)	
SAF-C515A-LM	Q67121-C1069	P-MQFP-80-1	for external memory (18 MHz) ext. temp. – 40 °C to 85 °C	
SAB-C515A-L24M	Q67121-C1070	P-MQFP-80-1	for external memory (24 MHz)	
SAF-C515A-L24M	Q67127-C2020	P-MQFP-80-1	for external memory (24 MHz) ext. temp. – 40 °C to 85 °C	

Note: Versions for extended temperature ranges – 40 °C to 110 °C and – 40 °C to 125 °C (SAH-C515A and SAK-C515A) are available on request. The ordering number of ROM types (DXXXX extensions) is defined after program release (verification) of the customer.

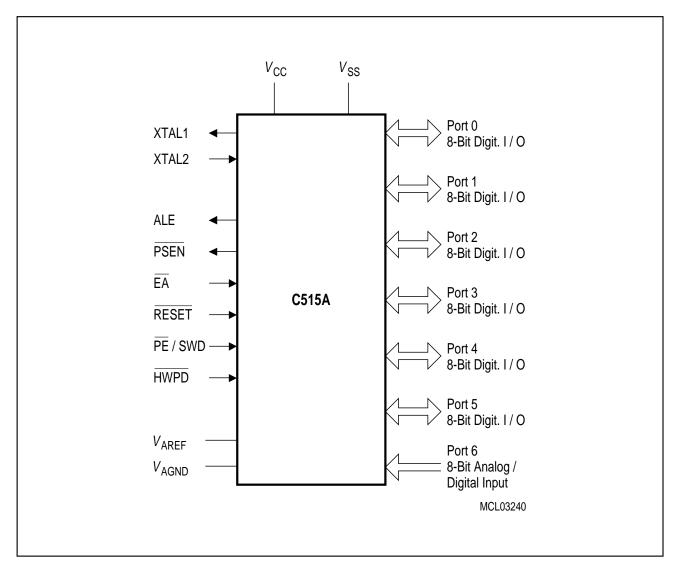


Figure 2 Logic Symbol

Additional Literature

For further information about the C515A the following literature is available:

Title	Ordering Number
C515A 8-Bit CMOS Microcontroller User's Manual	B158-H7051-X-X-7600
C500 Microcontroller Family Architecture and Instruction Set User's Manual	B158-H6987-X-X-7600
C500 Microcontroller Family - Pocket Guide	B158-H6986-X-X-7600

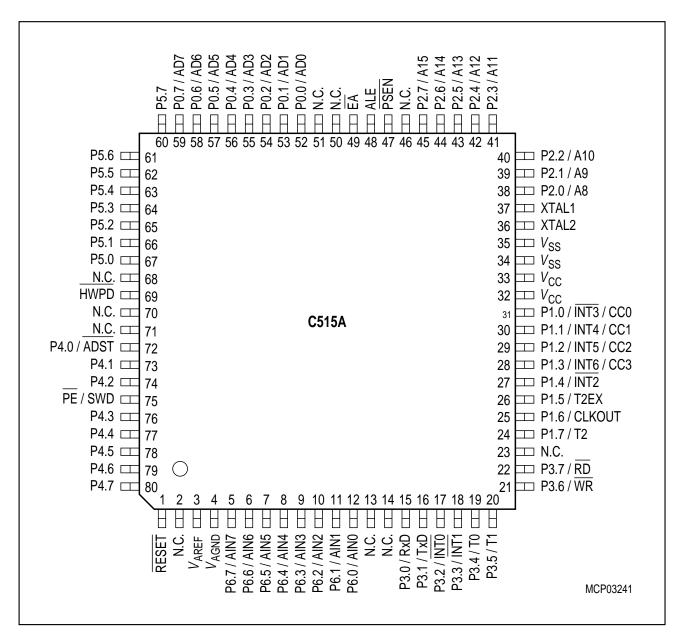


Figure 3
Pin Configuration P-MQFP-80 Package (top view)

1997-10-01

Table 1
Pin Definitions and Functions

Symbol	Pin Number (P-MQFP-80)	I/O*)	Function	
P4.0-P4.7	72-74, 76-80	I/O	is an 8-bit quasi-bidirectional I/O port with internal pull-up resistors. Port 4 pins that have 1's written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, port 4 pins being externally pulled low will source current (<i>I</i> _{IL} , in the DC characteristics) because of the internal pull-up resistors. P4 also contains the external A/D converter control pin. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary function is assigned to port 6 as follows: P4.0 / ADST external A/D converter start pin	
PE/SWD	75	I	Power Saving Mode Enable / Start Watchdog Timer A low level on this pin allows the software to enter the power down, idle, and slow down mode. In case the low level is also seen during reset, the watchdog timer function is off on default. Use of the software controlled power saving modes is blocked when this pin is held on high level. A high level during reset performs an automatic start of the watchdog timer immediately after reset. When left unconnected this pin is pulled high by a weak internal pull-up resistor. Note: If PE/SWD is low and VAREF is low the oscillator watchdog is disabled (testmode)!	
RESET	1	I	RESET A low level on this pin for the duration of two machine cycles while the oscillator is running resets the C515A. A small internal pullup resistor permits power-on reset using only a capacitor connected to V _{SS} .	
VAREF	3	_	Reference Voltage for the A/D converter	
VAGND	4	_	Reference Ground for the A/D converter	
P6.0-P6.7	12-5	I	Port 6 is an 8-bit unidirectional input port to the A/D converter. Port pins can be used for digital input, if voltage levels simultaneously meet the specifications for high/low input voltages and for the eight multiplexed analog inputs.	

^{*)} I = Input O = Output

Table 1
Pin Definitions and Functions (cont'd)

Symbol	Pin Number (P-MQFP-80)	I/O*)	Function			
P3.0-P3.7	15-22	I/O	Port 3			
			1	si-bidirectional I/O port with internal pullup		
				3 pins that have 1's written to them are		
			1.	the internal pullup resistors, and in that		
				sed as inputs. As inputs, port 3 pins being		
			1 .	ed low will source current (I_{IL} , in the DC because of the internal pullup resistors.		
				ntains the interrupt, timer, serial port and		
				ory strobe pins that are used by various		
				utput latch corresponding to a secondary		
			function must be programmed to a one (1) for the			
			function to ope	erate. The secondary functions are		
			_	e pins of port 3, as follows:		
	15		P3.0 / RxD	Receiver data input (asynch.)		
				or data input/output (synch.)		
	40		D2 4 / TvD	of serial interface		
	16		P3.1 / TxD	Transmitter data output (asynch.) or clock output		
				(synch.) of serial interface		
	17		P3.2 / INT0	External interrupt 0 input /		
			0.27	timer 0 gate control input		
	18		P3.3 / ĪNT1	External interrupt 1 input /		
				timer 1 gate control input		
	19		P3.4 / T0	Timer 0 counter input		
	20		P3.5 / T1	Timer 1 counter input		
	21		P3.6 / WR	WR control output; latches		
				the data byte from port 0 into		
	22		P3.7 / RD	the external data memory		
	22		F3.1 / KD	RD control output; enables the external data memory		
				ine external data memory		

8

1997-10-01

^{*)} I = Input O = Output

Table 1
Pin Definitions and Functions (cont'd)

Symbol	Pin Number (P-MQFP-80)	I/O*)	Function			
P1.0 - P1.7	31-24	I/O	Port 1			
			is an 8-bit quasi-bidir	rectional I/O port with internal pullup		
			resistors. Port 1 pins	s that have 1's written to them are		
			pulled high by the in	ternal pullup resistors, and in that		
				s inputs. As inputs, port 1 pins being		
			1	will source current (I _{IL} , in the DC		
			1	ause of the internal pullup resistors.		
			1	the low-order address byte during		
			· •	. Port 1 also contains the interrupt,		
			· ·	and compare pins that are used by output latch corresponding to a		
				nust be programmed to a one (1) for		
			-	ate (except when used for the		
				The secondary functions are		
			assigned to the port 1 pins as follows:			
	31		P1.0 / INT3 / CC0 Interrupt 3 input /			
				compare 0 output /		
				capture 0 input		
	30		P1.1 / INT4 / CC1	Interrupt 4 input /		
				compare 1 output /		
				capture 1 input		
	29		P1.2 / INT5 / CC2	Interrupt 5 input /		
				compare 2 output /		
	20		D4 2 / INITC / CC2	capture 2 input		
	28		P1.3 / INT6 / CC3	Interrupt 6 input / compare 3 output /		
				capture 3 input		
	27		P1.4 / ĪNT2	Interrupt 2 input		
	26		P1.5 / T2EX	Timer 2 external reload /		
				trigger input		
	25		P1.6 / CLKOUT	System clock output		
	24		P1.7 / T2	Counter 2 input		
V_{CC}	32, 33	_	Supply Voltage			
			during normal, idle,	and power down mode.		
V_{SS}	34, 35	-	Ground (0V)			
			during normal, idle,	and power down operation.		

^{*)} I = Input O = Output

Table 1
Pin Definitions and Functions (cont'd)

Symbol	Pin Number (P-MQFP-80)	I/O*)	Function
XTAL2	36	-	XTAL2 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL2 should be driven, while XTAL1 is left unconnected. Minimum and maximum high and low times as well as rise/fall times specified in the AC characteristics must be observed.
XTAL1	37	_	XTAL1 Output of the inverting oscillator amplifier.
P2.0-P2.7	38-45	I/O	is an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 2 pins that have 1's written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 2 pins being externally pulled low will source current (<i>I</i> _{IL} , in the DC characteristics) because of the internal pullup resistors. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pullup resistors when issuing 1's. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 issues the contents of the P2 special function register.
PSEN	47	0	The Program Store Enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. The signal remains high during internal program execution.
ALE	48	0	The Address Latch Enable output is used for latching the address into external memory during normal operation. It is activated every six oscillator periods, except during an external data memory access. ALE can be switched off when the program is executed internally.

^{*)} I = Input O = Output

Table 1
Pin Definitions and Functions (cont'd)

Symbol	Pin Number (P-MQFP-80)	I/O*)	Function	
ĒĀ	49	I	External Access Enable When held high, the C515A executes instructions from the internal ROM (C515A-4R) as long as the PC is less than 8000 _H . When held low, the C515A fetches all instructions from external program memory. For the C515A-L this pin must be tied low.	
P0.0-P0.7	52-59	I/O	Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1's written to them float, and in that state can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pullup resistors when issuing 1's. Port 0 also outputs the code bytes during program verification in the C515A-4R. External pullup resistors are required during program verification.	
P5.0-P5.7	67-60	I/O	Port 5 is an 8-bit quasi-bidirectional I/O port with internal pullup resistors. Port 5 pins that have 1's written to them are pulled high by the internal pullup resistors, and in that state can be used as inputs. As inputs, port 5 pins being externally pulled low will source current (<i>I</i> _{IL} , in the DC characteristics) because of the internal pullup resistors.	
HWPD	69	I	Hardware Power Down A low level on this pin for the duration of one machine cycle while the oscillator is running resets the C515A. A low level for a longer period will force the C515A into Hardware Power Down Mode with the pins floating.	
N.C.	2, 13, 14, 23, 46, 50, 51, 68, 70, 71	_	Not connected These pins of the P-MQFP-80 package need not be connected.	

^{*)} I = Input O = Output

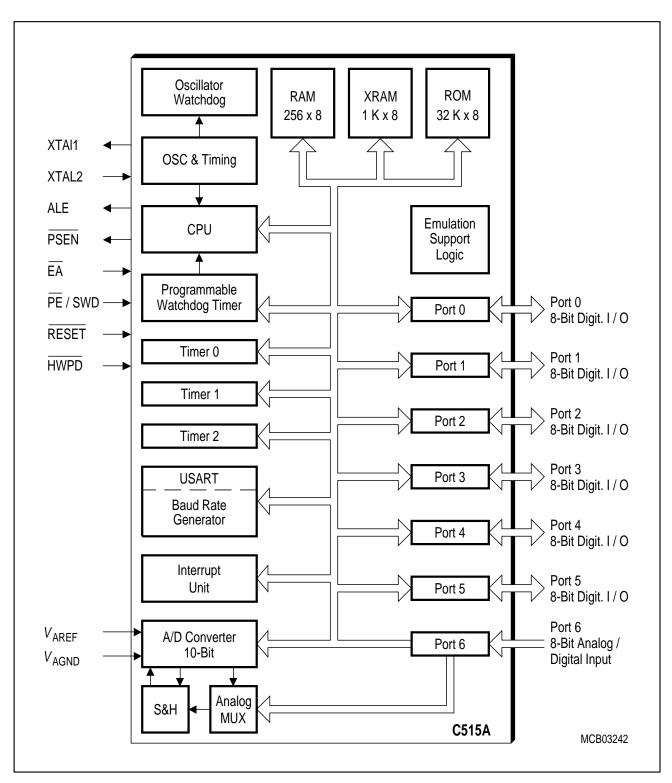


Figure 4
Block Diagram of the C515A

Reset Value: 00H

CPU

The C515A is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15% three-byte instructions. With a 18 MHz crystal, 58% of the instructions are executed in 666 ns (24 MHz: 500 ns).

Special Function Register PSW (Address D0_H)

Bit No.	MSB							LSB	
						D2 _H	• • •		_
D0 _H	CY	AC	F0	RS1	RS0	OV	F1	Р	PSW

Bit	Function	Function						
CY	Carry Flag Used by a	g arithmetic in	struction.					
AC		Carry Flag nstructions	which execute BCD operations.					
F0	General F	urpose Fla	9					
RS1 RS0	~	Register Bank select control bits These bits are used to select one of the four register banks.						
	RS1	RS0	Function					
	0	0	Bank 0 selected, data address 00 _H -07 _H					
	0	1	Bank 1 selected, data address 08 _H -0F _H					
	1	0	Bank 2 selected, data address 10 _H -17 _H					
	1	1	Bank 3 selected, data address 18 _H -1F _H					
OV		Overflow Flag Used by arithmetic instruction.						
F1	General F	General Purpose Flag						
Р	Set/clear	Parity Flag Set/cleared by hardware after each instruction to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.						

Memory Organization

The C515A CPU manipulates operands in the following five address spaces:

- up to 64 Kbyte of program memory (32K on-chip program memory for C515A-4R)
- up to 64 Kbyte of external data memory
- 256 bytes of internal data memory
- 1K bytes of internal XRAM data memory
- a 128 byte special function register area

Figure 5 illustrates the memory address spaces of the C515A.

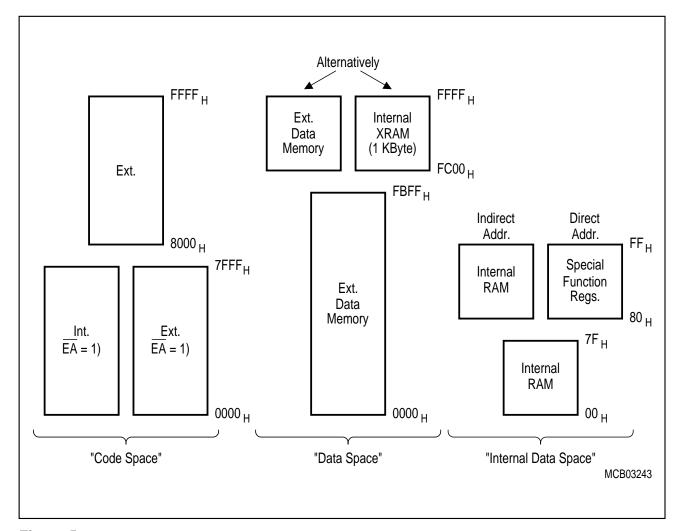


Figure 5 C515A Memory Map

Reset and System Clock

The reset input is an active low input at pin $\overline{\text{RESET}}$. Since the reset is synchronized internally, the $\overline{\text{RESET}}$ pin must be held low for at least two machine cycles (24 oscillator periods) while the oscillator is running. A pullup resistor is internally connected to V_{CC} to allow a power-up reset with an external capacitor only. An automatic reset can be obtained when V_{CC} is applied by connecting the $\overline{\text{RESET}}$ pin to V_{SS} via a capacitor. **Figure 6** shows the possible reset circuitries.

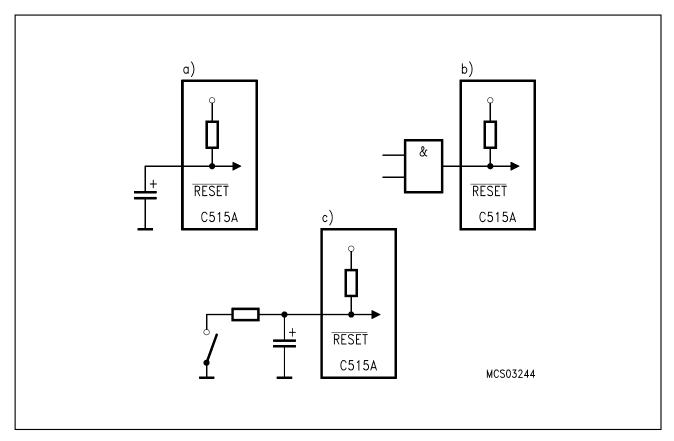


Figure 6
Reset Circuitries

Figure 7 shows the recommended oscillator circuitries for crystal and external clock operation.

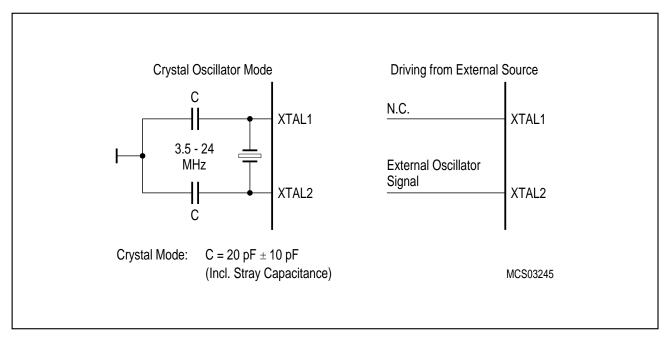


Figure 7
Recommended Oscillator Circuitries

Enhanced Hooks Emulation Concept

The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative way to control the execution of C500 MCUs and to gain extensive information on the internal operation of the controllers. Emulation of on-chip ROM based programs is possible, too.

Each production chip has built-in logic for the support of the Enhanced Hooks Emulation Concept. Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation and production chips are identical.

The Enhanced Hooks Technology^{™ 1)}, which requires embedded logic in the C500 allows the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate all operating modes of the different versions of the C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in single step mode and to read the SFRs after a break.

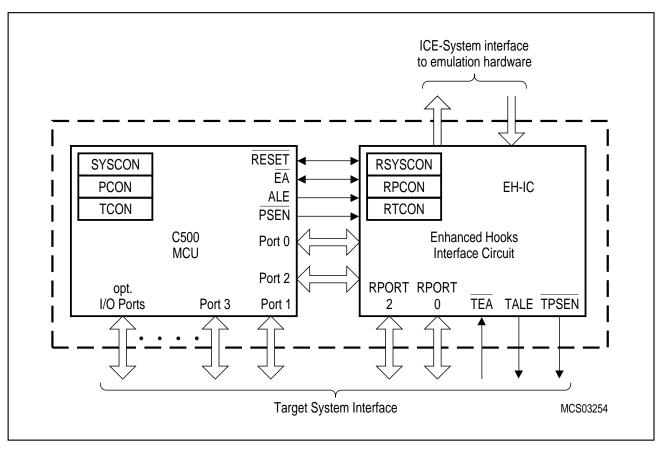
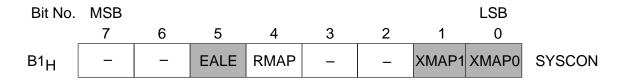


Figure 8
Basic C500 MCU Enhanced Hooks Concept Configuration

Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks Emulation Concept to control the operation of the device during emulation and to transfer informations about the program execution and data transfer between the external emulation hardware (ICE-system) and the C500 MCU.


^{1 &}quot;Enhanced Hooks Technology" is a trademark and patent of Metalink Corporation licensed to Siemens.

Reset Value: XX10XX01B

Special Function Registers

The registers, except the program counter and the four general purpose register banks, reside in the special function register area. The special function register area consists of two portions: the standard special function register area and the mapped special function register area. One special function register of the C515A (PCON1) is located in the mapped special function register area. For accessing this mapped special function register, bit RMAP in special function register SYSCON must be set. All other special function registers are located in the standard special function register area which is accessed when RMAP is cleared ("0").

Special Function Register SYSCON (Address B1H)

The functions of the shaded bits are not described in this section.

Bit	Function
RMAP	Special function register map bit RMAP = 0: The access to the non-mapped (standard) special function register area is enabled. RMAP = 1: The access to the mapped special function register area (SFR)
	PCON1) is enabled. Reserved bits for future use. Read by CPU returns undefined values.

As long as bit RMAP is set, the mapped special function register area (SFR PCON1) can be accessed. This bit is not cleared by hardware automatically. Thus, when non-mapped/mapped registers are to be accessed, the bit RMAP must be cleared/set respectively by software.

The 49 special function registers (SFRs) in the standard and mapped SFR area include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. All SFRs with addresses where address bits 0-2 are 0 (e.g. 80_H, 88_H, 90_H, 98_H, ..., F8_H, FF_H) are bitaddressable. The SFRs of the C515A are listed in **table 2** and **table 3**. In **table 2** they are organized in groups which refer to the functional blocks of the C515A. **Table 3** illustrates the contents of the SFRs in numeric order of their addresses.

Table 2 **Special Function Registers - Functional Blocks**

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC B DPH DPL PSW SP SYSCON ²⁾	Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer System/XRAM Control Register	E0H ¹⁾ F0H ¹⁾ 83H 82H D0H ¹⁾ 81H B1H	00H 00H 00H 00H 00H 07H XX10 XX01B ³⁾
A/D- Converter	ADCON0 ²⁾ ADCON1 ADDATH ADDATL	A/D Converter Control Register 0 A/D Converter Control Register 1 A/D Converter Data Register, High Byte A/D Converter Data Register, low Byte	D8 _H 1) DC _H D9 _H DA _H 4)	00 _H 0XXX X000 _B ³⁾ 00 _H 00XX XXXX _B ³⁾
Interrupt System	IEN0 ²⁾ IEN1 ²⁾ IP0 ²⁾ IP1 ²⁾ IRCON TCON ²⁾ T2CON ²⁾ SCON ²⁾	Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Priority Register 0 Interrupt Priority Register 1 Interrupt Request Control Register Timer Control Register Timer 2 Control Register Serial Channel Control Register	A8H ¹⁾ B8H ¹⁾ A9H B9H C0H ¹⁾ 88H ¹⁾ C8H ¹⁾	00H 00H 00H XX00 0000B ³⁾ 00H 00H 00H
Timer 0/ Timer 1	TCON ²⁾ TH0 TH1 TL0 TL1 TMOD	Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register	88 _H 1) 8C _H 8D _H 8A _H 8B _H 89 _H	00H 00H 00H 00H 00H 00H
Compare/ Capture Unit / Timer 2	CCEN CCH1 CCH2 CCH3 CCL1 CCL2 CCL3 CRCH CRCL TH2 TL2 T2CON ²⁾	Comp./Capture Enable Reg. Comp./Capture Reg. 1, High Byte Comp./Capture Reg. 2, High Byte Comp./Capture Reg. 3, High Byte Comp./Capture Reg. 1, Low Byte Comp./Capture Reg. 2, Low Byte Comp./Capture Reg. 3, Low Byte Comp./Capture Reg. 3, Low Byte Com./Rel./Capt. Reg. High Byte Com./Rel./Capt. Reg. Low Byte Timer 2, High Byte Timer 2, Low Byte Timer 2 Control Register	C1 _H C3 _H C5 _H C7 _H C2 _H C4 _H C6 _H C6 _H CA _H CC _H CC _H CC _H	00H 00H 00H 00H 00H 00H 00H 00H 00H 00H

¹⁾ Bit-addressable special function registers

²⁾ This special function register is listed repeatedly since some bits of it also belong to other functional blocks.
3) "X" means that the value is undefined and the location is reserved

Table 2
Special Function Registers - Functional Blocks (cont'd)

Block	Symbol	Name	Address	Contents after Reset
Ports	P0 P1 P2 P3 P4 P5 P6	Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6, Analog/Digital Input	80H ¹⁾ 90H ¹⁾ A0H ¹⁾ B0H ¹ E8H ¹⁾ F8H ¹⁾	FF _H FF _H FF _H FF _H FF _H FF _H
XRAM	XPAGE SYSCON ²⁾	Page Address Register for Extended On-Chip RAM System/XRAM Control Register	91 _H B1 _H	00 _H XX10 XX01 _B ³⁾
Serial Channel	ADCON0 ²⁾ PCON ²⁾ SBUF SCON ²⁾ SRELL SRELH	A/D Converter Control Register Power Control Register Serial Channel Buffer Register Serial Channel Control Register Serial Channel Reload Register, Low Byte Serial Channel Reload Register, High Byte	D8 _H ¹ 87 _H 99 _H 98 _H ¹⁾ AA _H BA _H	00 _H 00 _H XXH ³⁾ 00 _H D9 _H XXXX XX11 _B ³⁾
Watchdog	IEN0 ²⁾ IEN1 ²⁾ IP0 ²⁾⁾ IP1 ²⁾ WDTREL	Interrupt Enable Register 0 Interrupt Enable Register 1 Interrupt Priority Register 0 Interrupt Priority Register 1 Watchdog Timer Reload Register	A8_H ¹⁾ B8_H ¹⁾ A9 _H B9 _H 86 _H	00H 00H 00H 00H 00H 00H
Power Saving Modes	PCON ²⁾ PCON1 ⁴⁾	Power Control Register Power Control Register 1	87 _H 88 _H	00H 0XXX XXXXB

¹⁾ Bit-addressable special function registers

²⁾ This special function register is listed repeatedly since some bits of it also belong to other functional blocks.

^{3) &}quot;X" means that the value is undefined and the location is reserved.

⁴⁾ SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

Table 3 Contents of the SFRs, SFRs in numeric order of their addresses

Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80H ²⁾	P0	FFH	.7	.6	.5	.4	.3	.2	.1	.0
81 _H	SP	07 _H	.7	.6	.5	.4	.3	.2	.1	.0
82 _H	DPL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
83 _H	DPH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
86 _H	WDTREL	00H	WDT PSEL	.6	.5	.4	.3	.2	.1	.0
87 _H	PCON	00 _H	SMOD	PDS	IDLS	SD	GF1	GF0	PDE	IDLE
88H ²⁾	TCON	00 _H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
88H ³⁾	PCON1	0XXX- XXXX _B	EWPD	-	-	-	-	-	-	_
89 _H	TMOD	00 _H	GATE	C/T	M1	MO	GATE	C/T	M1	MO
8A _H	TL0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8B _H	TL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8C _H	TH0	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
8D _H	TH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
90H ²⁾	P1	FF _H	T2	CLK- OUT	T2EX	ĪNT2	INT6	INT5	INT4	ĪNT3
91 _H	XPAGE	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
98H ²⁾	SCON	00 _H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99 _H	SBUF	хх _Н	T2	.6	.5	.4	.3	.2	.1	.0
A0 _{H²⁾}	P2	FFH	.7	.6	.5	.4	.3	.2	.1	.0
A8H ²⁾	IEN0	00 _H	EAL	WDT	ET2	ES	ET1	EX1	ET0	EX0
A9 _H	IP0	00 _H	OWDS	WDTS	.5	.4	.3	.2	.1	.0
AA_H	SRELL	D9 _H	.7	.6	.5	.4	.3	.2	.1	.0
B0H ²⁾	P3	FFH	RD	WR	T1	T0	INT1	INT0	TxD	RxD
B1 _H	SYSCON	XX10- XX01 _B	_	_	EALE	RMAP	_	_	XMAP1	XMAP0
B8H ²⁾	IEN1	00 _H	EXEN2	SWDT	EX6	EX5	EX4	EX3	EX2	EADC
B9 _H	IP1	XX00- 0000B	_	_	.5	.4	.3	.2	.1	.0

¹⁾ X means that the value is undefined and the location is reserved

²⁾ Bit-addressable special function registers3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.

Table 3 Contents of the SFRs, SFRs in numeric order of their addresses (cont'd)

Addr	Register	Content after Reset ¹⁾	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BA _H	SRELH	XXXX- XX11 _B	_	_	_	_	_	_	.1	.0
C0H ²⁾	IRCON	00 _H	EXF2	TF2	IEX6	IEX5	IEX4	IEX3	IEX2	IADC
C1 _H	CCEN	00 _H	COCA H3	COCAL 3	COCA H2	COCAL 2	COCA H1	COCAL 1	COCA H0	COCAL 0
C2 _H	CCL1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C3 _H	CCH1	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C4 _H	CCL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C5 _H	CCH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C6 _H	CCL3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C7 _H	ССН3	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
C8H ²⁾	T2CON	00 _H	T2PS	I3FR	I2FR	T2R1	T2R0	T2CM	T2I1	T2I0
CAH	CRCL	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
СВН	CRCH	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CCH	TL2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
CDH	TH2	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
D0 _{H²⁾}	PSW	00 _H	CY	AC	F0	RS1	RS0	OV	F1	Р
D8 _{H²⁾}	ADCON0	00 _H	BD	CLK	ADEX	BSY	ADM	MX2	MX1	MX0
D9 _H	ADDATH	00 _H	.9	.8	.7	.6	.5	.4	.3	.2
DA _H	ADDATL	00XX- XXXX _B	.1	.0	_	_	_	_	_	_
DBH	P6	_	.7	.6	.5	.4	.3	.2	.1	.0
DCH	ADCON1	0XXX- X000 _B	ADCL	_	_	_	_	MX2	MX1	MX0
E0H ²⁾	ACC	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
E8H ²⁾	P4	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F0H ²⁾	В	00 _H	.7	.6	.5	.4	.3	.2	.1	.0
F8H ²⁾	P5	FFH	.7	.6	.5	.4	.3	.2	.1	.0

¹⁾ X means that the value is undefined and the location is reserved 2) Bit-addressable special function registers

Digital I/O Ports

The C515A allows for digital I/O on 48 lines grouped into 6 bidirectional 8-bit ports. Each port bit consists of a latch, an output driver and an input buffer. Read and write accesses to the I/O ports P0 through P5 are performed via their corresponding special function registers P0 to P5.

The output drivers of port 0 and 2 and the input buffers of port 0 are also used for accessing external memory. In this application, port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise, the port 2 pins continue emitting the P2 SFR contents.

Analog Input Ports

Ports 6 is available as input port only and provides two functions. When used as digital inputs, the corresponding SFR P6 contains the digital value applied to the port 6 lines. When used for analog inputs the desired analog channel is selected by a three-bit field in SFR ADCON0. Of course, it makes no sense to output a value to these input-only ports by writing to the SFR P6. This will have no effect.

If a digital value is to be read, the voltage levels are to be held within the input voltage specifications $(V_{\rm IL}/V_{\rm IH})$. Since P6 is not bit-addressable, all input lines of P6 are read at the same time by byte instructions.

Nevertheless, it is possible to use port 6 simultaneously for analog and digital input. However, care must be taken that all bits of P6 that have an undetermined value caused by their analog function are masked.

Timer / Counter 0 and 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in table 4:

Table 4
Timer/Counter 0 and 1 Operating Modes

Mode	Description	TMOD		Input Clock		
		M1	МО	internal	external (max)	
0	8-bit timer/counter with a divide-by-32 prescaler	0	0	$f_{ m OSC}/_{12x32}$	fosc/24x32	
1	16-bit timer/counter	1	1			
2	8-bit timer/counter with 8-bit autoreload	1	0	fosc/ ₁₂	fosc/24	
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	1	1	7030 12	7030 24	

In the "timer" function (C/T = '0') the register is incremented every machine cycle. Therefore the count rate is $f_{\rm OSC}/12$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{\rm OSC}/24$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. **Figure 9** illustrates the input clock logic.

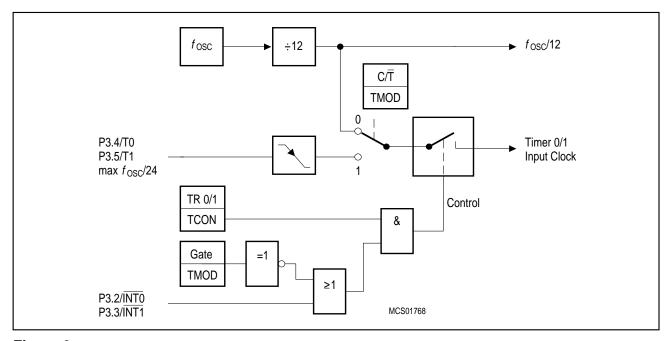


Figure 9
Timer/Counter 0 and 1 Input Clock Logic

Timer/Counter 2 with Compare/Capture/Reload

The timer 2 of the C515A provides additional compare/capture/reload features. which allow the selection of the following operating modes:

- Compare : up to 4 PWM signals with 16-bit/500 ns resolution

Capture : up to 4 high speed capture inputs with 500 ns resolution

- Reload : modulation of timer 2 cycle time

The block diagram in **figure 10** shows the general configuration of timer 2 with the additional compare/capture/reload registers. The I/O pins which can used for timer 2 control are located as multifunctional port functions at port 1.

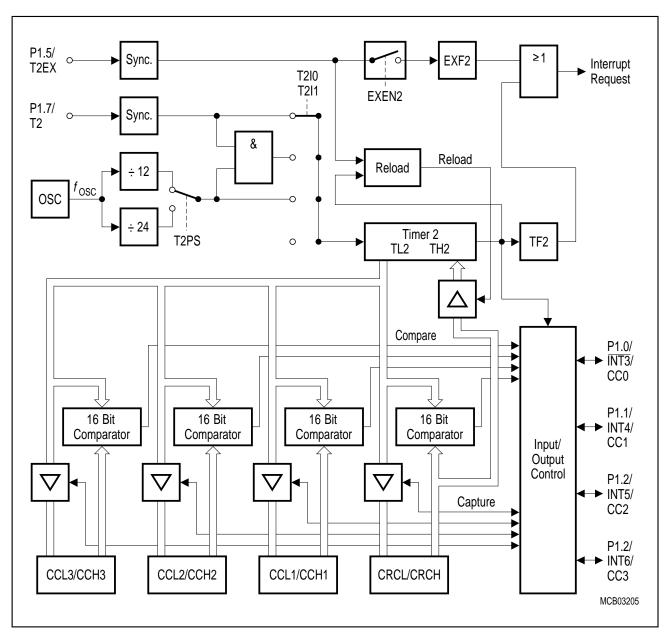


Figure 10 Timer 2 Block Diagram

Timer 2 Operating Modes

The timer 2, which is a 16-bit-wide register, can operate as timer, event counter, or gated timer. A roll-over of the count value in TL2/TH2 from all 1's to all 0's sets the timer overflow flag TF2 in SFR IRCON, which can generate an interrupt. The bits in register T2CON are used to control the timer 2 operation.

<u>Timer Mode:</u> In timer function, the count rate is derived from the oscillator frequency. A prescaler offers the possibility of selecting a count rate of 1/12 or 1/24 of the oscillator frequency.

<u>Gated Timer Mode:</u> In gated timer function, the external input pin T2 (P1.7) functions as a gate to the input of timer 2. If T2 is high, the internal clock input is gated to the timer. T2 = 0 stops the counting procedure. This facilitates pulse width measurements. The external gate signal is sampled once every machine cycle.

Event Counter Mode: In the event counter function, the timer 2 is incremented in response to a 1-to-0 transition at its corresponding external input pin T2 (P1.7). In this function, the external input is sampled every machine cycle. Since it takes two machine cycles (24 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it must be held for at least one full machine cycle.

Reload of Timer 2: Two reload modes are selectable:

In mode 0, when timer 2 rolls over from all 1's to all 0's, it not only sets TF2 but also causes the timer 2 registers to be loaded with the 16-bit value in the CRC register, which is preset by software. In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the corresponding input pin P1.5/T2EX. This transition will also set flag EXF2 if bit EXEN2 in SFR IEN1 has been set.

Timer 2 Compare Modes

The compare function of a timer/register combination operates as follows: the 16-bit value stored in a compare or compare/capture register is compared with the contents of the timer register; if the count value in the timer register matches the stored value, an appropriate output signal is generated at a corresponding port pin and an interrupt can be generated.

Compare Mode 0

In compare mode 0, upon matching the timer and compare register contents, the output signal changes from low to high. It goes back to a low level on timer overflow. As long as compare mode 0 is enabled, the appropriate output pin is controlled by the timer circuit only and writing to the port will have no effect. **Figure 11** shows a functional diagram of a port circuit when used in compare mode 0. The port latch is directly controlled by the timer overflow and compare match signals. The input line from the internal bus and the write-to-latch line of the port latch are disconnected when compare mode 0 is enabled.

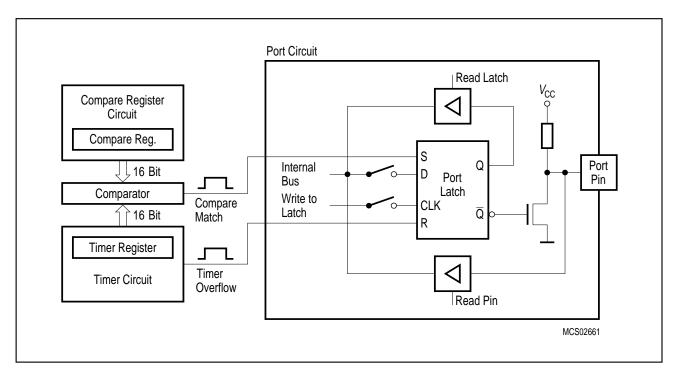


Figure 11
Port Latch in Compare Mode 0

Compare Mode 1

If compare mode 1 is enabled and the software writes to the appropriate output latch at the port, the new value will not appear at the output pin until the next compare match occurs. Thus, it can be choosen whether the output signal has to make a new transition (1-to-0 or 0-to-1, depending on the actual pin-level) or should keep its old value at the time when the timer value matches the stored compare value.

In compare mode 1 (see **figure 12**) the port circuit consists of two separate latches. One latch (which acts as a "shadow latch") can be written under software control, but its value will only be transferred to the port latch (and thus to the port pin) when a compare match occurs.

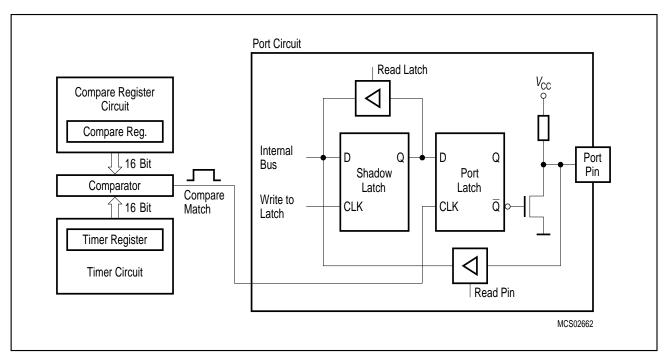


Figure 12
Compare Function in Compare Mode 1

Serial Interface (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in **table 5**. The possible baudrates can be calculated using the formulas given in **table 5**.

Table 5
USART Operating Modes

Mada	SC	ON	Description	
Mode	SM0	SM1		
0	0	0	Shift register mode Serial data enters and exits through R×D/T×D outputs the shift clock; 8-bit are transmitted/received (LSB first); fixed baud rate	
1	0	1	8-bit UART, variable baud rate 10 bits are transmitted (through T×D) or received (at R×D)	
2	1	0	9-bit UART, fixed baud rate 11 bits are transmitted (through T×D) or received (at R×D)	
3	1	1	9-bit UART, variable baud rate Like mode 2	

For clarification some terms regarding the difference between "baud rate clock" and "baud rate" should be mentioned. In the <u>asynchronous modes</u> the serial interfaces require a clock rate which is 16 times the baud rate for internal synchronization. Therefore, the baud rate generators/timers have to provide a "baud rate clock" (output signal in **figure 13** to the serial interface which - there divided by 16 - results in the actual "baud rate". Further, the abbreviation f_{OSC} refers to the oscillator frequency (crystal or external clock operation).

The variable baud rates for modes 1 and 3 of the serial interface can be derived from either timer 1 or a dedicated baud rate generator (see **figure 13**).

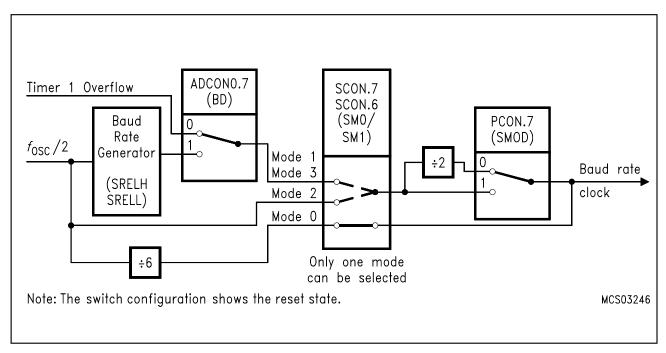


Figure 13
Block Diagram of Baud Rate Generation for the Serial Interface

Table 6 below lists the values/formulas for the baud rate calculation of the serial interface with its dependencies of the control bits BD and SMOD.

Table 6
Serial Interface - Baud Rate Dependencies

Serial Interface 0	Active Control Bits		Baud Rate Calculation	
Operating Modes	BD SMOD			
Mode 0 (Shift Register)	_	_	f _{osc} / 12	
Mode 1 (8-bit UART) Mode 3 (9-bit UART)	0	X	Controlled by timer 1 overflow: (2 ^{SMOD} × timer 1 overflow rate) / 32	
	1	X	Controlled by baud rate generator $(2^{\text{SMOD}} \times f_{\text{OSC}})$ / $(64 \times \text{baud rate generator overflow rate})$	
Mode 2 (9-bit UART)	_	0	$f_{ m OSC}$ / 64 $f_{ m OSC}$ / 32	

10-Bit A/D Converter

The C515A provides an A/D converter with the following features:

- 8 multiplexed input channels (port 6), which can also be used as digital inputs
- 10-bit resolution
- Single or continuous conversion mode
- Internal or external start-of-conversion trigger capability
- Interrupt request generation after each conversion
- Using successive approximation conversion technique via a capacitor array
- Built-in hidden calibration of offset and linearity errors

The A/D converter operates with a successive approximation technique and uses self calibration mechanisms for reduction and compensation of offset and linearity errors. The externally applied reference voltage range has to be held on a fixed value within the specifications. The main functional blocks of the A/D converter are shown in **figure 14**.

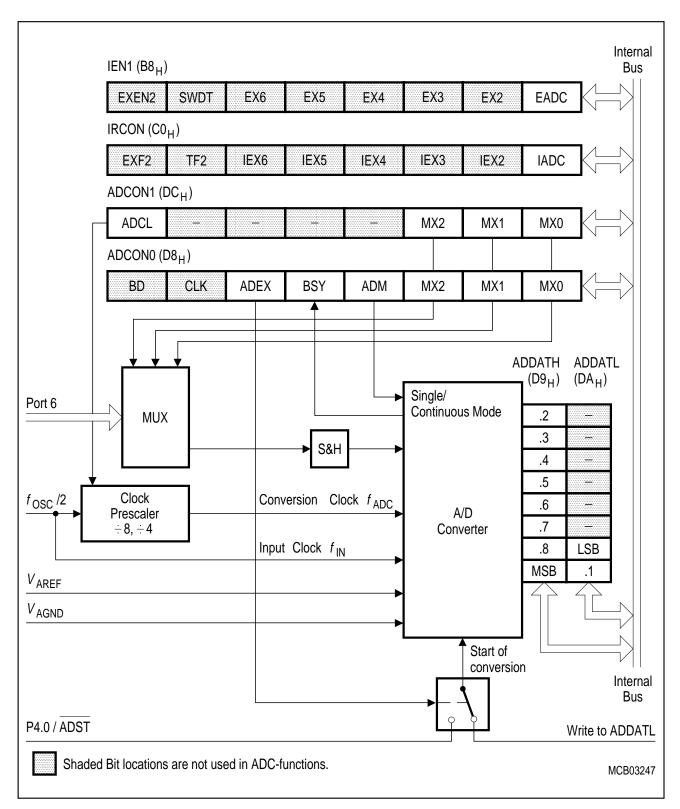


Figure 14 A/D Converter Block Diagram

Interrupt System

The C515A provides 12 interrupt sources with four priority levels. Five interrupts can be generated by the on-chip peripherals (timer 0, timer 1, timer 2, A/D converter, and serial interface) and seven interrupts may be triggered externally (P3.2/INT0, P3.3/INT1, P1.4/INT2, P1.0/INT3, P1.1/INT4, P1.2/INT5, P1.3/INT6). The wake-up from power-down mode interrupt has a special functionality which allows to exit from the software power-down mode by a short low pulse at pin P3.2/INT0.

This chapter shows the interrupt structure, the interrupt vectors and the interrupt related special function registers. **Figure 15** and **16** give a general overview of the interrupt sources and illustrate the request and the control flags which are described in the next sections.

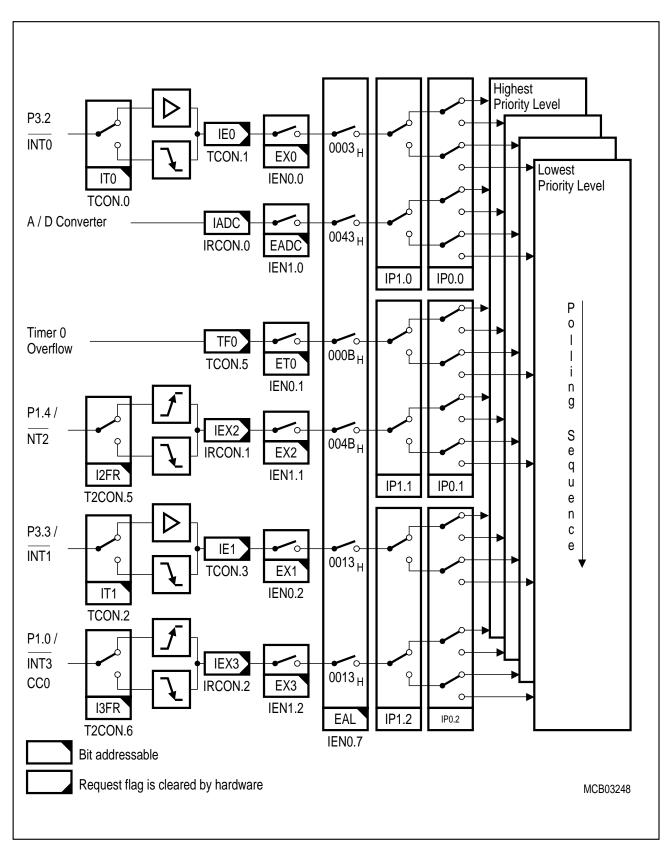


Figure 15
Interrupt Request Sources (Part 1)

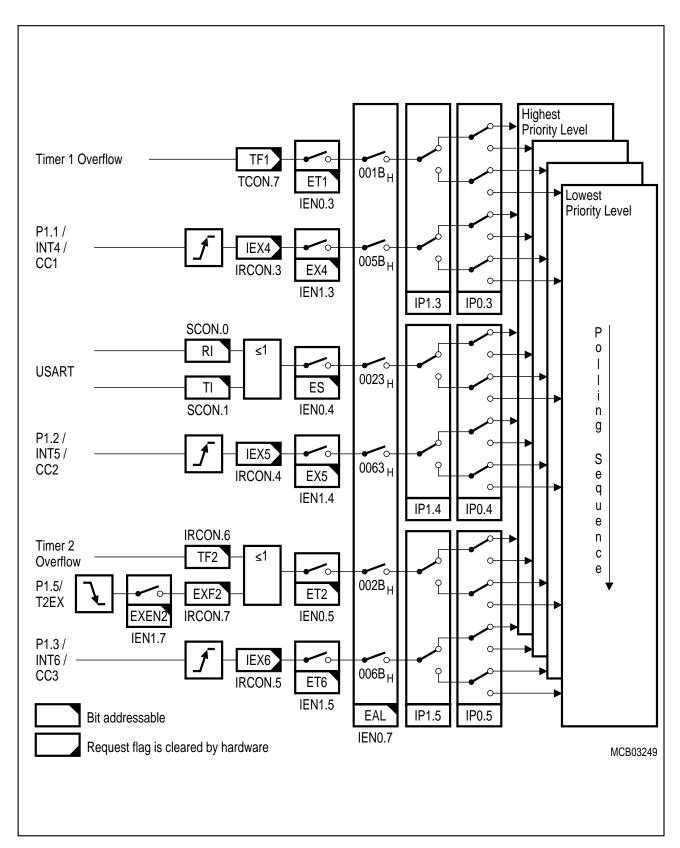


Figure 16
Interrupt Request Sources (Part 2)

Table 7
Interrupt Source and Vectors

Interrupt Source	Interrupt Vector Address	Interrupt Request Flags
External Interrupt 0	0003 _H	IE0
Timer 0 Overflow	000B _H	TF0
External Interrupt 1	0013 _H	IE1
Timer 1 Overflow	001B _H	TF1
Serial Channel	0023 _H	RI/TI
Timer 2 Overflow / Ext. Reload	002B _H	TF2 / EXF2
A/D Converter	0043 _H	IADC
External Interrupt 2	004B _H	IEX2
External Interrupt 3	0053 _H	IEX3
External Interrupt 4	005B _H	IEX4
External Interrupt 5	0063 _H	IEX5
External Interrupt 6	006B _H	IEX6
Wake-up from power-down mode	007B _H	_

Fail Save Mechanisms

The C515A offers enhanced fail safe mechanisms, which allow an automatic recovery from software upset or hardware failure:

- a programmable watchdog timer (WDT), with variable time-out period from 512 μ s up to approx. 1.1 s at 12 MHz (256 μ s up to approx. 0.65 s at 24 MHz)
- an oscillator watchdog (OWD) which monitors the on-chip oscillator and forces the microcontroller into reset state in case the on-chip oscillator fails; it also provides the clock for a fast internal reset after power-on.

The watchdog timer in the C515A is a 15-bit timer, which is incremented by a count rate of $f_{\rm OSC}/24$ up to $f_{\rm OSC}/384$. The system clock of the C515A is divided by two prescalers, a divide-by-two and a divide-by-16 prescaler. For programming of the watchdog timer overflow rate, the upper 7 bit of the watchdog timer can be written. **Figure 15** shows the block diagram of the watchdog timer unit.

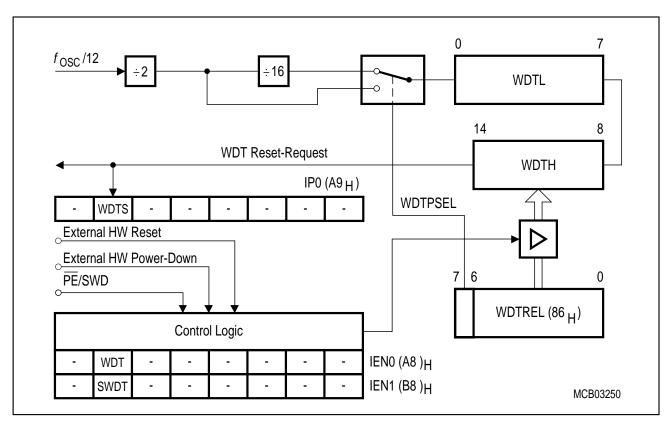


Figure 17
Block Diagram of the Watchdog Timer

The watchdog timer can be started by software (bit SWDT) or by hardware through pin \overline{PE}/SWD , but it cannot be stopped during active mode of the C515A. If the software fails to refresh the running watchdog timer an internal reset will be initiated on watchdog timer overflow. For refreshing of the watchdog timer the content of the SFR WDTREL is transferred to the upper 7-bit of the watchdog timer. The refresh sequence consists of two consecutive instructions which set the bits WDT and SWDT each. The reset cause (external reset or reset caused by the watchdog) can be examined by software (flag WDTS). It must be noted, however, that the watchdog timer is halted during the idle mode and power down mode of the processor.

Oscillator Watchdog

The oscillator watchdog unit serves for four functions:

- Monitoring of the on-chip oscillator's function

The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency of the auxiliary RC oscillator in the watchdog unit, the internal clock is supplied by the RC oscillator and the device is brought into reset; if the failure condition disappears (i.e. the on-chip oscillator has a higher frequency than the RC oscillator), the part executes a final reset phase of typ. 1 ms in order to allow the oscillator to stabilize; then the oscillator watchdog reset is released and the part starts program execution again.

Fast internal reset after power-on

The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator has started. The oscillator watchdog unit also works identically to the monitoring function.

- Restart from the hardware power down mode.

If the hardware power down mode is terminated the oscillator watchdog has to control the correct start-up of the on-chip oscillator and to restart the program. The oscillator watchdog function is only part of the complete hardware power down sequence; however, the watchdog works identically to the monitoring function.

Control of external wake-up from software power-down mode

When the software power-down mode is left by a low level at the P3.2/INTO pin, the oscillator watchdog unit assures that the microcontroller resumes operation (execution of the power-down wake-up interrupt) with the nominal clock rate. In the power-down mode the RC oscillator and the on-chip oscillator are stopped. Both oscillators are started again when power-down mode is released. When the on-chip oscillator has a higher frequency than the RC oscillator, the microcontroller starts operation after a final delay of typ. 1 ms in order to allow the on-chip oscillator to stabilize.

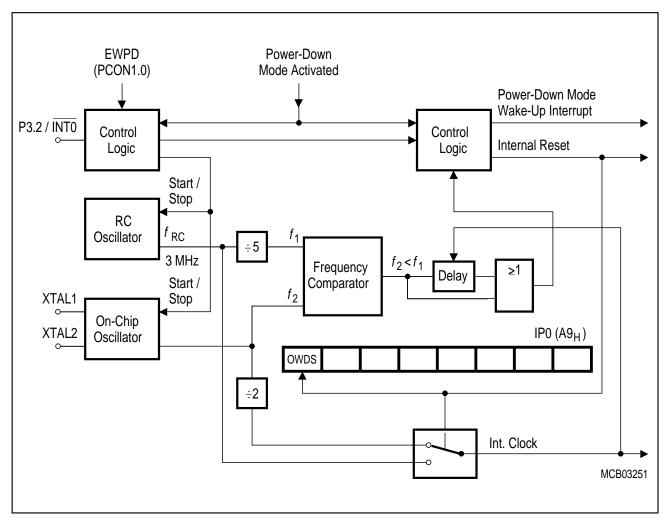


Figure 18
Block Diagram of the Oscillator Watchdog

Power Saving Modes

The C515A provides two basic power saving modes, the idle mode and the power down mode. Additionally, a slow down mode is available. This power saving mode reduces the internal clock rate in normal operating mode and it can be also used for further power reduction in idle mode.

- Idle mode

The CPU is gated off from the oscillator. All peripherals are still provided with the clock and are able to work. Idle mode is entered by software and can be left by an interrupt or reset.

- Slow down mode

The controller keeps up the full operating functionality, but its normal clock frequency is internally divided by 8. This slows down all parts of the controller, the CPU and all peripherals, to 1/8th of their normal operating frequency and also reduces power consumption.

Software power down mode

The operation of the C515 is completely stopped and the oscillator is turned off. This mode is used to save the contents of the internal RAM with a very low standby current. This power down mode is entered by software and can be left by reset or by a short low pulse at pin P3.2/INTO.

- Hardware Power down mode

If pin HWPD gets active (low level) the part enters the hardware power down mode and starts a complete internal reset sequence. Thereafter, both oscillators of the chip are stopped and the port pins and several control lines enter a floating state.

In the power down mode of operation, $V_{\rm CC}$ can be reduced to minimize power consumption. It must be ensured, however, that $V_{\rm CC}$ is not reduced before the power down mode is invoked, and that $V_{\rm CC}$ is restored to its normal operating level, before the power down mode is terminated. **Table 8** gives a general overview of the entry and exit procedures of the power saving modes.

Table 8
Power Saving Modes Overview

Mode	Entering 2-Instruction Example	Leaving by	Remarks
Idle mode	ORL PCON, #01H ORL PCON, #20H	Occurrence of an interrupt from a peripheral unit	CPU clock is stopped; CPU maintains their data; peripheral units are active (if
		Hardware Reset	enabled) and provided with clock
Slow Down Mode	In normal mode: ORL PCON,#10H	ANL PCON,#0EFH or Hardware Reset	Internal clock rate is reduced to 1/8 of its nominal frequency
	With idle mode: ORL PCON,#01H ORL PCON, #30H	Occurrence of an interrupt from a peripheral unit	CPU clock is stopped; CPU maintains their data; peripheral units are active (if
		Hardware reset	enabled) and provided with 1/8 of its nominal frequency
Software	ORL PCON, #02H	Hardware Reset	Oscillator is stopped;
Power Down Mode	ORL PCON, #40H	Short low pulse at pin P3.2/INT0	contents of on-chip RAM and SFR's are maintained;
Hardware Power Down Mode	HWPD = 0	HWPD = 1	Oscillator is stopped; internal reset is executed;

Absolute Maximum Ratings

Ambient temperature under bias (T_A)	– 40 to + 125 °C
Storage temperature (T_{stq})	− 65 °C to 150 °C
Voltage on $V_{\tt CC}$ pins with respect to ground ($V_{\tt SS}$)	- 0.5 V to 6.5 V
Voltage on any pin with respect to ground (V_{SS})	$-$ 0.5 V to $V_{\rm CC}$ +0.5 V
Input current on any pin during overload condition	– 10 mA to 10 mA
Absolute sum of all input currents during overload condition	I 100 mA I
Power dissipation of package	TBD

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions $(V_{IN} > V_{CC} \text{ or } V_{IN} < V_{SS})$ the Voltage on V_{CC} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics

 $V_{\rm CC}$ = 5 V + 10%, - 15%; $V_{\rm SS}$ = 0 V

 $T_{\rm A}$ = 0 to 70 °C $T_{\rm A}$ = -40 to 85 °C for the SAB-C515A for the SAF-C515A for the SAH-C515A

 $T_{\rm A} = -40 \text{ to } 110 \,^{\circ}\text{C}$ $T_{\rm A} = -40 \text{ to } 125 \,^{\circ}\text{C}$

for the SAK-C515A

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Input low voltage Pins except EA,RESET,HWPD EA pin HWPD and RESET pins	$egin{array}{c} V_{ m IL} \ V_{ m IL1} \ V_{ m IL2} \end{array}$	- 0.5 - 0.5 - 0.5	$0.2 V_{CC} - 0.1$ $0.2 V_{CC} - 0.3$ $0.2 V_{CC} + 0.1$	V V	- - -
Input high voltage pins except RESET, XTAL2 and HWPD XTAL2 pin RESET and HWPD pin	V_{IH} V_{IH1} V_{IH2}	$0.2 \ V_{\rm CC}$ + 0.9 $0.7 \ V_{\rm CC}$ $0.6 \ V_{\rm CC}$	$V_{\rm cc}$ + 0.5 $V_{\rm cc}$ + 0.5 $V_{\rm cc}$ + 0.5	V V V	- - -
Output low voltage Ports 1, 2, 3, 4, 5 Port 0, ALE, PSEN	$V_{ m OL} \ V_{ m OL1}$	-	0.45 0.45	V V	$I_{OL} = 1.6 \text{ mA}^{-1}$ $I_{OL} = 3.2 \text{ mA}^{-1}$
Output high voltage Ports 1, 2, 3, 4, 5 Port 0 in external bus mode, ALE, PSEN	V_{OH}	2.4 0.9 V _{CC} 2.4 0.9 V _{CC}	- - -	V V V	$I_{OH} = -80 \mu\text{A}$ $I_{OH} = -10 \mu\text{A}$ $I_{OH} = -800 \mu\text{A}^{2}$ $I_{OH} = -80 \mu\text{A}^{2}$
Logic 0 input current Ports 1, 2, 3, 4, 5	I_{LI}	– 10	- 70	μΑ	$V_{\rm IN} = 0.45 \rm V$
Logical 0-to-1 transition current, Ports 1, 2, 3, 4, 5	I_{TL}	– 65	- 650	μΑ	V _{IN} = 2 V
Input leakage current Port 0 and 6, EA, HWPD	I_{LI}	_	± 1	μΑ	$0.45 < V_{\rm IN} < V_{\rm CC}$
Input low current to RESET for reset XTAL2 PE/SWD	I_{IL2} I_{IL3} I_{IL4}	- 10 - -	- 100 - 15 - 20	μΑ μΑ μΑ	$V_{IN} = 0.45 \text{ V}$ $V_{IN} = 0.45 \text{ V}$ $V_{IN} = 0.45 \text{ V}$
Pin capacitance	C_{10}	_	10	pF	$f_{\rm C}$ = 1 MHz, $T_{\rm A}$ = 25 °C
Overload current	I_{OV}	_	± 5	mA	8) 9)

Notes see next page

Power Supply Current

Parameter		Symbol	Limit	Values	Unit	Test Condition
			typ. ¹⁰⁾	max. 11)		
Active mode	18 MHz 24 MHz	$I_{\rm CC}$ $I_{\rm CC}$	16.9 21.7	23.1 29.4	mA mA	4)
Idle mode	18 MHz 24 MHz	$I_{\rm CC}$ $I_{\rm CC}$	8.5 11.0	12.1 15.0	mA mA	5)
Active mode with slow-down enabled	18 MHz 24 MHz	$I_{\rm CC}$ $I_{\rm CC}$	5.6 6.6	8.0 9.6	mA mA	6)
Active mode with slow-down enabled	18 MHz 24 MHz	$I_{\rm CC}$ $I_{\rm CC}$	3.0 3.3	4.1 4.7	mA mA	7)
Power-down mode		I_{PD}	10	50	μΑ	$V_{\rm CC}$ = 25.5 V ³⁾

Notes:

- 1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the $V_{\rm OL}$ of ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.
- 2) Capacitive loading on ports 0 and 2 may cause the $V_{\rm OH}$ on ALE and PSEN to momentarily fall below the 0.9 $V_{\rm CC}$ specification when the address lines are stabilizing.
- 3) I_{PD} (software power-down mode) is measured under following conditions: EA = \overline{RESET} = Port 0 = Port 6 = V_{CC} ; XTAL1 = N.C.; XTAL2 = V_{SS} ; $\overline{PE}/SWD = V_{SS}$; $\overline{HWPD} = V_{CC}$; $V_{AGND} = V_{SS}$; $V_{AREF} = V_{CC}$; all other pins are disconnected. I_{PD} (hardware power-down mode): independent from any particular pin connection.
- 4) $I_{\rm CC}$ (active mode) is measured with: XTAL2 driven with $t_{\rm CLCH}$, $t_{\rm CHCL}$ = 5 ns , $V_{\rm IL}$ = $V_{\rm SS}$ + 0.5 V, $V_{\rm IH}$ = $V_{\rm CC}$ 0.5 V; XTAL1 = N.C.; EA = $\overline{\rm PE}/{\rm SWD}$ = Port 0 = Port 6 = $V_{\rm CC}$; $\overline{\rm HWPD}$ = $V_{\rm CC}$; $\overline{\rm RESET}$ = $V_{\rm SS}$; all other pins are disconnected. $I_{\rm CC}$ would be slightly higher if a crystal oscillator is used (appr. 1 mA).
- 5) I_{CC} (idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL2 driven with t_{CLCH} , $t_{\text{CHCL}} = 5$ ns, $V_{\text{IL}} = V_{\text{SS}} + 0.5$ V, $V_{\text{IH}} = V_{\text{CC}} 0.5$ V; XTAL1 = N.C.; $\overline{\text{RESET}} = V_{\text{CC}}$; $\overline{\text{HWPD}} = \text{Port 0} = \text{Port 6} = V_{\text{CC}}$; $\overline{\text{EA}} = \overline{\text{PE}}/\text{SWD} = V_{\text{SS}}$; all other pins are disconnected;
- 6) $I_{\rm CC}$ (active mode with slow-down mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL2 driven with $t_{\rm CLCH}$, $t_{\rm CHCL}$ = 5 ns, $V_{\rm IL}$ = $V_{\rm SS}$ + 0.5 V, $V_{\rm IH}$ = $V_{\rm CC}$ 0.5 V; XTAL1 = N.C.; $\overline{\rm RESET} = V_{\rm CC}$; $\overline{\rm HWPD}$ = Port 6 = $V_{\rm CC}$; $\overline{\rm EA}$ = $\overline{\rm PE}/{\rm SWD}$ = $V_{\rm SS}$; all other pins are disconnected; the microcontroller is put into slow-down mode by software;
- 7) I_{CC} (idle mode with slow-down mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL2 driven with t_{CLCH} , $t_{\text{CHCL}} = 5$ ns, $V_{\text{IL}} = V_{\text{SS}} + 0.5$ V, $V_{\text{IH}} = V_{\text{CC}} 0.5$ V; XTAL1 = N.C.; RESET = V_{CC} ; HWPD = Port 6 = V_{CC} ; EA = $\overline{\text{PE}}/\text{SWD} = V_{\text{SS}}$; all other pins are disconnected; the microcontroller is put into idle mode with slow-down mode enabled by software;
- 8) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{\rm OV} > V_{\rm CC} + 0.5$ V or $V_{\rm OV} < V_{\rm SS}$ 0.5 V). The supply voltage $V_{\rm CC}$ and $V_{\rm SS}$ must remain within the specified limits. The absolute sum of input currents on all port pins may not exceed 50 mA.
- 9) Not 100% tested, guaranteed by design characterization
- 10)The typical I_{CC} values are periodically measured at T_A = +25 °C and V_{CC} = 5 V but not 100% tested.
- 11)The maximum $I_{\rm CC}$ values are measured under worst case conditions ($T_{\rm A}$ = 0 $^{\circ}{\rm C}$ or -40 $^{\circ}{\rm C}$ and $V_{\rm CC}$ = 5.5 V)

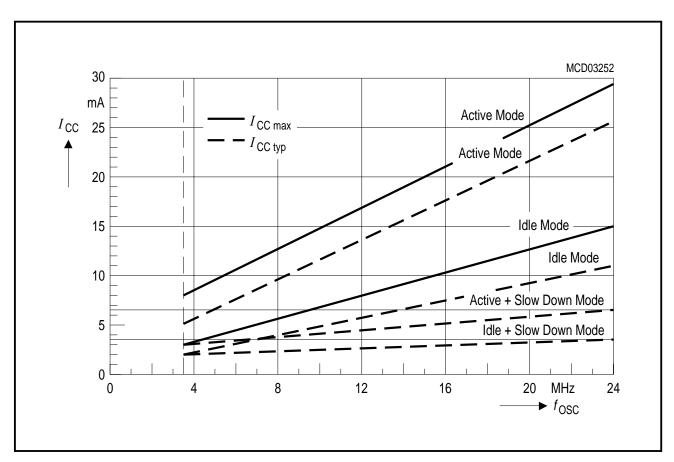


Figure 19 ICC Diagram

Table 9 Power Supply Current Calculation Formulas

Parameter	Symbol	Formula
Active mode	$I_{ m CC\ typ}$ $I_{ m CC\ max}$	$0.79 * f_{OSC} + 2.7$ $1.04 * f_{OSC} + 4.4$
Idle mode	$I_{ m CC\ typ} \ I_{ m CC\ max}$	$0.43 * f_{OSC} + 0.7$ $0.48 * f_{OSC} + 3.5$
Active mode with slow-down enabled	$I_{ m CC\ typ}$ $I_{ m CC\ max}$	$0.17 * f_{OSC} + 2.5$ $0.28 * f_{OSC} + 2.9$
Idle mode with slow-down enabled	$I_{ m CC\ typ}$ $I_{ m CC\ max}$	$0.06 * f_{OSC} + 1.9$ $0.09 * f_{OSC} + 2.5$

Note: $f_{\rm osc}$ is the oscillator frequency in MHz. $I_{\rm CC}$ values are given in mA.

A/D Converter Characteristics

 V_{CC} = 5 V + 10%, - 15%; V_{SS} = 0 V

 $T_{\rm A}$ = 0 to 70 °C $T_{\rm A} = -40 \text{ to } 85 \,^{\circ}\text{C}$

for the SAB-C515A for the SAF-C515A

 $T_{\rm A}$ = - 40 to 110 °C

for the SAH-C515A

 $T_{\rm A}$ = -40 to 125 °C

for the SAK-C515A

4 V
$$\leq V_{\mathsf{AREF}} \leq V_{\mathsf{CC}}$$
 + 0.1 V; V_{SS} – 0.1 V $\leq V_{\mathsf{AGND}} \leq V_{\mathsf{SS}}$ + 0.2 V

Parameter	Symbol	ol Limit Values		Unit	Test Condition	
		min.	max.			
Analog input voltage	V_{AIN}	V_{AGND}	V_{AREF}	V	1)	
Sample time	$t_{\rm S}$	_	$16 \times t_{\rm IN} \\ 8 \times t_{\rm IN}$	ns	Prescaler ÷ 8 Prescaler ÷ 4 ²⁾	
Conversion cycle time	t_{ADCC}	_	$96 \times t_{\rm IN} $ $48 \times t_{\rm IN}$	ns	Prescaler ÷ 8 Prescaler ÷ 4 ³⁾	
Total unadjusted error	TUE	_	± 2	LSB	$V_{\rm SS}$ + 0.5 V \leq $V_{\rm IN}$ \leq $V_{\rm CC}$ - 0.5 V $^{4)}$	
Internal resistance of reference voltage source	R_{AREF}	_	<i>t</i> _{ADC} / 250 – 1	kΩ	t _{ADC} in [ns] ^{5) 6)}	
Internal resistance of analog source	R_{ASRC}	_	<i>t</i> _S / 500 – 0.8	kΩ	t _S in [ns] ^{2) 6)}	
ADC input capacitance	C_{AIN}	_	50	pF	6)	

Notes see next page.

Clock calculation table:

Clock Prescaler Ratio	ADCL	t_{ADC}	$t_{\rm S}$	t_{ADCC}
÷ 8	1	$8 \times t_{\text{IN}}$	$16 \times t_{\text{IN}}$	$96 \times t_{\text{IN}}$
÷ 4	0	$4 \times t_{IN}$	$8 \times t_{\text{IN}}$	$48 \times t_{\text{IN}}$

Further timing conditions: $t_{ADC} \min = 500 \text{ ns}$

 $t_{\text{IN}} = 2 / f_{\text{OSC}} = 2 t_{\text{CLCL}}$

Notes:

- 1) V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be $X000_H$ or $X3FF_H$, respectively.
- 2) During the sample time the input capacitance C_{AIN} can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach their final voltage level within t_{S} . After the end of the sample time t_{S} , changes of the analog input voltage have no effect on the conversion result.
- 3) This parameter includes the sample time t_S , the time for determining the digital result and the time for the calibration. Values for the conversion clock t_{ADC} depend on programming and can be taken from the table on the previous page.
- 4) T_{UE} is tested at V_{AREF} = 5.0 V, V_{AGND} = 0 V, V_{CC} = 4.9 V. It is guaranteed by design characterization for all other voltages within the defined voltage range.
 If an overload condition occurs on maximum 2 not selected analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB is permissible.
- 5) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference source must allow the capacitance to reach their final voltage level within the indicated time. The maximum internal resistance results from the programmed conversion timing.
- 6) Not 100% tested, but guaranteed by design characterization.

AC Characteristics (18 MHz)

 $V_{\rm CC}$ = 5 V + 10%, - 15%; $V_{\rm SS}$ = 0 V $T_{\rm A}$ = 0 to 70 °C for the SAB-C515A $T_{\rm A}$ = - 40 to 85 °C for the SAF-C515A $T_{\rm A}$ = - 40 to 110 °C for the SAH-C515A $T_{\rm A}$ = - 40 to 125 °C for the SAK-C515A

(C_L for port 0, ALE and PSEN outputs = 100 pF; C_L for all other outputs = 80 pF)

Program Memory Characteristics

Parameter	Symbol	Limit Values				
		18 MHz Clock		Variable Clock $1/t_{CLCL} = 3.5 \text{ MHz to } 18 \text{ MHz}$		
		min.	max.	min.	max.	
ALE pulse width	t_{LHLL}	71	_	2 t _{CLCL} - 40	_	ns
Address setup to ALE	t _{AVLL}	26	_	$t_{\text{CLCL}} - 30$	_	ns
Address hold after ALE	t_{LLAX}	26	_	$t_{\rm CLCL} - 30$	_	ns
ALE low to valid instruction in	t _{LLIV}	_	122	_	4 t _{CLCL} - 100	ns
ALE to PSEN	t_{LLPL}	31	_	t _{CLCL} - 25	_	ns
PSEN pulse width	t_{PLPH}	132	_	3 t _{CLCL} - 35	_	ns
PSEN to valid instruction in	t_{PLIV}	_	92	_	3 t _{CLCL} - 75	ns
Input instruction hold after PSEN	t_{PXIX}	0	_	0	_	ns
Input instruction float after PSEN	$t_{PXIZ}^{*)}$	_	46	_	<i>t</i> _{CLCL} – 10	ns
Address valid after PSEN	$t_{PXAV}^{\star)}$	48	_	$t_{\rm CLCL} - 8$	_	ns
Address to valid instr in	t _{AVIV}	_	180	_	5 t _{CLCL} - 98	ns
Address float to PSEN	t_{AZPL}	0	_	0	_	ns

^{*)} Interfacing the C515A to devices with float times up to 48 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

AC Characteristics (18 MHz, cont'd)

External Data Memory Characteristics

Parameter	Symbol	Limit Values				
		18 MHz Clock		Variable Clock $1/t_{\rm CLCL} = 3.5 \ \rm MHz \ to \ 18 \ \rm MHz$		
		min.	max.	min.	max.	
RD pulse width	t_{RLRH}	233	_	6 t _{CLCL} - 100	_	ns
WR pulse width	t_{WLWH}	233	_	6 t _{CLCL} - 100	_	ns
Address hold after ALE	t_{LLAX2}	81	_	2 t _{CLCL} - 30	_	ns
RD to valid data in	t_{RLDV}	_	128	_	5 t _{CLCL} - 150	ns
Data hold after RD	t_{RHDX}	0	_	0	_	ns
Data float after RD	t_{RHDZ}	_	51	_	2 t _{CLCL} - 60	ns
ALE to valid data in	t_{LLDV}	_	294	_	8 t _{CLCL} - 150	ns
Address to valid data in	t_{AVDV}	_	335	_	9 t _{CLCL} - 165	ns
ALE to WR or RD	$t_{\sf LLWL}$	117	217	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address valid to WR or RD	t_{AVWL}	92	_	4 t _{CLCL} - 130	_	ns
WR or RD high to ALE high	t_{WHLH}	16	96	$t_{\rm CLCL} - 40$	<i>t</i> _{CLCL} + 40	ns
Data valid to WR transition	t_{QVWX}	11	_	t _{CLCL} - 45	_	ns
Data setup before WR	$t_{\sf QVWH}$	239	_	7 t _{CLCL} – 150	_	ns
Data hold after WR	t_{WHQX}	16	_	t _{CLCL} - 40	_	ns
Address float after RD	t_{RLAZ}	_	0	_	0	ns

External Clock Drive Characteristics

Parameter	Symbol		Unit	
		Freq		
		min.	max.	
Oscillator period	t_{CLCL}	55.6	285.7	ns
High time	t_{CHCX}	15	$t_{CLCL} - t_{CLCX}$	ns
Low time	t_{CLCX}	15	$t_{\rm CLCL} - t_{\rm CHCX}$	ns
Rise time	t_{CLCH}	_	15	ns
Fall time	t_{CHCL}	_	15	ns

AC Characteristics (24 MHz)

 $V_{\rm CC}$ = 5 V + 10%, - 15%; $V_{\rm SS}$ = 0 V

 $T_{\rm A}$ = 0 to 70 °C $T_{\rm A} = 0$ to 70 °C $T_{\rm A} = -40$ to 85 °C 40 to 110 °C for the SAB-C515A

 $T_{\rm A} = -40 \text{ to } 110 \,^{\circ}\text{C}$

for the SAF-C515A for the SAH-C515A

(C_L for port 0, ALE and PSEN outputs = 100 pF; C_L for all other outputs = 80 pF)

Program Memory Characteristics

Parameter	Symbol	Limit Values				
		24 MHz Clock		Variable Clock $1/t_{CLCL} = 3.5 \text{ MHz to } 24 \text{ MHz}$		
		min.	max.	min.	max.	
ALE pulse width	t _{LHLL}	43	_	2 t _{CLCL} - 40	_	ns
Address setup to ALE	t _{AVLL}	17	_	t _{CLCL} – 25	_	ns
Address hold after ALE	t_{LLAX}	17	-	t _{CLCL} – 25	_	ns
ALE low to valid instruction in	t _{LLIV}	_	80	_	4 t _{CLCL} - 87	ns
ALE to PSEN	t_{LLPL}	22	_	t _{CLCL} - 20	_	ns
PSEN pulse width	t_{PLPH}	95	_	$3t_{\text{CLCL}} - 30$	_	ns
PSEN to valid instruction in	t_{PLIV}	_	60	_	3 t _{CLCL} - 65	ns
Input instruction hold after PSEN	t_{PXIX}	0	_	0	_	ns
Input instruction float after PSEN	$t_{PXIZ}^{*)}$	_	32	_	$t_{\rm CLCL} - 10$	ns
Address valid after PSEN	$t_{PXAV}^{*)}$	37	_	$t_{\text{CLCL}} - 5$	_	ns
Address to valid instr in	t _{AVIV}	_	148	_	5 t _{CLCL} - 60	ns
Address float to PSEN	t_{AZPL}	0	_	0	_	ns

Interfacing the C515A to devices with float times up to 37 ns is permissible. This limited bus contention will not cause any damage to port 0 drivers.

AC Characteristics (24 MHz, cont'd)

External Data Memory Characteristics

Parameter	Symbol	Limit Values				
		24 MHz Clock		Variable Clock $1/t_{CLCL} = 3.5 \text{ MHz to } 24 \text{ MHz}$		
		min.	max.	min.	max.	
RD pulse width	t_{RLRH}	180	_	6 t _{CLCL} - 70	_	ns
WR pulse width	t _{WLWH}	180	_	6 t _{CLCL} - 70	_	ns
Address hold after ALE	t _{LLAX2}	56	_	2 t _{CLCL} - 27	_	ns
RD to valid data in	t_{RLDV}	_	118	_	5 t _{CLCL} - 90	ns
Data hold after RD	t_{RHDX}	0	_	0	_	ns
Data float after RD	t_{RHDZ}	_	63	_	2 t _{CLCL} – 20	ns
ALE to valid data in	t_{LLDV}	_	200	_	8 t _{CLCL} - 133	ns
Address to valid data in	t_{AVDV}	_	220	_	9 t _{CLCL} - 155	ns
ALE to WR or RD	t_{LLWL}	75	175	3 t _{CLCL} - 50	3 t _{CLCL} + 50	ns
Address valid to WR or RD	t _{AVWL}	67	_	4 t _{CLCL} – 97	_	ns
WR or RD high to ALE high	t_{WHLH}	17	67	t _{CLCL} - 25	<i>t</i> _{CLCL} + 25	ns
Data valid to WR transition	t_{QVWX}	5	_	t _{CLCL} - 37	_	ns
Data setup before WR	$t_{\sf QVWH}$	170	_	7 t _{CLCL} – 122	_	ns
Data hold after WR	t_{WHQX}	15	_	t _{CLCL} - 27	_	ns
Address float after RD	t_{RLAZ}	_	0	_	0	ns

External Clock Drive Characteristics

Parameter	Symbol		Unit	
		Freq		
		min.	max.	
Oscillator period	t_{CLCL}	41.7	285.7	ns
High time	t_{CHCX}	12	$t_{\rm CLCL} - t_{\rm CLCX}$	ns
Low time	t_{CLCX}	12	$t_{\rm CLCL} - t_{\rm CHCX}$	ns
Rise time	t_{CLCH}	_	12	ns
Fall time	t_{CHCL}	_	12	ns

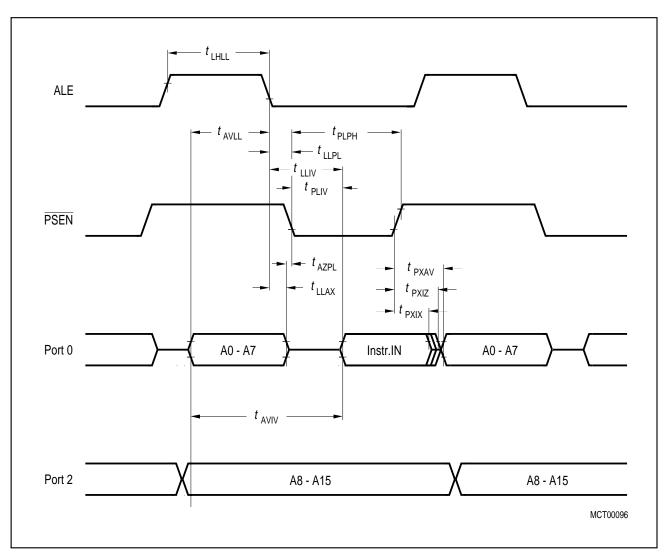


Figure 20 Program Memory Read Cycle

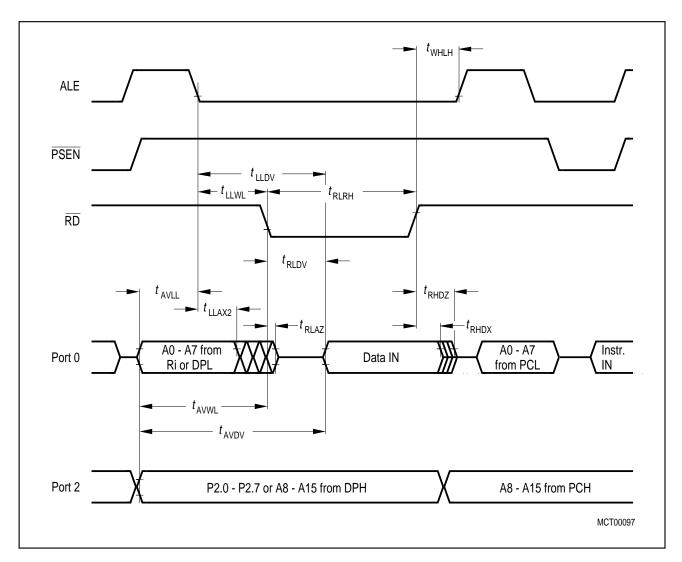


Figure 21 Data Memory Read Cycle

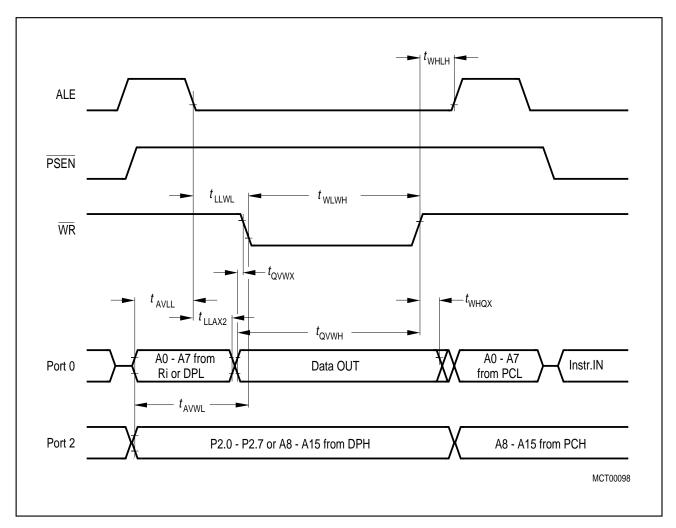


Figure 22 Data Memory Write Cycle

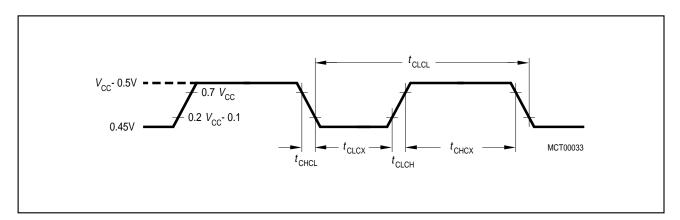


Figure 23
External Clock Drive on XTAL2

ROM Verification Characteristics for the C515A-1RM

ROM Verification Mode 1

Parameter	Symbol	Limit \	Unit	
		min.	max.	
Address to valid data	t _{AVQV}	_	10 t _{CLCL}	ns

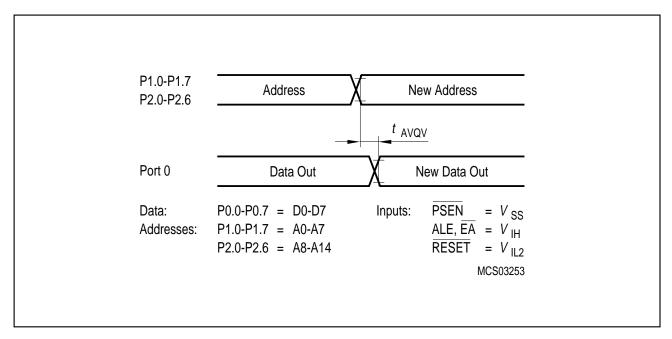


Figure 24 ROM Verification Mode 1

ROM Verification Mode 2

Parameter	Symbol	Limit Values			Unit
		min.	typ	max.	
ALE pulse width	t_{AWD}	_	2 t _{CLCL}	_	ns
ALE period	t_{ACY}	_	12 t _{CLCL}	_	ns
Data valid after ALE	t_{DVA}	_	_	4 t _{CLCL}	ns
Data stable after ALE	t_{DSA}	8 t _{CLCL}	_	_	ns
P3.5 setup to ALE low	t_{AS}	_	t_{CLCL}	_	ns
Oscillator frequency	1/ t _{CLCL}	3.5	_	24	MHz

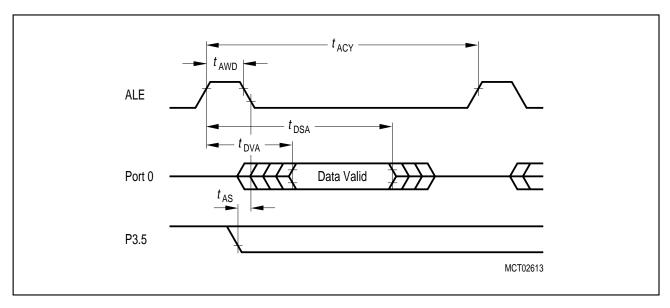
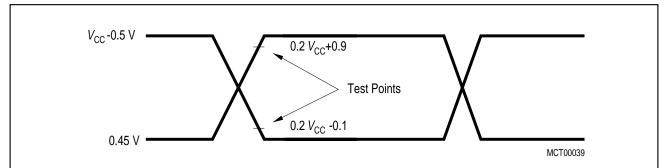



Figure 25 ROM Verification Mode 2

AC Inputs during testing are driven at $V_{\rm CC}$ - 0.5 V for a logic '1' and 0.45 V for a logic '0'. Timing measurements are made at $V_{\rm IHmin}$ for a logic '1' and $V_{\rm ILmax}$ for a logic '0'.

Figure 26
AC Testing: Input, Output Waveforms

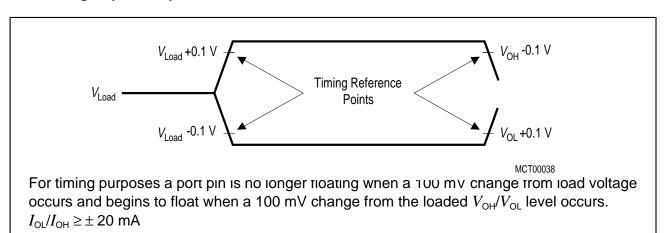


Figure 27 AC Testing : Float Waveforms

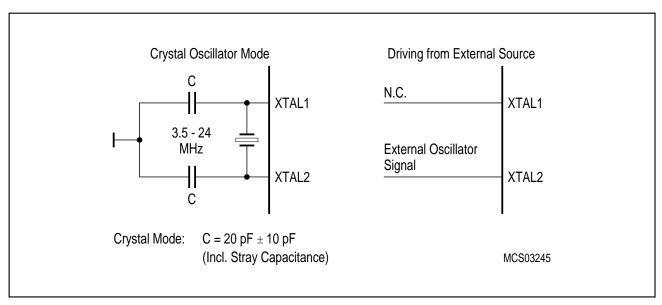


Figure 28
Recommended Oscillator Circuits for Crystal Oscillator

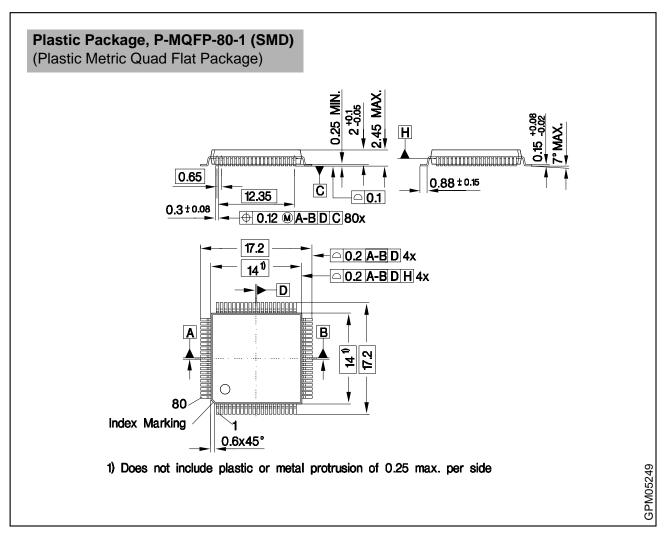


Figure 29 P-MQFP-80-1 Package Outline

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm