Features

- 72 input by 72 output crosspoint switch
- $3.6 \mathrm{~Gb} / \mathrm{s}$ Non-Return-to-Zero (NRZ) data bandwidth
- Global and per-channel programmable Input Signal Equalization (ISE) and output drive levels
- On-board Pseudo-Random Bit Sequence (PRBS) Generator/Detector
- 2.5/3.3V Complimentary Metal-Oxide Semicon-ductor/Transistor-Transistor Logic (CMOS/TTL) control Input/Output (I/O)
- Parallel and serial programming modes
- Differential Current Mode Logic (CML) data output driver
- Soft power-down for unused channels
- Secondary access port for configuation and monitoring
- Boundary scan support for data I/O
- 125 MHz multimode program port
- Multicast and "striping" programming modes
- On-chip input and output terminations
- Single 2.5 V supply, 3.3 V option for control port
- 9W/13W typical power in Nominal and High Drive mode
- Integrated temperature sensor/alarm
- High performance, ball-grid array (BGA) package

Applications

- Large, 3-stage (Clos) fabrics of up to 2880×2880 I/O ports with up to 10 terabytes per second (Tb / s) data throughput
- Dense Wavelength, Division Multiplexing (DWDM) switches
- Wavelength routers
- Storage Area Network (SAN) switch fabrics
- Packet-switching fabrics

General Description

The VSC3139 is a 72×72, asynchronous, crosspoint switch. It is designed to carry broadband data streams in a variety of applications. Its fully non-blocking switch core is programmed using a multi-mode port interface that allows random access programming of each I/O port. A high degree of signal integrity is maintained throughout the device by virtue of its fully differential signal paths.

Each data output can be programmed to connect to any one of the 72 inputs. The signal path is unregistered and fully asynchronous, so there are no restrictions on the phase, frequency, of signal pattern on any input. Each high-speed output is a fully differential, switched current driver with on-die terminations for maximum signal integrity. Data inputs are terminated on die using 100Ω resistors between true and complement inputs with a common connection to an internal bias source that facilitates AC coupling to the switch inputs.

The VSC3139 provides a multi-mode, programming interface that allows commands to be sent as either serial data or multiplexed parallel data. Core programming can be sequential on a port-by-port basis, or multiple program assignments can be queued and issued simultaneously using the CONFIG bit. By default, the device's $\overline{\mathrm{INIT}}$ feature resets the entire switch to a "straight-through" configuration (A0 to Y0, A1 to Y1, and so on); alternatively, the user can configure $\overline{\text { INIT }}$ to initialize to any other configuration.

The VSC3139 is programmed using an 11-bit, multiplexed address/data (ADDR/DATA) bus in conjunction with the device's ALE, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, CONFIG, and $\overline{\mathrm{INIT}}$ pins. CONFIG and $\overline{\mathrm{INIT}}$ signals can also be set via an internal control register to reduce the number of signals required to interface with the switch.

Disabling $\overline{\overline{I N I T}}$ and CONFIG in software locks in programming of switch connections. This is accomplished by setting the appropriate bits in the Setup register to zero, blocking input on these controls and preventing them from changing the switch configuration.

Unused channels can be powered down to allow efficient use of the switch in applications that require only a subset of the channels. Power-down is enabled in software by programming individual unused outputs with a power-down code.

A Secondary Access Port allows asynchronous readback and configuration control to take place even while the primary programming port is in use.

VSC3139 Functional Block Diagram

Functional Description

DRIVE Input

The VSC3139 provides a DRIVE input that can be connected internally to any of the 72 data input connections. By connecting an external signal to the DRIVE input and then switching it to one of the data inputs, a test signal can be placed on that input.

The DRIVE input can be used to verify signal path integrity. Because of this, input to the switch is not multiplexed between the DRIVE input and data input; multiplexing the input would alter the configuration after an integrity test. Instead, the signal from the DRIVE input is superimposed onto the data input path. For correct operation, the signal present on the selected input must either be in a neutral state or in a high-impedance state to allow the DRIVE inputs to influence the input.

The DRIVE input can also be used in conjunction with the SENSE output and an external test generator/receiver to verify programmed signal path integrity.

The DRIVE input can be programmed to drive any or all of the 72 data inputs. Writing to the appropriate address either connects or disconnects a data input from the specified DRIVE input.

SENSE Output

The VSC3139 has a SENSE output that can be used to monitor any one of the 72 data outputs. This SENSE output monitors the data output signal at the package pin, thereby facilitating true verification of the complete signal path through the switch.

The SENSE output can also be used in conjunction with the external monitoring circuit and the DRIVE input to determine the presence of a signal on any output, or to verify signal path integrity.

Boundary Scan Support

The VSC3139 incorporates registers that can be used to drive and sense the state of every pin of the high-speed data paths. These registers can be accessed through the programming port in serial mode, allowing the chip to be fully tested using only five active pins.

Power-On RESET

The VSC3139 has a built-in power-on RESET function to ensure the matrix is fully disconnected and powered off prior to its being powered up. When the device is powered up, the switch draws additional power as each output is programmed. The power-on RESET circuit trip point is between 1.9 VDC and 2.1 VDC . Care must be taken to keep power supply excursions above 2.2 VDC by providing adequate supply decoupling.

Temperature Sensor/Alarm

The VSC3139 has circuitry that detects and flags temperatures exceeding a user-set range. The temperature range is set using "Register 5: Temperature Sensor". The device's temperature alarm is asserted when the die temperature meets or exceeds the maximum temperature in the user-set range. There are 15 temperature range presets between $30^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$. Each range is approximately $8^{\circ} \mathrm{C}, \pm 8^{\circ} \mathrm{C}$.

PRBS Generator/Detector

The PRBS Generator/Detector is capable of generating and detecting any of the four NRZ patterns described in the "Register 8 (page 21)" and "Register 10 (page 22)" data tables that appear later in this document. The main purpose of the PRBS Generator/Detector is in switch diagnostics and signal tracing. For more information, see the block diagram of the PRBS Generator/Detector in Figures 1 and 2.

Figure 1. PRBS Generator

Figure 2. PRBS Error Detector

Figure 3 illustrates how the PRBS function can be connected to the switch core for signal path tracing to and from the switch.

Refer to Figure 3 and use the following set of steps to effect a trace.

1. Connect PRBS_OUT and PRBS_($\overline{\text { OUT }}$ to DRIVE and $\overline{\text { DRIVE, respectively. }}$
2. Connect SENSE and $\overline{\operatorname{SENSE}}$ to PRBS_IN and PRBS_IN, respectively.
3. Select channel to send pattern through.
4. Generate pattern with PRBS generator.
5. Check Detector for errors.

Figure 3. PRBS Connection Example

Programming Interface

The VSC3139 programming interface uses a multiplexed address/data bus. The ALE signal differentiates whether the binary word on the multiplexed bus is address or data information. Table 1 lists the conventions used in this document to describe the various terms used in the programming interface.

Table 1. VSC3139 Data Sheet Programming Interface Conventions

Convention	Description
SIGNAL NAME	Active HIGH signal
SIGNAL NAME	Active LOW signal
ADDR	Identifies OUTPUT channel to be programmed
DATA	Identifies INPUT channel to be programmed
1	A logic level high signal. Also denoted by 'HIGH'
0	A logic level low signal. Also denoted by 'LOW'

Register Use

All registers are accessed in the manner described in the programming interface description for parallel and serial read and write functions. Each register has a corresponding address which, when written to with a data word, alters the functions defined for that register (see "Registers" on page 13). Table 4 on page 11 provides an overview of all of the device registers, including detailed descriptions of the functions controlled in each register.

Note that all bits in all registers initialize to 0 .

Parallel Mode-Write Operation

Parallel mode is enabled when PARALLEL/ $\overline{\operatorname{SERIAL}}=1$. When ALE $=1$, the information on the ADDR/DATA bus is used as the address and it specifies the OUTPUT port that is being programmed in the write cycle. The falling edge of the ALE pin latches the address value. When ALE $=0$, the information on the ADDR/DATA bus designates the INPUT port that is to be connected to the previously selected OUTPUT port. The connection between the specified input and output is programmed into memory when $\overline{\mathrm{WR}}=1$.

When CONFIG $=1$, all new programming data is transferred directly to the switch core and any new connections are configured as they are entered. When CONFIG $=0$, newly programmed connections are held in staging registers. Asserting CONFIG $=1$ transfers the data from the staging registers to the switch core independent of other control signals so that any changes occur concurrently. CONFIG may be tied HIGH so that all programming changes take effect sequentially as they are written. Alternatively, it may be toggled HIGH and LOW to store multiple programming steps and activate them simultaneously.

Figure 5 on page 29 shows the programming sequence for parallel mode write operations.

Parallel Mode—Read Operation

The VSC3139 supports parallel readback using the multiplexed bus to read programming information from the switch fabric. The falling edge of ALE latches the address (OUTPUT) value of the connection to be read. The chip then drives the requested data out onto the bus after the falling edge of $\overline{\mathrm{RD}}$, where it remains valid until $\overline{\mathrm{RD}}=1$.

Figure 5 on page 29 shows the programming sequence for parallel mode read operations.

Serial Mode-Write Operation

Serial mode operation is enabled when PARALLEL/SERIAL $=0$. In this mode, the ADDR/DATA[0] pin becomes the serial data input (SDIN) pin and the ADDR/DATA[1] pin becomes the serial clock (SCLK) pin which is rising-edgetriggered.

In addition, in serial mode the sense of the $\overline{\mathrm{WR}}$ pin is inverted from parallel operation. That is, the pin should normally be set LOW, and set HIGH to write the address and data information to the programming port. A serial word of the form [Output][Input] is shifted into the internal shift register (MSB-first), and the $\overline{\mathrm{WR}}$ pin is set HIGH, coincident with the last bit of the data word to indicate the last bit of a connection. This transfers the input identifier to the staging register of the addressed output. CONFIG is then asserted (1, asynchronously) to transfer one or more program commands to the switch core. The programming information that is shifted in during the write cycle is repeated back to the SDOUT (ADDR/DATA[2]) pin, but delayed by 22 clock cycles. This allows for easy confirmation of the previous programming step. The output field is 11 bits long, representing the binary numerical identifier of the output to be programmed. The input field is also 11 bits long, representing the numerical identifier of the input that will be connected to the specified output.

Figure 7 on page 30 shows the programming sequence for serial mode write operations. During normal Serial port operations, the ALE pin must be held LOW. Setting ALE HIGH is used in Serial Multicast programming mode.

Serial Mode—Read Operation

During serial mode read back, the sense of the $\overline{\mathrm{RD}}$ pin is inverted from its operation during parallel mode. To read back information about a specific output connection, the address corresponding to the output of interest is shifted in while $\overline{\mathrm{RD}}$ is held LOW. $\overline{\mathrm{RD}}$ is set HIGH with the last bit of the output address and is held HIGH for three clock cycles thereafter. The data begins to be shifted out on the SDOUT pin beginning four SCLK cycles after $\overline{\mathrm{RD}}$ was initially set HIGH and for the following 11 clock cycles.

Figure 6 on page 30 shows the programming sequence for serial mode read operations.

INIT

Asserting the $\overline{\mathrm{INIT}}$ pin or the $\overline{\mathrm{INIT}}$ bit in the Control register activates a preset connection matrix. The $\overline{\mathrm{INIT}}$ feature connects the inputs to the outputs in a "straight-through" fashion. Each input is connected to the output of the same value. For example, A0 -> Y0, A1 -> Y1 ... A71 -> Y71. Asserting INIT will program all connections without exception.

To prevent accidental activation of this feature, disable the $\overline{\text { INIT }}$ function in the Setup register.
Note that using the INIT feature to program the VSC3139 into a "straight-through" configuration may cause excessive power supply droop due to the large transient currents when the switch is re-configured in this manner. Adequate power supply filtering/decoupling must be implemented close to the VSC3139 to prevent activation of the power-on RESET circuitry. Power supply transients/droop must be kept above 2.2VDC.

Software Power-Down

With this feature, unused outputs may be disabled using software controls. This is accomplished by programming each unused output with a power-down code. Programming a valid input address will reactivate the channel.

It is recommended that any changes in power programming be executed only as part of an initialization sequence. This will guard against the effects of any switching transients that might result from changing the power supply current suddenly.

Multicasting Mode

Multicast mode provides programming efficiency when a single input is to be connected to multiple outputs. By modifying the use of the ALE bit, it is possible to latch the DATA[10:0] value, and use it to represent the input value in subsequent programming steps.

To use multicast mode, ALE is held LOW while the input to be multicasted is written to the data word space of the Switch Array Connection register (or the multicast input storage register). ALE is then raised and held HIGH for programming steps to follow. Connections to the saved input value are programmed solely with the rising edge of the $\overline{\mathrm{WR}}$ control signal.

Figure 7 on page 30 shows the programming sequence in parallel mode.
Normal programming is resumed by following the standard programming sequence. The input value is retained as long as ALE remains HIGH but will change once ALE is brought LOW. The input value will also be cleared when information is read from the control interface regardless of the value of ALE.

Multicast is also available in serial programming mode. ALE is held LOW during normal operation of the serial port. To initiate Multicast during serial programming, the first connection is made in the regular manner by first shifting in the 11-bit address and then the 11-bit DATA. The $\overline{\mathrm{WR}}$ signal is raised HIGH to clock in the last bit and then negated at the next falling edge of SCLK. As the $\overline{\mathrm{WR}}$ signal is negated, the ALE control is raised, prior to the next rising edge of SCLK. As long as ALE is held HIGH, the input port that was designated in the data portion of the first programming sequence will be retained. To configure the outputs after the first connection, only the ADDR value is shifted in and written. The value will also be cleared during a read instruction regardless of the sense of ALE.

Figure 8 on page 31 shows the programming sequence in serial mode.

Address Striping Mode

Setting bit 5 of the Switch Configuration register enables striping mode, which allows groups of four inputs to be connected to four outputs with a single programming instruction.

The groups are predetermined and have been selected according to the physical locations of their pins on the package and their numerical ordering. Because even and odd inputs and outputs are on opposite sides of the chip, the groups consist of consecutively numbered even and odd inputs or outputs. The end result is that the inputs and outputs are arranged in 18 "stripes", and any of the 18 input stripes can be connected to any of the 18 output stripes.

Programming of the connections is accomplished by using only the nine MSBs of the ADDR/DATA bus. The two LSBs of the each address or data word should be ignored. For example, the ADDR/DATA word ' 00000010000 'b' specifies stripe 4 , which includes inputs or outputs $16,18,20$, and 22.

A complete list of the ADDR/DATA words is shown in Table 2 on page 10.

In Striping mode, the only functionality that is striped is the switch core programming. All other functions such as readback, SENSE control, DRIVE control, precompensation, and output drive level select are accessed and programmed individually.

Table 2. Address Striping Mode I/O Grouping

Group Number	Input/Output Designations	Group Address	Group Number	Input/Output Designations	Group Address
0	$0,2,4,6$	00000000000	1	$1,3,5,7$	00000000100
2	$8,10,12,14$	00000001000	3	$9,11,13,15$	00000001100
4	$16,18,20,22$	00000010000	5	$17,19,21,23$	00000010100
6	$24,26,28,30$	00000011000	7	$25,27,29,31$	00000011100
8	$32,34,36,38$	00000100000	9	$33,35,37,39$	00000100100
10	$40,42,44,46$	00000101000	11	$41,43,45,47$	00000101100
12	$48,50,52,54$	00000110000	13	$49,51,53,55$	00000110100
14	$56,58,60,62$	00000111000	15	$57,59,61,63$	00000111100
16	$64,66,68,70$	00001000000	17	$65,67,69,71$	00001000100

Secondary Access Port

The Secondary Access Port is an interface to the VSC3139 registers that operates concurrently with the primary programming interface. The main purpose of the Secondary Access Port is to facilitate monitoring and to maintain the operational state of the switch (verify and monitor port connections, die temperature, set drive and equalization levels, and so on) without interrupting the primary port programming operations. The Secondary Access Port allows the primary port to focus strictly on establishing connections while the secondary port performs all other operations "off line".

Before it can be used, the Secondary Access Port must be enabled using the Secondary Access Port Enable bit [7] in the Switch Configuration register (281 'h h . This bit allows the primary port controller to grant or deny access of the Secondary Access Port as required. If the intention is to have the Secondary Access Port enabled continously, then this bit only needs to be set once during intialization.
To protect the integrity of the Primary Port programming operations, there are two areas of the VSC3139 that are not writeable by the Secondary Access Port. The Switch Connection registers at addresses 000h to 08Fh, and the first two Configuration registers at addresses $280^{\prime} \mathrm{h}$ and $281^{\prime} \mathrm{h}$ (register 1 and register 2) may be read by the Secondary Access Port but can only be written to through the Primary Port.

The two interfaces share some logic, therefore care should be exercised when executing certain concurrent operations. In the event that coincident operations are in conflict, an arbitration circuit will grant control as appropriate. A conflict is defined as an overlap of an $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ assertion on the primary port with an assertion of the SecRead or SecWrite signals on the Secondary Access Port. There is one exception to this rule, and that is when the primary port writes a switch connection. The Secondary Access Port cannot write switch connections, so there is never conflict when the primary port writes a connection, regardless of the activity on the Secondary Access Port.

The Secondary Access Port provides an indication when a read or write operation has been overridden by a Primary Port operation. Upon completion of a successful write operation, the Secondary Access Port echoes back the address and data bits following the SecWrite pulse. In the event of a failed write operation on the Secondary Access Port, the echoed data stream is fully or partially inverted.

For a Secondary Access Port read, the $12^{\text {th }}$ bit (the bit after the last bit of valid data) indicates the status of the read. If the bit is a 1 , then the previous 11 bits are correct. If the $12^{\text {th }}$ bit is a 0 , the last read operation was interrupted by an operation on the primary port and the data is corrupt. The primary port is only overridden when a read operation conflicts with a write operation on the Secondary Access Port. In this case, there is no indication of the failed read. In the event the primary port needs to perform uninterrupted read operations, the Secondary Access Port can be disabled.

Table 3 shows the decision matrix for conflicts between the primary and secondary ports.

Table 3. Programming Port Conflict Resolution Decision Matrix

Conflict Combinations	Primary Port Write	Primary Port Read
Secondary Port Write	Result: Priority given to primary port. Indication: SecWrite echoed on SecSDOUT will be fully or partially inverted. Exception: Primary port writes to connection matric do not conflict with secondary port writes.	Result: Priority given to secondary port. Indication: None
Secondary Port Read	Result: Priority given to primary port. Indication: $13^{\text {th }}$ bit of the SecSDOUT will be 0.	Result: Priority given to primary port. Indication: $13^{\text {th }}$ bit of the SecSDOUT will be 0. \mathbf{l}

Table 4. VSC3139 Register Map

Register Name	ADDR[10:0]	DATA[10:0]										
		Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Switch Array Connection	O'h - 47'h	Input Connections 0'h Through 47'h										
Switch Setup	280'h	Not Used	CONFIG Register	INITB Register	$\begin{aligned} & \text { CON- } \\ & \text { FIG } \\ & \text { Disable } \end{aligned}$	INITB Disable						
Switch Configuration	281'h	Not Used	Not Used	Not Used	Secondary Access	Not Used	Addres s Striping	Staging Readback	Switch State Store	User INITB	Software CONFIG	Software INITB
DRIVE/SENSE Control	282'h	Not Used	Not Used	Not Used	Not Used	Global SENSE	Global DRIVE	DRIVE Input Select				
SENSE Connection	300'h	Not Used	Drive Level	PowerOn State	Address of Output Port Connection to SENSE							
Temperature Sensor	28B'h	Not Used	Not Used	Not Used	Current Chip Temperature				Alarm Threshold Temperature			
Global Input Channel Configuration	283'h	Not Used	Global Clear for Equalization		Global Set for Equalization							
Individual Input Channel Configuration	$\begin{gathered} \text { 600'h - } \\ 647 \text { 'h } \end{gathered}$	Not Used	Not Used	Scan State	Equalization State		Drive Input Connection State		Drive Input Source Select			
PRBS Generator Configuration	284'h	Not Used	PRBS Control	PRBS Pattern Length Control		Invert Pattern	Invert Clock					
PRBS Receiver/ Error Detector Configuration	285'h	Not Used	Not Used	Not Used	Receiv er Control	Receiver Pattern Length Control		Input Pattern	$\begin{aligned} & \text { Detec- } \\ & \text { tor } \\ & \text { Reset } \end{aligned}$	Detection Pattern Length Control		Error Run Length

Table 4. VSC3139 Register Map (continued)

Register Name	ADDR[10:0]	DATA[10:0]										
		Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRBS Receiver/ Error Count Read	$\begin{aligned} & 286 \text { 'h=LS } \\ & \text { Byte } \\ & 287 \text { 'h=M } \\ & \text { SByte } \end{aligned}$	Not Used	Not Used	Not Used	Error Count							
PRBS Error Status	288'h	Not Used	Pattern Search	Count Period	Error Flag							
Global Output Level Control	28A'h	Not Used	Output Level HIGH	Output Level Nominal								
Individual Output Level Control	$\begin{aligned} & 400^{\prime} h- \\ & 447 \text {-h } \end{aligned}$	Not Used	Override Value	Output Override	Output Control	Output Status						
Boundary Scan Control	289'h	Not Used	Not Used	Not Used	Glob	verride	$\begin{aligned} & \text { Glob } \\ & \mathrm{O} \end{aligned}$	utput de	Not Used	Not Used	Not Used	Latch Input
User Status	$\begin{gathered} 28 C^{\prime} \mathrm{h} \\ 28 \mathrm{~F} \text { - } \end{gathered}$	Storage Registers for Transfer Between Primary and Secondary Ports										

Registers

Switch Setup and Configuration

Register 1: Switch Setup

Reg Name: Reg Type: Description:	Switch Setup R/W Configuration for various modes of operation.	Reg. Address:	280'h	
Bit(s)	Bit Description		Reset Value	R/W
10-4	Not used			
3	Input pin or software control for CONFIG $0=$ Use input pin for CONFIG control 1 = Use register for CONFIG control		0	R/W
2	Input pin or software control for INIT $0=$ Use input pin for INIT control 1 = Use register for INIT control		0	R/W
1	CONFIG lockout $0=$ CONFIG function enable $1=$ CONFIG function disable (overrides bit 3)		0	R/W
0	$\overline{\text { INIT }}$ lockout $0=\overline{\text { INIT }}$ function enable $1=\overline{\text { INIT }}$ function disable (overrides bit 2)		0	R/W

$\overline{\text { INIT }}$ Lockout

In order to prevent accidental reprogramming of the switch interconnects, the VSC3139 programming interface provides the option of disabling this feature through software. Setting this bit in the Switch Setup register to a 1 will inhibit the use of either the external $\overline{\text { INIT }}$ pin or the $\overline{\text { INIT }}$ bit in the Switch Configuration register from reprogramming the interconnects.

On power-up, this bit is 0 and $\overline{\mathrm{INIT}}$ is enabled.

CONFIG Disable

In order to prevent accidental reprogramming of the switch interconnects, the VSC3139 programming interface provides the option of disabling the CONFIG feature using the software. Setting the CONFIG bit in the Setup register to a 1 inhibits the use of either the external CONFIG pin or the CONFIG bit in the Control register from reprogramming the interconnects.

On power-up, this bit is 0 ; CONFIG is enabled.

Register 2: Switch Configuration

Reg Name: Reg Type: Description:	Switch Configuration Reg. Address: R/W Provides access to features and external pin functions via the programming inter value and reading returns the current settings.	$281 \text { 'h }$ ce. Writing up	s the
Bit(s)	Bit Description	Reset Value	R/W
10-8	Not used		
7	Secondary access port enable 0 = Disable secondary access port 1 = Enable secondary access port	0	R/W
6	Not Used		
5	Address stripping mode select 0 = Standard address mode 1 = Address stripping mode	0	R/W
4	Staging readback select $0=$ Read present switch configuration 1 = Read pending switch configuration	0	R/W
3	Save User INIT The rising edge of the signal stores the user programmed switch configuration in the user programming registers	0	R/W
2	User INIT programming $0=$ Straight-through configuration upon INIT asserted LOW 1 = User programmed switch configuration upon INIT asserted LOW, stored using bit 3 of this register	0	R/W
1	Software programmable CONFIG $0=$ CONFIG LOW when bit 3 of Switch Setup register, address 280^{\prime} h, is 1 1 = CONFIG HIGH when bit 3 of Switch Setup register, address $280^{\prime} \mathrm{h}$, is 1	0	R/W
0	Software programmable TNIT $0=\overline{\text { INIT }}$ active when bit 3 of Switch Setup register, address $280^{\prime} \mathrm{h}$, is 1 $1=\overline{\text { INIT }}$ inactive when bit 3 of Switch Setup register, address $280^{\prime} \mathrm{h}$, is 1	0	R/W

CONFIG and INIT

The functionality of the CONFIG and $\overline{\text { INIT }}$ pins is duplicated in the two LSBs of the Control register. Writing to either of these bits has the same effect as driving the external pins to the same value. These bits are multiplexed with the external pins through logic and initialize to the state that uses the external pins. The states are therefore mutually exclusive. In order to pulse CONFIG or $\overline{\mathrm{INIT}}$, write an active signal and then an inactive signal to the register bit of interest. Holding CONFIG HIGH causes the programming to be active upon asserting load. Holding INIT LOW locks the initial programming configuration, whether it be the straight through or the user-defined configuration, as set by bit 2 of the Switch Configuration register.

Staging Register Readback

When the CONFIG control is used to accumulate a number of program steps and execute them simultaneously, it is possible to verify the pending switch programming prior to asserting the CONFIG control. Setting the staging readback pin to a 1 and reading the programming information from the switch returns configuration information about the pending switch programming rather than the current connections.

If CONFIG is 1 , all programming propagates directly to the switch matrix, and the information returned during a readback is the same regardless of the setting of the Staging register readback bit.

Save User INIT

The VSC3139 provides an alternate set of user-programmable registers that can save and recall the current programming of the staging registers. The programming information in these registers is activated with the $\overline{\mathrm{INIT}}$ control.

When the Save User $\overline{\text { INIT }}$ bit is set to 0 , the current programming held in the staging registers is transferred into the User Programming registers. Asserting the Save User bit (1) latches the programming information for future use. This switch programming may be recalled by asserting the User INIT bit (see below).

The Save User $\overline{\overline{N N I T}}$ bit in the Control register saves the current programming of the VSC3139 switch into the User Programming register(s). The values in the User Programming register(s) are retained until the Save User INIT bit is set to 0 or until power to the device is removed. If the Save User INIT bit is asserted while the User $\overline{\text { INIT }}$ Programming bit is 1 , the switch assumes an undefined configuration. On power-up, these registers are in an unknown state.

User INIT

Asserting the Save User $\overline{\overline{N N I T}}$ bit in the Switch Configuration register, address 281 'h, selects the User Programming registers as the source for switch programming with the $\overline{\text { INIT }}$ control. With this bit set, if the $\overline{\text { INIT }}$ pin or bit is asserted, the switch is programmed to reflect the switch connections saved in the User Programming registers.
Because the User $\overline{\text { INIT }}$ feature is used in conjunction with the $\overline{\text { INIT }}$ bit or pin, it can also be disabled using the $\overline{\text { INIT }}$ Lockout bit in the Switch Setup register, address 280^{\prime} h.
When activated, the User INIT Programming bit makes the programming in the user register available to the switch fabric. However, programming does not take place until the Software Programmable $\overline{\text { INIT }}$ bit or the $\overline{\text { INIT }}$ pin is asserted. Asserting the $\overline{\text { INIT }}$ Lockout bit HIGH inhibits any programming of the switch fabric using either the normal or user $\overline{\text { NITT }}$ registers.

To read back programming information from the User Memory, both the Staging Readback and the User INIT Programming bit must be set. In this configuration, any information read from a specific output represents the programming stored in the User Memory.

Switch Connection Register

Table 5. Switch Array Connection Examples

Output ADDR[10:0]	Input ADDR[10:0]	Description	Reset Value ${ }^{(1)}$	R/W
0000000000'b	0000000000'b	Program output Y0 to input A0	7FF	R/W
0000000001 'b	0000000000'b	Program output Y1 to input A0	7FF	R/W
0000000010'b	0000000000'b	Program output Y2 to input A0	7FF	R/W
0000000011'b	0000000000’b	Program output Y3 to input A0	7FF	R/W
0000000100’b	0000000000'b	Program output Y4 to input A0	7FF	R/W
0000000101'b	0000000000'b	Program output Y5 to input A0	7FF	R/W
.
0001000111 'b	0000000000'b	Program output Y71 to input A0	7FF	R/W
.
0000000000'b	0001000111 'b	Program output Y0 to input A71	7FF	R/W
0000000001'b	0001000111'b	Program output Y1 to input A71	7FF	R/W
0000000010'b	0001000111'b	Program output Y2 to input A71	7FF	R/W
0000000011 'b	0001000111 'b	Program output Y3 to input A71	7FF	R/W
0000000100'b	0001000111'b	Program output Y4 to input A71	7FF	R/W
0000000101 'b	0001000111 'b	Program output Y5 to input A71	7FF	R/W
.
0001000111'b	0001000111'b	Program output Y71 to input A71	7FF	R/W

1. 7FF is the power-down code.

Drive/Sense Control

Register 3: DRIVE/SENSE Control

Register 4: SENSE Connection

Temperature Sensor/Alarm

The VSC3139 has circuitry that detects the approximate temperature of the die and flags temperatures exceeding a user-selected, preset range. Register 5 at address 28B'h allows the user to read the die temperature sensor value (an uncalibrated, approximate temperature), and set a temperature threshold at which to assert an alarm.

There are 15 , read only temperature ranges for the sensor, and 15 alarm threshold settings.
When the detected die temperature exceeds the user-set threshold, the temperature alarm is asserted.

Register 5: Temperature Sensor

Reg Name: Reg Type: Description:	Temperature Sensor Reg. Address: R/W User-controllable on-board temperature sensing function.	28B'h	
Bit(s)	Bit Description	Reset Value	R/W
10-8	Not used		
7-4	Approximate die temperature (not a calibrated value) $\begin{aligned} & 0000=23^{\circ} \mathrm{C} \text { to } 41^{\circ} \mathrm{C} \\ & 0001=33^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \\ & 0010=42^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \\ & 0011=52^{\circ} \mathrm{C} \text { to } 69^{\circ} \mathrm{C} \\ & 0100=61^{\circ} \mathrm{C} \text { to } 78^{\circ} \mathrm{C} \\ & 0101=70^{\circ} \mathrm{C} \text { to } 88^{\circ} \mathrm{C} \\ & 0110=80^{\circ} \mathrm{C} \text { to } 97^{\circ} \mathrm{C} \\ & 0111=89^{\circ} \mathrm{C} \text { to } 106^{\circ} \mathrm{C} \\ & 1000=98^{\circ} \mathrm{C} \text { to } 116^{\circ} \mathrm{C} \\ & 1001=108^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 1010=117^{\circ} \mathrm{C} \text { to } 135^{\circ} \mathrm{C} \\ & 1011=127^{\circ} \mathrm{C} \text { to } 144^{\circ} \mathrm{C} \\ & 1100=136^{\circ} \mathrm{C} \text { to } 153^{\circ} \mathrm{C} \\ & 1101=145^{\circ} \mathrm{C} \text { to } 163^{\circ} \mathrm{C} \\ & 1110=155^{\circ} \mathrm{C} \text { to } 172^{\circ} \mathrm{C} \\ & 1111=164^{\circ} \mathrm{C} \text { to } 181^{\circ} \mathrm{C} \end{aligned}$		Read Only
3-0	Temperature alarm threshold $\begin{aligned} & 0000=23^{\circ} \mathrm{C} \text { to } 41^{\circ} \mathrm{C} \\ & 0001=33^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \\ & 0010=42^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} \\ & 0011=52^{\circ} \mathrm{C} \text { to } 69^{\circ} \mathrm{C} \\ & 0100=61^{\circ} \mathrm{C} \text { to } 78^{\circ} \mathrm{C} \\ & 0101=70^{\circ} \mathrm{C} \text { to } 88^{\circ} \mathrm{C} \\ & 0110=80^{\circ} \mathrm{C} \text { to } 97^{\circ} \mathrm{C} \\ & 0111=89^{\circ} \mathrm{C} \text { to } 106^{\circ} \mathrm{C} \\ & 1000=98^{\circ} \mathrm{C} \text { to } 116^{\circ} \mathrm{C} \\ & 1001=108^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 1010=117^{\circ} \mathrm{C} \text { to } 135^{\circ} \mathrm{C} \\ & 1011=127^{\circ} \mathrm{C} \text { to } 144^{\circ} \mathrm{C} \\ & 1100=136^{\circ} \mathrm{C} \text { to } 153^{\circ} \mathrm{C} \\ & 1101=145^{\circ} \mathrm{C} \text { to } 163^{\circ} \mathrm{C} \\ & 1110=155^{\circ} \mathrm{C} \text { to } 172^{\circ} \mathrm{C} \\ & 1111=164^{\circ} \mathrm{C} \text { to } 181^{\circ} \mathrm{C} \end{aligned}$	00	R/W

Input Configuration

The following registers are used to configure the properties of the high-speed data inputs. The two primary properties that can be set for the inputs are the Input Signal Equalization (ISE) and the Drive assignment. These properties can be set both globally and individually on a per input basis. When a property is set globally, it affects the setting for all inputs without exception. When a bit is set in the global registers, that state overrides any attempts to change the setting on an individual basis. It forces the global setting until the bit in the global register is cleared.

The Individual Input Configuration registers also serve a function that is not available in the global registers; the Scan register table. Bit 8 of each Individual Input Configuration register reflects the latched state of the associated highspeed input at the time that bit 0 of register 14 is set to 1 .

Register 6: Global Input Channel Configuration

Reg Name: Reg Type: Description:	Global Input Channel Configuration Reg. Address: R/W Global input channel configuration control.	283'h	
Bit(s)	Bit Description	Reset Value	R/W
10-4	Not used		
3-2	Global clear for ISE setting. $00=$ bits 6 and 7 of Individual Input Configuration registers are writeable $01=$ bit 6 of all Individual Input Configuration registers forced to 0 $10=$ bit 7 of all Individual Input Configuration registers forced to 0 $11=$ bits 6 and 7 of all Individual Input Configuration registers forced to 0	00	R/W
1-0	Global set for ISE setting. $00=$ bits 6 and 7 of Individual Input Configuration registers are writeable $01=$ bit 6 of all Individual Input Configuration registers forced to 1 $10=$ bit 7 of all Individual Input Configuration registers forced to 1 $11=$ bits 6 and 7 of all Individual Input Configuration registers forced to 1	00	R/W

Register 7: Individual Input Channel Configuration

Reg Name: Reg Type: Description:	Individual Input Channel Configuration Reg. Address: R/W Individual input channel configuration control.	$\begin{gathered} 600^{\prime} \mathrm{h}=\mathrm{A0} \\ 601 \text { 'h }=\mathrm{A} 1 \\ \circ \\ 647{ }^{\circ} \mathrm{h}=\mathrm{A} 71 \end{gathered}$	
Bit(s)	Bit Description	Reset Value	R/W
10-9	Not used		
8	$\mathrm{A}[0: 71]$ scan register table (values latched using register 14, bit 0 .		
7-6	ISE setting. $00=$ ISE disabled 01 = low ISE $10=$ medium ISE 11 = high ISE	00	
5-4	DRIVE input connection state. $00=$ maintains current connection state $01=$ activates connection to DRIVE input as selected by bits 3 through 0 $10=$ removes DRIVE connection to input 11 = maintains current connection state	00	R/W
3-0	DRIVE input source select. $0000=$ input channel connected to DRIVE input	0'h	R/W

PRBS CONTROL

The PRBS Generator/Detector is capable of generating and detecting four NRZ patterns: $2^{7}-1,2^{9}-1,2^{10}-1$, and $2^{11}-1$. The main purpose of PRBS Generator/Detector is to be used for switch diagnostics and signal tracing. See the block diagram of the PRBS Generator in Figure 1 on page 5. The data rate of the Generator/Detector is determined by the external clock signal to a maximum $400 \mathrm{Mb} / \mathrm{s}$. The PRBS output data is clocked on the rising edge of the clock. The PRBS function controls are located in the PRBS Configuration register 0x 284^{\prime} h. The PRBS Generator is enabled by writing 1 into bit 4 of register $0 \times 284^{\prime}$ h. Pattern length is selected via register $0 \times 284^{\prime}$ h bit 3 and 2 . Selecting 00 will generate pattern $2^{7}-1,01=2^{9}-1,10=2^{10}-1,11=2^{11}-1$. It is possible to invert the pattern by writing 1 into register 0×284 'h bit 1 .

The PRBS Detector uses the same clock as the Generator. See the block diagram of the PRBS Detector in Figure 2 on page 5.

The clock used by the Detector can be inverted by setting bit 0 of register 284 'h to 1 . It may be necessary to invert CLK in order to compensate for the phase difference between data input and clock.

The PRBS Detector is enabled by writing a 1 into bit 4 of register $285^{\prime} \mathrm{h}$. The detector pattern length is selected by bit 6 and bit 5 of register 0×285 ' h, respectively, 00 represents pattern $2^{7}-1,01=2^{9}-1,10=2^{10}-1,11=2^{11}-1$. The error counter is not enabled until the pattern detector matches the pattern coming into the Detector. It can take up to 30 clock cycles to match the pattern, and once the pattern has been detected, bit 2 of register 288 ' h goes to 1 . This enables the error counter and fixed_error_count counter. The user has an option to choose the error count period by setting bits 2 and 1 of register 285^{\prime}. Respectively, bits 2 and 1 represent the following count lengths: $00=2^{7}, 01=2^{9}$, $10=2^{11}, 11=2^{15}$. When any one of the above periods is selected, error count will continue until that period has elapsed. At that time, the error counter is disabled and the fixed_error_count flag will be set to 1 in register 288 'h bit 1.

If the errors_detected flag in register 288 'h bit 0 is set to 1 , it means that during above set time period, errors occurred and the user can read the error count from registers $267^{\prime} \mathrm{h}$ and $287^{\prime} \mathrm{h}$. After the error count has been read, the error counter can be reset by setting bit 3 of register 285 'h to 0 . Upon reset, the error counter, errors_detected, and fixed_error_count counter will be set to 0 . If the user is not interested in setting any of the above count periods, it is possible to overwrite them by setting bit 0 of register 285 ' h to 0 . This will provide a free-running error count without a predetermined count period. It should be noted though, if error count period is not set, and if number of errors exceed 65535 (counter overflow), the error counter will restart count from 0 . It is possible to invert the PRBS pattern that is coming into pattern detector by asserting 1 in register $285^{\prime} \mathrm{h}$ bit 4 . This can be used to detect an inverted pattern from the PRBS Generator.

Register 8: PRBS Generator Configuration

Reg Name: Reg Type: Description:	PRBS Generator/Detector Configuration Reg. Address: R/W Configures the operating mode of the on-board PRBS Generator/Detector.	284'h	
Bit(s)	Bit Description	Reset Value	R/W
10-5	Not used		
4	PRBS Generator enable. 0 = Disable PRBS generator 1 = Enable PRBS generator	0	R/W
3-2	PRBS Generator pattern length selection. $\begin{aligned} & 11=2^{11}-1 \\ & 10=2^{10}-1 \\ & 01=2^{9}-1 \\ & 00=2^{7}-1 \end{aligned}$	00	R/W
1	PRBS output pattern. $0=$ Non-inverted pattern 1 = Inverted pattern	0	R/W
0	PRBS Error Detector clock phase selection (to correct for timing skews). $0=$ Non-inverted clock phase 1 = Inverted clock phase	0	R/W

Register 9: PRBS Error Status

Reg Name: Reg Type: Description:	PRBS Error Status R/W Report error status from the on-board PRBS detector.	Reg. Address: $\quad 288^{\prime} h$	288'h
Bit(s)	Bit Description	Reset Value	R/W
10-3	Not used		
2	Error Detector search status $0=$ Error Detector has not locked onto a valid PRBS pattern $1=$ PRBS pattern detected. Detector is counting errors.	0	Read Only
1	Error count period indicator (not valid if register 10, bit $0=0$) $0=$ Fixed error count period has not yet been completed 1 = Fixed error count period has been completed	0	Read Only
0	Error flag bit (reset when read) $0=$ No errors detected since last reset 1 = Errors detected since last reset	0	Read Only

Register 10: PRBS Receiver/Error Detector Configuration

Reg Name: Reg Type: Description:	PRBS Receiver/Error Detector Configuration Reg. Address: R/W Configures the operating mode of the on-board PRBS receiver/error detector	$285 ’ h$	
Bit(s)	Bit Description	Reset Value	R/W
10-8	Not used		
7	PRBS receiver enable 0 = Disable PRBS 1 = Enable PRBS detector	0	R/W
6-5	Select receiver/error detector pattern length (to match PRBS generator) $\begin{aligned} & 11=2^{11}-1 \\ & 10=2^{10}-1 \\ & 01=2^{9}-1 \\ & 00=2^{7}-1 \end{aligned}$	00	R/W
4	PRBS input pattern $0=$ Non-inverted PRBS input 1 = Inverted PRBS input	0	R/W
3	Error detector reset 0 = Resets error count 1 = Enables error count	0	R/W
2-1	Error counter length control (dependent on bit 0) $\begin{aligned} & 11=2^{15}-1 \\ & 10=2^{11}-1 \\ & 01=2^{9}-1 \\ & 00=2^{7}-1 \end{aligned}$	00	R/W
0	Error detection run length $0=$ No stop length, free running error detection $1=$ Run and stop at count length	0	R/W

Register 11: PRBS Error Count Read

Reg Name:	PRBS Error Count Read	Reg. Address:	$\begin{aligned} & 286^{\prime} \mathrm{h}=\text { LSB Reg } \\ & 287^{\prime} \mathrm{h}=\mathrm{MSB} \text { Reg } \end{aligned}$	
Reg Type:	R/W			
Description:	Provides Error Count report.			
Bit(s)	Bit Description		Reset Value	R/W
10-8	Not used			
7-0	Number of errors since start of count or last reset.		00'h	Read only

Programmable Output Drive Levels

Two output drive levels can be set using the Output Level Control register. Output drive level can be controlled both globally and on a per-channel basis through either the primary programming port or the Secondary Access Port. If both HIGH and LOW output bits are enabled simultaneously, LOW output level mode takes precedence.

Register 12: Global Output Level Control

Reg Name: Reg Type: Description:	Global Output Level Control Reg. Address: R/W Enables global output high drive/nominal drive mode.	28A'h	
Bit(s)	Bit Description	Reset Value	R/W
10-8	Not used		
7-4	Internal use only		
3-2	Not used		
1	High output level mode $0=$ No change 1 = Force all outputs to high drive mode	0	R/W
0	Low output level mode $0=$ No change 1 = Force all outputs to nominal drive mode	0	R/W

Register 13: Individual Output Level Control

Reg Name: Reg Type: Description:	Individual Output Level Control Reg. Address: R/W Enables individual output high drive/nominal drive mode.	$\begin{aligned} & 400^{\prime} \mathrm{h}=\mathrm{Y} 0 \\ & 401^{\prime} \mathrm{h}=\mathrm{Y} 1 \\ & \text { to } \\ & 447{ }^{\prime} \mathrm{h}=\mathrm{Y} 71 \end{aligned}$	
Bit(s)	Bit Description	Reset Value	R/W
10-9	Internal use only	00	
8-4	Not used		
3	Override output value $0=$ Force the addressed Y output value to 0 when bit 2 is HIGH 1 = Force the addressed Y output value to 1 when bit 2 is HIGH	0	R/W
2	Output override mode (boundary scan support) control 0 = Disable output override mode 1 = Enable output override mode. Y output forced to value stored in bit 3 of this register	0	R/W
1	Individual output level control 0 = Set output level nominal 1 = Set output level HIGH	0	R/W
0	Individual output status $0=\mathrm{Y}$ output OFF $1=\mathrm{Y}$ output ON	0	Read Only

Boundary Scan Support

The VSC3139 has provisions for sampling the current state of the high-speed data inputs, as well as driving the highspeed data outputs with a static value.

To reduce power consumption, the input buffers for the boundary scan are powered off after reset. Prior to using the Scanning feature, these buffers must be energized by setting bit 1 of the Boundary Scan Control register to 1 . Once the boundary scan input feature is no longer in use, this bit can once again be set to 0 to reduce power consumption.

Sampling of the high-speed data inputs is triggered by writing a 1 to bit 0 of the Boundary Scan Control register. This bit is self-clearing; it does not need to be cleared prior to the next operation, as it returns a 0 when read. This operation latches the current value of the high-speed inputs into bit 8 of each respective Input Channel Configuration register ($600^{\prime} \mathrm{h}-647^{\prime} \mathrm{h}$). These registers can be read one by one to determine the state of each input.
Access to the high-speed output scan support is through bits 2 and 3 of the Individual Output Level Control register (400 'h -447 'h). Setting bit 2 HIGH enables the Scan drive for the output associated with the selected Output Level Control register. Once enabled, bit 3 of the Individual Output Level Control register determines the value of the highspeed data output.

Alternatively, all of the scan outputs can be enabled with a single instruction using the Boundary Scan Control register. Setting bit 5 of the Boundary Scan Control register simultaneously enables the Scan drive of all outputs. Writing a 1 to bits 6 or 7 drives either a 0 or a 1 , respectively, on all outputs. These bits are not self-clearing. Because of this, writing a 1 to bit 4 of the Scan Support register inhibits the Scan support programming until it is cleared. This bit overrides any programming in the Output Level Control registers.

Register 14: Boundary Scan Control

Reg Name: Reg Type: Description:	Boundary Scan Control Reg. Address: R/W Controls the operating mode of the Boundary Scan function.	289'h	
Bit(s)	Bit Description	Reset Value	R/W
10-8	Not used		
7	Global override output value set HIGH $0=$ No change 1 = Force all override output values (bit 3 in individual output level control registers) to 1 . When scan mode is enabled, all outputs are forced to 1 .	0	R/W
6	Global override output value set LOW $0=$ No change 1 = Force all override output values (bit 3 in individual output level control registers) to 0 . When scan mode is enabled, all outputs are forced to 0 .	0	R/W
5	Global output override/scan mode enable $0=$ No change 1 = Force all outputs into override/scan mode (bit 2 in the individual output control registers) to 1. Enables scan mode on all outputs (Y0 through Y71).	0	R/W
4	Global output override/scan mode disable $0=$ No change 1 = Disables override/scan mode on all outputs (Y0 through Y71). Equivalent of writing 0 to bit 2 of all individual output control registers.	0	R/W
3-2	Not used		
1	Boundary scan input enable $0=$ Boundary scan inputs disabled 1 = Boundary scan inputs enabled	0	R/W
0	Input state latch $0=$ No change $1=$ Triggers latch of input state (A0 through A71). Self-clearing.	0	W

Register 15: User Status

Reg Name: Reg Type: Description:	User Status Reg. Address R/W Enables information exchange between primary and secondary ports/display user	28C'h throug 28F'h tus.	
Bit(s)	Bit Description	Reset Value	R/W
7-0	Registers for user status or information transfer between primary and secondary ports.	00'h	R/W

Electrical Specifications

AC Characteristics

(Over Recommended Operating Conditions unless stated otherwise)

Table 6. High-Speed Inputs (A, $\overline{\mathrm{A}}$)

Symbol	Parameter	Min	Typ	Max	Units	Condition
DR $_{\text {A }}$	Serial NRZ Input Data Rate			3.6	$\mathrm{~Gb} / \mathrm{s}$	Minimum data rate will be limited by the AC-coupling capacitor value (if AC-coupled)
t $_{\text {PD_AY }}$	Propagation Delay from any A input to any Y output		1		ns	
$\mathrm{t}_{\text {SKEW }}$	Output Channel to channel Delay Skew			40	ps	Across striping group
$\mathrm{t}_{\text {R_A }}, \mathrm{t}_{\text {F_A }}$	Serial Data Input Rise and Fall Times		100	150	ps	20% to 80%. See Figure 4.

Table 7. High-Speed Data Outputs $(\mathbf{Y}, \overline{\mathbf{Y}})$

Symbol	Parameter	Min	Typ	Max	Unit	Condition
DR_{Y}	Serial NRZ Output Data Rate			3.6	Gb/s	Minimum data rate will be limited by the AC-coupling capacitor value (if AC-coupled)
$\mathrm{t}_{\text {__rms }}$	Serial Output Data added delay jitter: rms ${ }^{(1,2)}$			10	ps	20 to 80%. See Figure 4. With 50Ω to $V_{C C}$.
$\mathrm{t}_{\mathrm{Jp}-\mathrm{p}}$	Serial Output Data added delay jitter: peak-peak ${ }^{(1,2)}$			40	ps	20 to 80%. See Figure 4. With 50Ω to $V_{C C}$.
$t_{R_{-} Y}, t_{F_{-} Y}$	Serial Output Data Rise and Fall Times		80	120	ps	20 to 80%. See Figure 4. With 50Ω to V_{CC}.
DC_{Y}	Serial Data Output Duty Cycle	40	50	60	\%	Only relevant with 101010 input data patterns. $0.1 \mu \mathrm{~F}$ coupling capacitor with 50Ω to V_{CC}.

1. Guaranteed by design, but not tested.
2. Broadband (unfiltered) deterministic jitter added to a jitter free input: $2^{23}-1$ PRBS data pattern.

If used differentially (true and complement), each signal should meet the requirements for $a=b=V_{A _D E}$. See Table 7 . If used single-ended (true only), the value required is $\mathrm{a}=2 \times \mathrm{V}_{\mathrm{A}-\mathrm{DE}}$.

Figure 4. Parametric Measurement Setup

Table 8. Program Interface ${ }^{1}$

Symbol	Parameter	Min	Typ	Max ${ }^{2}$	Unit
$\mathrm{t}_{\mathrm{sPS}}$	Setup time from PARALLEL/ $\overline{\text { SERIAL }}$ selection to $\overline{\mathrm{CS}}$ falling edge	2			ns
$\mathrm{t}_{\mathrm{s}} \overline{\mathrm{CS}}$	Setup time from falling edge of $\overline{\mathrm{CS}}$ to falling edge of ALE	3			ns
$\mathrm{t}_{\text {sALE }}$	Setup time from ADDR[10:0] stable to falling edge of ALE	3			ns
$t_{\text {haLE }}$	Hold time for ADDR[10:0] after falling edge ALE	3			ns
$\mathrm{t}_{\text {pwALE }}$	High pulse width for ALE	4			ns
$\mathrm{t}_{\mathrm{pwIV}} \overline{\mathrm{RD}}$	Pulse width for $\overline{\mathrm{RD}}$ low	22			ns
$\mathrm{t}_{\text {pwhRD }}$	Pulse width for $\overline{\mathrm{RD}}$ high	8			ns
$\mathrm{t}_{\mathrm{h} \overline{\mathrm{RD}}}$	Hold time for DATA[10:0] after rising edge of $\overline{\mathrm{RD}}$	3			ns
$\mathrm{t}_{\mathrm{pwl}} \overline{\mathrm{WR}}$	Pulse width low of $\overline{W R}$	4			ns
$\mathrm{t}_{\mathrm{s}} \overline{\mathrm{WR}}$	Setup time from DATA[10:0] stable to rising edge of $\overline{\mathrm{WR}}$	2.3			ns
$t_{\text {h }} \overline{W R}$	Hold time for DATA[10:0] after rising edge of $\overline{\mathrm{WR}}$	4.7			ns
$\mathrm{t}_{\mathrm{pwh} \overline{W R}}$	Pulse width high of $\overline{\mathrm{WR}}$	8			ns
$\mathrm{t}_{\text {pwCFG }}$	High and low pulse width for CONFIG	8			ns

Table 8. Program Interface ${ }^{1}$ (continued)

Symbol	Parameter	Min	Typ	Max ${ }^{2}$	Unit
$\mathrm{t}_{\text {SCFG }}$	Setup time between rising edge of $\overline{\mathrm{WR}}$ and rising edge of CONFIG (if not permanently tied HIGH)	4.5			ns
thCFG	Hold time for CONFIG before rising edge of $\overline{C S}$	8			ns
$\mathrm{th}_{\text {cS }}$	Hold time for $\overline{\mathrm{CS}}$ after rising edge of $\overline{\mathrm{RD}}$	8			ns
$\mathrm{t}_{\text {sLOAD }}$	Time for LOAD stable before rising edge of SCLK	5			ns
$t_{\text {hLoAd }}$	Time to hold LOAD stable after rising edge of SCLK	5			ns
$\mathrm{t}_{\text {pwhLoad }}$	Time to hold LOAD stable after rising edge of SCLK	14		18	ns
$\mathrm{t}_{\text {sSDIN }}$	Time for SDIN stable before rising edge of SCLK	5			ns
$\mathrm{t}_{\text {hSDIN }}$	Time to hold SDIN stable after rising edge of SCLK	5			ns
$\mathrm{t}_{\text {s }}$ SERIAL	Time for PARALLEL/SERIAL stable before falling edge of $\overline{\mathrm{CS}}$	5			ns
$\mathrm{t}_{\text {s }}$ 配	Time for $\overline{\mathrm{RD}}$ stable before rising edge of SCLK	5			ns
$\mathrm{t}_{\text {pwh }}{ }^{\text {RD }}$	Time to hold $\overline{\mathrm{RD}}$ stable after rising edge of SCLK	26			ns
$\mathrm{t}_{\text {dSDOUT }}$	Delay for SDOUT valid after rising edge of SCLK			10	ns
$\mathrm{t}_{\text {hSDOUT }}$	Time for SDOUT valid after rising edge of SCLK	2			ns
$\mathrm{t}_{\text {perSCLK }}$	Period of SCLK	14			ns
$\mathrm{t}_{\text {DRVN }}$	Time required for ADDR/DATA bus to change direction	3			ns
$\mathrm{t}_{\text {VALID }}$	Time until data valid after falling $\overline{\mathrm{RD}}$	20			ns
$\mathrm{t}_{\text {sSecSDIN }}$	Setup time for SDIN to rising edge of SecSCLK	20			ns
$t_{\text {hSecSDIN }}$	Hold time for SDIN from rising edge of SecSCLK	25			ns
$\mathrm{t}_{\text {sSecWrite }}$	Setup time for SecWrite rising edge to rising edge of SecSCLK	20			ns
$\mathrm{t}_{\text {hSecWrite }}$	Hold time for SecWrite from rising edge of SecSCLK	34			ns
$\mathrm{t}_{\text {wSecWrite }}$	Pulse width of SecWrite	54		73	ns
$\mathrm{t}_{\text {sSecRead }}$	Setup time for SecRead rising edge to rising edge of SecSCLK	20			ns
$t_{\text {hSecRead }}$	Hold time for SecRead from rising edge of SecSCLK	34			ns
$\mathrm{t}_{\text {wSecRead }}$	Pulse width of SecRead	54			ns
$\mathrm{t}_{\text {pSecSDOUT }}$	Delay to data valid on SecSDOUT from rising edge of SecSCLK	12		62	ns
$\mathrm{t}_{\text {perSecSCLK }}$	Minimum period for SecSCLK	67			ns
$\mathrm{t}_{\text {pHI-Z }}$	Delay time from Sec $\overline{\mathrm{CS}}$ to SecSDOUT active/inactive			20	ns
$\mathrm{t}_{\mathrm{s} \mathrm{Sec} \overline{\mathrm{CS}}}$	Setup time from rising edge of Sec $\overline{C S}$ to SecSCLK in A10	20			ns
$\mathrm{thSec}^{\text {cs }}$	Hold time for Sec $\overline{\mathrm{CS}}$ from rising edge of SecSCLK in SecRead	67			ns

1. Values listed are guaranteed by design, but not tested.
2. Except for $t_{d S e c S D O U T}$, the maximum timing values are dependent on the period of SecSCLK. For every $2 n s$ added to the period of SecSCLK beyond 67ns, add 1 ns to the max values provided.

Figure 5. Parallel Mode Timing

Figure 6. Serial Mode Timing

Figure 7. Parallel Multicast Mode

Figure 8. Serial Multicast Mode

Figure 9. Secondary Access Port Write Timing Diagram

Figure 10. Secondary Access Port Read Timing Diagram
\qquad

DC Characteristics

Specifications are considered to be over recommended operating conditions unless stated otherwise.

Table 9. High-Speed Data Inputs (A, $\overline{\mathbf{A}}$)—Differential CML

Symbol	Parameter	Min	Typ	Max	Unit	Condition
$\mathrm{V}_{\text {A_DE }}$	Voltage Input Swing (Differential Drive)	100		550	$\mathrm{mVp}-\mathrm{p}$	Input signal on both true and complement inputs.
$\mathrm{V}_{\text {ICM }}$	Input Common-Mode Voltage	$\mathrm{V}_{\mathrm{CC}}-0.7$	2	$\mathrm{~V}_{\mathrm{CC}}-0.3$	V	
$\mathrm{R}_{\mathrm{IN} \mathrm{_A}}$	Input Resistance	80	100	120	Ω	Between true and complement Inputs. See Figure 14.

Table 10. High-Speed Data Outputs $(\mathbf{Y}, \overline{\mathrm{Y}}$)—Differential CML

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V out-LD	Serial Data Output Voltage Swing: Low Drive Mode	500	650	800	$\mathrm{mVp}-\mathrm{p}$	Mean p-p differential amplitude between true and complement outputs. With 50Ω to $\mathrm{V}_{\text {CC }}$
V $_{\text {out-HD }}$	Serial Data Output Voltage Swing: High Drive Mode	1000	1300	1600	$\mathrm{mVp}-\mathrm{p}$	Vp-p swing on true and complement outputs. With 50Ω to $\mathrm{V}_{\text {CC }}$
$\mathrm{R}_{\text {out-Y }}$	Back Terminated Output Resistance	40	50	60	Ω	See Figure 14.

Table 11. LVTTL/CMOS Input Signals

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V_{IH}	Input HIGH Voltage	1.7		$\mathrm{~V}_{\mathrm{CCD}}+1.0$	V	$\mathrm{~V}_{\mathrm{CCD}}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	0		0.8	V	$\mathrm{~V}_{\mathrm{CCD}}=2.5 \mathrm{~V} / 3.3 \mathrm{~V}$
I_{IH}	Input HIGH Current			100	$\mu \mathrm{~A}$	
I_{IL}	Input LOW Current	-100			$\mu \mathrm{~A}$	

Table 12. LVTTL/CMOS Output Signals

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CCD}}-0.2$		$\mathrm{~V}_{\mathrm{CCD}}$	V	DC load $<500 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	0		0.2	V	DC load $<2 \mathrm{~mA}$

Table 13. Power Dissipation

Symbol	Parameter	Min	Typ	Max	Unit	Condition
$\mathrm{P}_{\mathrm{D}_{-} \text {LD }}$	Total Power Dissipation: Nominal Drive Mode		9		W	$\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$
$\mathrm{P}_{\mathrm{D}_{-} \mathrm{HD}}$	Total Power Dissipation: High Drive Mode		13		W	$\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$

Recommended Operating Conditions

Table 14. Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V_{CC}	Power Supply Voltage	2.375	+2.5	2.625	V	
$\mathrm{~V}_{\mathrm{CCD}}$	Power Supply Voltage, Programming Port ${ }^{(1)}$		+2.5 or +3.3		V	
T	Operating Temperature ${ }^{(2)}$	0		+85	${ }^{\circ} \mathrm{C}$	

1. All timing specifications and diagrams reflect +3.3 V .
2. Lower limit of specification is ambient temperature and upper limit is case temperature.

Absolute Maximum Ratings

Table 15. Absolute Maximum Ratings

Symbol	Parameter	Min	Typ	Max	Unit	Condition
V_{CC}	Power Supply Voltage, Potential to GND	-0.5		+3.5	V	
	DC Input Voltage Applied (TTL)	-0.5		$\mathrm{~V}_{\mathrm{CC}}+1.0$	V	
	DC Input Voltage Applied (CML)	-0.5		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{I}_{\mathrm{OUT}}$	Output Current	-50		+50	mA	
$\mathrm{~T}_{\mathrm{C}}$	Case Temperature Under Bias ${ }^{(1)}$	-30		+125	${ }^{\circ} \mathrm{C}$	
T_{S}	Storage Temperature	-40		+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {ESD }}$	ESD Voltage (Human Body Model)					
	PRBS data, clock, and device drive input pins	-500		+500	V	
	All other pins	-1000		+1000	V	

1. VSC3139 has passed JESD22-A104 temperature cycling condition G for 1000 cycles.

Stresses listed under Absolute Maximum Ratings may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to the listed values for extended periods may affect device reliability.

ELECTROSTATIC DISCHARGE

This device can be damaged by ESD. Vitesse recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may adversely affect reliabiility of the device.

I/O Equivalent Circuits

Input Termination

Termination resistor pairs are isolated between each input to minimize crosstalk. The termination will self-bias to +2.0 V (nominal) for AC-coupled applications.

All input data must be differential and nominally biased to +2.0 V relative to V_{EE} or AC-coupled. Internal terminations are provided with nominally 50Ω from the true and complement inputs to a common bias point.

Figure 11. Differential AC-Coupled Input Termination

Figure 12. Differential DC-Coupled Input Termination

Output Termination

The high-speed outputs of the VSC3139 are current sinks, internally back-terminated by 50Ω pull-up resistors to the positive supply rail. Typical DC terminations are 50Ω pull-ups to the positive supply rail, 50Ω terminations to +2.0 V , and 100Ω from true to complement.

Data outputs are provided through differential current switches with on-chip 50Ω back-termination. Two drive levels are provided to facilitate power/noise margin optimization on a per-output basis.

Figure 13. High-Speed Output-AC Coupled Terminations

Figure 14. Input and Output Equivalent Circuits

Package Information

Figure 15. Pin Diagram (Top View) for 613 BGA, 33mm $\times 33 \mathrm{~mm}$ (SH)

Figure 16. Pin Diagram (Bottom View) for 613 BGA, 33mm \times 33mm (SH)

Table 16. VSC3139 Pins

Diagram Coordinate	Pin Name	Description
High-Speed Data Inputs		
L24, L23	AO, ANO	High Speed Data Input, Channel A0, AN0 (True, Complement)
P2, P3	A1, AN1	High Speed Data Input, Channel A1, AN1 (True, Complement)
L22, L21	A2, AN2	High Speed Data Input, Channel A2, AN2 (True, Complement)
P4, P5	A3, AN3	High Speed Data Input, Channel A3, AN3 (True, Complement)
K22, K21	A4, AN4	High Speed Data Input, Channel A4, AN4 (True, Complement)
N4, N5	A5, AN5	High Speed Data Input, Channel A5, AN5 (True, Complement)
K24, K23	A6, AN6	High Speed Data Input, Channel A6, AN6 (True, Complement)
N2, N3	A7, AN7	High Speed Data Input, Channel A7, AN7 (True, Complement)
J24, J23	A8, AN8	High Speed Data Input, Channel A8, AN8 (True, Complement)
M2, M3	A9, AN9	High Speed Data Input, Channel A9, AN9 (True, Complement)
J22, J21	A10, AN10	High Speed Data Input, Channel A10, AN10 (True, Complement)
M4, M5	A11, AN11	High Speed Data Input, Channel A11, AN11 (True, Complement)
H22, H21	A12, AN12	High Speed Data Input, Channel A12, AN12 (True, Complement)
L4, L5	A13, AN13	High Speed Data Input, Channel A13, AN13 (True, Complement)
H24, H23	A14, AN14	High Speed Data Input, Channel A14, AN14 (True, Complement)
L2, L3	A15, AN15	High Speed Data Input, Channel A15, AN15 (True, Complement)
G24, G23	A16, AN16	High Speed Data Input, Channel A16, AN16 (True, Complement)
K2, K3	A17, AN17	High Speed Data Input, Channel A17, AN17 (True, Complement)
G22, G21	A18, AN18	High Speed Data Input, Channel A18, AN18 (True, Complement)
K4, K5	A19, AN19	High Speed Data Input, Channel A19, AN19 (True, Complement)
F22, F21	A20, AN20	High Speed Data Input, Channel A20, AN20 (True, Complement)
J4, J5	A21, AN21	High Speed Data Input, Channel A21, AN21 (True, Complement)
F24, F23	A22, AN22	High Speed Data Input, Channel A22, AN22 (True, Complement)
J2, J3	A23, AN23	High Speed Data Input, Channel A23, AN23 (True, Complement)
E24, E23	A24, AN24	High Speed Data Input, Channel A24, AN24 (True, Complement)
H2, H3	A25, AN25	High Speed Data Input, Channel A25, AN25 (True, Complement)
E22, E21	A26, AN26	High Speed Data Input, Channel A26, AN26 (True, Complement)
H4, H5	A27, AN27	High Speed Data Input, Channel A27, AN27 (True, Complement)
C23, D22	A28, AN28	High Speed Data Input, Channel A28, AN28 (True, Complement)
G4, G5	A29, AN29	High Speed Data Input, Channel A29, AN29 (True, Complement)
D24, D23	A30, AN30	High Speed Data Input, Channel A30, AN30 (True, Complement)
G2, G3	A31, AN31	High Speed Data Input, Channel A31, AN31 (True, Complement)
B21, C21	A32, AN32	High Speed Data Input, Channel A32, AN32 (True, Complement)
F2, F3	A33, AN33	High Speed Data Input, Channel A33, AN33 (True, Complement)
C22, D21	A34, AN34	High Speed Data Input, Channel A34, AN34 (True, Complement)
F4, F5	A35, AN35	High Speed Data Input, Channel A35, AN35 (True, Complement)
D20, E20	A36, AN36	High Speed Data Input, Channel A36, AN36 (True, Complement)

Table 16. VSC3139 Pins (continued)

Diagram Coordinate	Pin Name	Description
E4, E5	A37, AN37	High Speed Data Input, Channel A37, AN37 (True, Complement)
B20, C20	A38, AN38	High Speed Data Input, Channel A38, AN38 (True, Complement)
E2, E3	A39, AN39	High Speed Data Input, Channel A39, AN39 (True, Complement)
B19, C19	A40, AN40	High Speed Data Input, Channel A40, AN40 (True, Complement)
D2, D3	A41, AN41	High Speed Data Input, Channel A41, AN41 (True, Complement)
D19, E19	A42, AN42	High Speed Data Input, Channel A42, AN42 (True, Complement)
D4, D5	A43, AN43	High Speed Data Input, Channel A43, AN43 (True, Complement)
D18, E18	A44, AN44	High Speed Data Input, Channel A44, AN44 (True, Complement)
B4, C4	A45, AN45	High Speed Data Input, Channel A45, AN45 (True, Complement)
B18, C18	A46, AN46	High Speed Data Input, Channel A46, AN46 (True, Complement)
B5, C5	A47, AN47	High Speed Data Input, Channel A47, AN47 (True, Complement)
B17, C17	A48, AN48	High Speed Data Input, Channel A48, AN48 (True, Complement)
B6, C6	A49, AN49	High Speed Data Input, Channel A49, AN49 (True, Complement)
D17, E17	A50, AN50	High Speed Data Input, Channel A50, AN50 (True, Complement)
D6, E6	A51, AN51	High Speed Data Input, Channel A51, AN51 (True, Complement)
D16, E16	A52, AN52	High Speed Data Input, Channel A52, AN52 (True, Complement)
D7, E7	A53, AN53	High Speed Data Input, Channel A53, AN53 (True, Complement)
B16, C16	A54, AN54	High Speed Data Input, Channel A54, AN54 (True, Complement)
B7, C7	A55, AN55	High Speed Data Input, Channel A55, AN55 (True, Complement)
B15, C15	A56, AN56	High Speed Data Input, Channel A56, AN56 (True, Complement)
B8, C8	A57, AN57	High Speed Data Input, Channel A57, AN57 (True, Complement)
D15, E15	A58, AN58	High Speed Data Input, Channel A58, AN58 (True, Complement)
D8, E8	A59, AN59	High Speed Data Input, Channel A59, AN59 (True, Complement)
D14, E14	A60, AN60	High Speed Data Input, Channel A60, AN60 (True, Complement)
D9, E9	A61, AN61	High Speed Data Input, Channel A61, AN61 (True, Complement)
B14, C14	A62, AN62	High Speed Data Input, Channel A62, AN62 (True, Complement)
B9, C9	A63, AN63	High Speed Data Input, Channel A63, AN63 (True, Complement)
B13, C13	A64, AN64	High Speed Data Input, Channel A64, AN64 (True, Complement)
B10, C10	A65, AN65	High Speed Data Input, Channel A65, AN65 (True, Complement)
D13, E13	A66, AN66	High Speed Data Input, Channel A66, AN66 (True, Complement)
D10, E10	A67, AN67	High Speed Data Input, Channel A67, AN67 (True, Complement)
D12, E12	A68, AN68	High Speed Data Input, Channel A68, AN68 (True, Complement)
D11, E11	A69, AN69	High Speed Data Input, Channel A69, AN69 (True, Complement)
B12, C12	A70, AN70	High Speed Data Input, Channel A70, AN70 (True, Complement)
B11, C11	A71, AN71	High Speed Data Input, Channel A71, AN71 (True, Complement)
High-Speed Data Outputs		
M22, M21	Y0, YN0	High Speed Data Output, Channel Y0, YN0 (True, Complement)
R4, R5	Y1, YN1	High Speed Data Output, Channel Y1, YN1 (True, Complement)
M24, M23	Y2, YN2	High Speed Data Output, Channel Y2, YN2 (True, Complement)

Table 16. VSC3139 Pins (continued)

Diagram Coordinate	Pin Name	Description
High-Speed Data Outputs (continued)		
R2, R3	Y3, YN3	High Speed Data Output, Channel Y3, YN3 (True, Complement)
N24, N23	Y4, YN4	High Speed Data Output, Channel Y4, YN4 (True, Complement)
T2, T3	Y5, YN5	High Speed Data Output, Channel Y5, YN5 (True, Complement)
N22, N21	Y6, YN6	High Speed Data Output, Channel Y6, YN6 (True, Complement)
T4, T5	Y7, YN7	High Speed Data Output, Channel Y7, YN7 (True, Complement)
P22, P21	Y8, YN8	High Speed Data Output, Channel Y8, YN8 (True, Complement)
U4, U5	Y9, YN9	High Speed Data Output, Channel Y9, YN9 (True, Complement)
P24, P23	Y10, YN10	High Speed Data Output, Channel Y10, YN10 (True, Complement)
U2, U3	Y11, YN11	High Speed Data Output, Channel Y11, YN11 (True, Complement)
R24, R23	Y12, YN12	High Speed Data Output, Channel Y12, YN12 (True, Complement)
V2, V3	Y13, YN13	High Speed Data Output, Channel Y13, YN13 (True, Complement)
R22, R21	Y14, YN14	High Speed Data Output, Channel Y14, YN14 (True, Complement)
V4, V5	Y15, YN15	High Speed Data Output, Channel Y15, YN15 (True, Complement)
T22, T21	Y16, YN16	High Speed Data Output, Channel Y16, YN16 (True, Complement)
W4, W5	Y17, YN17	High Speed Data Output, Channel Y17, YN17 (True, Complement)
T24, T23	Y18, YN18	High Speed Data Output, Channel Y18, YN18 (True, Complement)
W2, W3	Y19, YN19	High Speed Data Output, Channel Y19, YN19 (True, Complement)
U24, U23	Y20, YN20	High Speed Data Output, Channel Y20, YN20 (True, Complement)
Y2, Y3	Y21, YN21	High Speed Data Output, Channel Y21, YN21 (True, Complement)
U22, U21	Y22, YN22	High Speed Data Output, Channel Y22, YN22 (True, Complement)
Y4, Y5	Y23, YN23	High Speed Data Output, Channel Y23, YN23 (True, Complement)
V22, V21	Y24, YN24	High Speed Data Output, Channel Y24, YN24 (True, Complement)
AB2, AB3	Y25, YN25	High Speed Data Output, Channel Y25, YN25 (True, Complement)
V24, V23	Y26, YN26	High Speed Data Output, Channel Y26, YN26 (True, Complement)
AA2, AA3	Y27, YN27	High Speed Data Output, Channel Y27, YN27 (True, Complement)
W24, W23	Y28, YN28	High Speed Data Output, Channel Y28, YN28 (True, Complement)
AD4, AC4	Y29, YN29	High Speed Data Output, Channel Y29, YN29 (True, Complement)
W22, W21	Y30, YN30	High Speed Data Output, Channel Y30, YN30 (True, Complement)
AB4, AA4	Y31, YN31	High Speed Data Output, Channel Y31, YN31 (True, Complement)
Y22, Y21	Y32, YN32	High Speed Data Output, Channel Y32, YN32 (True, Complement)
AB5, AA5	Y33, YN33	High Speed Data Output, Channel Y33, YN33 (True, Complement)
Y24, Y23	Y34, YN34	High Speed Data Output, Channel Y34, YN34 (True, Complement)
AD5, AC5	Y35, YN35	High Speed Data Output, Channel Y35, YN35 (True, Complement)
AA24, AA23	Y36, YN36	High Speed Data Output, Channel Y36, YN36 (True, Complement)
AD6, AC6	Y37, YN37	High Speed Data Output, Channel Y37, YN37 (True, Complement)
AA22, AA21	Y38, YN38	High Speed Data Output, Channel Y38, YN38 (True, Complement)
AB6, AA6	Y39, YN39	High Speed Data Output, Channel Y39, YN39 (True, Complement)
AB22, AB21	Y40, YN40	High Speed Data Output, Channel Y40, YN40 (True, Complement)

Table 16. VSC3139 Pins (continued)

Diagram Coordinate	Pin Name	Description
High-Speed Data Outputs (continued)		
AB7, AA7	Y41, YN41	High Speed Data Output, Channel Y41, YN41 (True, Complement)
AB24, AB23	Y42, YN42	High Speed Data Output, Channel Y42, YN42 (True, Complement)
AD7, AC7	Y43, YN43	High Speed Data Output, Channel Y43, YN43 (True, Complement)
AC23, AD22	Y44, YN44	High Speed Data Output, Channel Y44, YN44 (True, Complement)
AD8, AC8	Y45, YN45	High Speed Data Output, Channel Y45, YN45 (True, Complement)
AD21, AC21	Y46, YN46	High Speed Data Output, Channel Y46, YN46 (True, Complement)
AB8, AA8	Y47, YN47	High Speed Data Output, Channel Y47, YN47 (True, Complement)
AD20, AC20	Y48, YN48	High Speed Data Output, Channel Y48, YN48 (True, Complement)
AB9, AA9	Y49, YN49	High Speed Data Output, Channel Y49, YN49 (True, Complement)
AB20, AA20	Y50, YN50	High Speed Data Output, Channel Y50, YN50 (True, Complement)
AD9, AC9	Y51, YN51	High Speed Data Output, Channel Y51, YN51 (True, Complement)
AB19, AA19	Y52, YN52	High Speed Data Output, Channel Y52, YN52 (True, Complement)
AD10, AC10	Y53, YN53	High Speed Data Output, Channel Y53, YN53 (True, Complement)
AD19, AC19	Y54, YN54	High Speed Data Output, Channel Y54, YN54 (True, Complement)
AB10, AA10	Y55, YN55	High Speed Data Output, Channel Y55, YN55 (True, Complement)
AD18, AC18	Y56, YN56	High Speed Data Output, Channel Y56, YN56 (True, Complement)
AB11, AA11	Y57, YN57	High Speed Data Output, Channel Y57, YN57 (True, Complement)
AB18, AA18	Y58, YN58	High Speed Data Output, Channel Y58, YN58 (True, Complement)
AD11, AC11	Y59, YN59	High Speed Data Output, Channel Y59, YN59 (True, Complement)
AB17, AA17	Y60, YN60	High Speed Data Output, Channel Y60, YN60 (True, Complement)
AD12, AC12	Y61, YN61	High Speed Data Output, Channel Y61, YN61 (True, Complement)
AD17, AC17	Y62, YN62	High Speed Data Output, Channel Y62, YN62 (True, Complement)
AB12, AA12	Y63, YN63	High Speed Data Output, Channel Y63, YN63 (True, Complement)
AD16, AC16	Y64, YN64	High Speed Data Output, Channel Y64, YN64 (True, Complement)
AB13, AA13	Y65, YN65	High Speed Data Output, Channel Y65, YN65 (True, Complement)
AB16, AA16	Y66, YN66	High Speed Data Output, Channel Y66, YN66 (True, Complement)
AD13, AC13	Y67, YN67	High Speed Data Output, Channel Y67, YN67 (True, Complement)
AB15, AA15	Y68, YN68	High Speed Data Output, Channel Y68, YN68 (True, Complement)
AD14, AC14	Y69, YN69	High Speed Data Output, Channel Y69, YN69 (True, Complement)
AD15, AC15	Y70, YN70	High Speed Data Output, Channel Y70, YN70 (True, Complement)
AB14, AA14	Y71, YN71	High Speed Data Output, Channel Y71, YN71 (True, Complement)

Table 16. VSC3139 Pins (continued)

Diagram Coordinate	Pin Name	Description
Power Supply		
A3, A10, A16, A23, C1, C25, G8, G9, G12, G13, G16, G17, H8, H9, H12, H13, H16, H17, J6, J7, J10, J11, J14, J15, J18, J19, K1, K6, K7, K10, K11, K14, K15, K18, K19, K25, L8, L9, L12, L13, L16, L17, M8, M9, M12, M13, M16, M17, N6, N7, N10, N11, N14, N15, N18, N19, P6, P7, P10, P11, P14, P15, P18, P19, R8, R9, R12, R13, R16, R17, T1, T8, T9, T12, T13, T16, T17, T25, U6, U7, U10, U11, U14, U15, U18, U19, V6, V7, V10, V11, V14, V15, V18, V19, W8, W9, W12, W13, W16, W17, Y8, Y9, Y12, Y13, Y16, Y17, AC1, AC25, AE3, AE10, AE16, AE23	VCC	Positive Power Supply, 2.5 volts
A7, A19, F1, G25, N12, N13, P12, P13, W25, Y1, AE7, AE19	VCCD	Positive Power Supply for Programming Interface, 2.5/3.3 volts
A4, A13, A22, B2, B3, B22, B23, B24, C2, C24, D1, D25, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, G6, G7, G10, G11, G14, G15, G18, G19, G20, H6, H7, H10, H11, H14, H15, H18, H19, H20, J8, J9, J12, J13, J16, J17, J20, K8, K9, K12, K13, K16, K17, K20, L6, L7, L10, L11, L14, L15, L18, L19, L20, M6, M7, M10, M11, M14, M15, M18, M19, M20, N1, N8, N9, N16, N17, N20, N25, P8, P9, P16, P17, P20, R6, R7, R10, R11, R14, R15, R18, R19, R20, T6, T7, T10, T11, T14, T15, T18, T19, T20, U8, U9, U12, U13, U16, U17, U20, V8, V9, V12, V13, V16, V17, V20, W6, W7, W10, W11, W14, W15, W18, W19, W20, Y6, Y7, Y10, Y11, Y14, Y15, Y18, Y19, Y20, AB1, AB25, AC2, AC3, AC22, AC24, AD2, AD3, AD23, AD24, AE4, AE13, AE22	VEE	Negative Power Supply, 0 volts
Blanks		
A1, A2, A24, A25, B1, B25, AD1, AD25, AE1, AE2, AE24, AE25	(blank)	No Pin Present
No Connection		
A5, A9, C3, M1, P1, V1, AE5, AE6, AE8, AE9, AE11, AE12	NC	Do Not Connect
Programming Inputs		
AA25	ADDR/DATA0	Address/Data Programming Input [0]
Y25	ADDR/DATA1	Address/Data Programming Input [1]
F25	ADDR/DATA10	Address/Data Programming Input [10]
V25	ADDR/DATA2	Address/Data Programming Input [2]

Table 16. VSC3139 Pins (continued)

Diagram Coordinate	Pin Name	Description
Programming Inputs (continued)		
U25	ADDR/DATA3	Address/Data Programming Input [3]
R25	ADDR/DATA4	Address/Data Programming Input [4]
P25	ADDR/DATA5	Address/Data Programming Input [5]
M25	ADDR/DATA6	Address/Data Programming Input [6]
L25	ADDR/DATA7	Address/Data Programming Input [7]
J25	ADDR/DATA8	Address/Data Programming Input [8]
H25	ADDR/DATA9	Address/Data Programming Input [9]
E25	ALE	Address Latch Enable
AE17	CONFIG	Multiple Reconfiguration Strobe Input, active High
AE14	CSB	Chip Select, active Low
A20	DRIVE	High Speed DRIVE Input (True)
A18	DRIVEB	High Speed DRIVE Input (Complelement)
AE20	INITB	Switch Initialization Input, active Low
A8	OVERTEMP	Over-Temperature Alarm Output, active High
AE15	PARALLEL/ SERIALB	Parallel/Serial Mode Select, High=Parallel programming, Low=Serial programming
U1	PRBS_CLK	PRBS Generator Clock Input (True)
R1	PRBS_CLKB	PRBS Generator Clock Input (Complement)
H1	PRBS_ERRDET	PRBS Error Detector Output, active High
J1	PRBS_IN	PRBS Data Input (True)
L1	PRBS_INB	PRBS Data Input (Complement)
W1	PRBS_OUT	PRBS Data Output (True)
AA1	PRBS_OUTB	PRBS Data Output (Complement)
AE18	RDB	Read Strobe, active Low
A6	RESETB	Reset, active Low
A21	SEC_CSB	Seconday Port Chip Select, active Low
A17	SEC_READ	Seconday Port Read Strobe, active Low
A12	SEC_SCLK	Seconday Port Serial Clock
A14	SEC_SDIN	Seconday Port Serial Data Input
A11	SEC_SDOUT	Seconday Port Serial Data Output
A15	SEC_WRITE	Seconday Port Write Strobe, active High
E1	SENSE	High Speed Data Sense Output (True)
G1	SENSEN	High Speed Data Sense Output (Complement)
AE21	WRB	Write Strobe, active Low

Package Drawing

All dimensions in mm unless otherwise indicated.

Moisture Sensitivity

This device is rated moisture sensitivity level 4 as specified in JEDEC standard IPC/JEDEC J-STD-020B. For more information, see the JEDEC standard.

Ordering Information

Part Number	Description
VSC3139SH	613 BGA, $33 \mathrm{~mm} \times 33 \mathrm{~mm}, 1.27 \mathrm{~mm}$ Ball Pitch

CORPORATE HEADQUARTERS
Vitesse Semiconductor Corporation
741 Calle Plano
Camarillo, CA 93012
Tel: 1-800-VITESSE • FAX:1-(805) 987-5896
For application support, latest technical literature, and locations of sales offices,
please visit our web site at
www.vitesse.com

Copyright © 2002-2003 by Vitesse Semiconductor Corporation

PRINTED IN THE U.S.A

Abstract

Vitesse Semiconductor Corporation ("Vitesse") retains the right to make changes to its products or specifications to improve performance, reliability or manufacturability. All information in this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to change without notice at any time. While the information furnished herein is held to be accurate and reliable, no responsibility will be assumed by Vitesse for its use. Furthermore, the information contained herein does not convey to the purchaser of microelectronic devices any license under the patent right of any manufacturer. Vitesse products are not intended for use in life support products where failure of a Vitesse product could reasonably be expected to result in death or personal injury. Anyone using a Vitesse product in such an application without express written consent of an officer of Vitesse does so at their own risk, and agrees to fully indemnify Vitesse for any damages that may result from such use or sale. Vitesse Semiconductor Corporation is a registered trademark. All other products or service names used in this publication are for identification purposes only, and may be trademarks or registered trademarks of their respective companies. All other trademarks or registered trademarks mentioned herein are the property of their respective holders.

