December 1995 Rev

EL2019C

Fast, High Vollage Comparator with Master Slave Flip-Flop

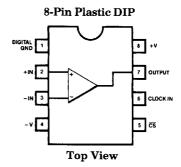
Features

- · Comparator cannot oscillate
- Fast response—5 ns data to clock setup, 20 ns clock to output
- Wide input differential voltage range—24V on ±15V supplies
- Wide input common mode voltage range—±12V
- Precision input stage—
 V_{OS} = 1.5 mV
- Low input bias current—100 nA
- Low input offset current—30 nA
- ± 4.5 V to ± 18 V supplies
- 3 State TTL compatible output
- No supply current glitch during switching
- 103 dB voltage gain (Low input uncertainty ≈ 30 μV)
- 50% power reduction in shutdown mode
- Input and flip-flop remain active in shutdown mode

Applications

- Analog to digital converters
- ATE pin receiver
- Zero crossing detector
- Window detector
- "Go/no-go" detector

Ordering Information


Part No.	Temp. Range	Pkg.	Outline#
EL2019CN	-40°C to +85°C	P-DIP	MDP0006

General Description

The EL2019 offers a new feature previously unavailable in a comparator before—a master/slave edge triggered flip-flop. The comparator output will only change count state after a positive going clock edge is applied. Thus the output can't feed back to the input and cause oscillation. Manufactured with Elantec's proprietary Complementary Bipolar process chis device uses fast PNP and NPN transistors in the signal path. Lunique circuit design gives the inputs the ability to handisplarge common mode and differential mode signals, yet retain ash speed and excellent accuracy. Careful design of the front end insures speed and accuracy when operating with a mix of small and large signals. The three-state output stage is designed to be TTL compatible for any power supply combination, yet it draws a constant current and does not generate current glitches. When the output is disabled, the supply current consumption drops by 50%, but the input stage and master slave flip-flop remain active.

Elantec facilities comply with MIL-I-45208A and other applicable quality specifications. For information on Elantec's processing, see QRA1: Elantec's Processing-Monolithic Products.

Connection Diagrams

2019-

3129557 0005327 659

Fast, High Voltage Comparator with Master Slave Flip-Flop

Absolute Maximum Ratings (TA = 25°C)

Supply Voltage I_{OP} Peak Output Current 50 mA v_{in} Input Voltage $+V_S$ to $-V_S$ I_O Continuous Output Current 25 mA $\Delta V_{\mathbf{IN}}$ Differential Input Voltage Limited only by Operating Temperature Range -40°C to +85°C $\mathbf{T}_{\mathbf{A}}$ Operating Junction Temperature 150°C Power Supplies T_{T}

 $I_{\rm IN}$ Input Current (Pins 1, 2 or 3) \pm 10 mA $T_{\rm ST}$ Storage Temperature -65° C to $+150^{\circ}$ C $I_{\rm INS}$ Input Current (Pins 5 or 6) \pm 5 mA

P_D Maximum Power Dissipation 1.25W

(Note 3 - See Curves)

Important Note

All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore $T_{ij} = T_{C} = T_{A}$.

Test Level	Test Procedure
1	100% production tested and QA sample tested per QA test plan QCX0002.
	100% production tested at $T_A=25^{\circ}C$ and QA sample tested at $T_A=25^{\circ}C$,
	T _{MAX} and T _{MIN} per QA test plan QCX0002.
and the contract of the contra	QA sample tested per QA test plan QCX0002. Parameter is guaranteed (but not tested) by Design and Characterization Data.
	Parameter is guaranteed (but not tested) by Design and Characterization Data. Parameter is typical value at $T_A = 25^{\circ}$ C for information purposes only.

DC Electrical Characteristics $V_S = \pm 15V$, unless otherwise specified

Parameter	Description	Temp		Limits		Test Level	Units	
1 arameter	Description		Min	Тур	Max	1630126761		
v _{os}	Input Offset Voltage	25°C		1.5	6	1	mV	
	$V_{CM} = 0V, V_{O}$ Transition Point	T _{MIN} , T _{MAX}			8	111	mV	
IB	Input Bias Current	25°C		± 100	±400	1	nA	
	$V_{CM} = 0V$, Pin 2 or 3	T_{MIN}, T_{MAX}			±600	Ш	nA	
IOS	Input Offset Current	25°C		30	150	1	пА	
	$V_{CM} = 0V$	T_{MIN}, T_{MAX}			250	111	nA	
CMRR	Common Mode Rejection Ratio (Note 1)	25°C	75	90		1	dВ	
PSRR	Power Supply Rejection Ratio (Note 2)	25°C	75	95		,	dB	
V _{CM}	Common Mode Input	25°C	±12	±13		1	v	
	Range	T _{MIN} , T _{MAX}	±12			Ш	v	
V_{uncer}	Input Uncertainty Range			30		V	μV/RMS	
V _{OL}	Output Voltage Logic Low	25°C	-0.05	0.15	0.4	1	v	
	$I_{OL} = 8 \text{ mA and } I_{OL} = 0 \text{ mA}$	T _{MIN} , T _{MAX}	-0.1		0.4	III	v	
V _{OH}	Output Voltage Logic High						<u>.</u>	
	$V_S = \pm 15V$	25°C	3.5	4.0	4.65	I	V	
	$V_S = \pm 15V$	T_{MIN}, T_{MAX}	3.5		4.65	III	V	
	$V_S = \pm 5V$	25°C	2.4			I	v	
	$V_S = \pm 5V$	T_{MIN}	2.4			III	V	
	$V_S = \pm 5V$	T _{MAX}	2.4			III	v	

3129557 0005328 595 1

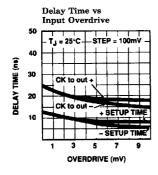
Fast, High Voltage Comparator with Master Slave Flip-Flop

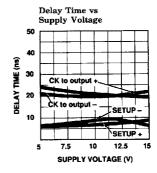
DC Electrical Characteristics $V_S = \pm 15V$, unless otherwise specified — Contd.

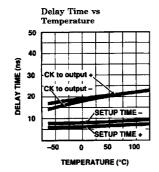
Parameter	Description	Temp		Limits	Test Level	Units	
·		Tomp	Min	Typ	Max	- 1est Levei	Units
V_{ODIS1}	$ m V_{OUT}$ Range, Disabled, $ m I_{OL} = -1~mA$						
	$V_S = \pm 15V$	25°C	4.65			1	v
	$V_S = \pm 15V$	T _{MIN} , T _{MAX}	4.65			111	v
	$V_S = \pm 5V$	25°C		3.65		v	V
V _{ODIS2}	V_{OUT} Range, Disabled, $I_{OL} = +1 \text{ mA}$ $V_{S} = \pm 5V \text{ to } +15V$	All	-0.3	-1		n	v
v_{INH}	Clock or CS Inputs	25°C	2			1	v
	Logic High Input Voltage	T _{MIN} , T _{MAX}	2			III	V
I_{IN}	Clock or CS Inputs	25°C			± 200	1	μΑ
	Logic Input Current $V_{IN} = 0V \text{ and } V_{IN} = 5V$	T _{MIN} , T _{MAX}			± 300	ш	μΑ
v_{INL}	Clock or CS Inputs	25°C			0.8	1	v
	Logic Low Input Voltage	T _{MIN} , T _{MAX}			0.8	III	V
I_{S+EN}	Positive Supply	25°C		8.8	13	1	mA
	Current Enabled	T_{MIN}, T_{MAX}			14	II	mA
I_{S+DIS}	Positive Supply	25°C		4.9	6	I	mA
	Current Disabled	T _{MIN} , T _{MAX}			7	11	mA
I_{S-EN}	Negative Supply	25°C		14.5	17	1	mA
	Current Enabled	T _{MIN} , T _{MAX}			18	11	mA
I _{S-DIS}	Negative Supply	25°C		6.4	8.0	1	mA
	Current Disabled	T _{MIN} , T _{MAX}			8.0	11	mA

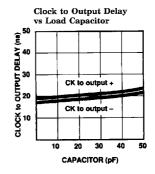
AC Electrical Characteristics $V_S = \pm 15V$, $T_A = 25^{\circ}C$

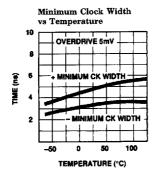
Parameter	Description		Limits	Test Level	TT **	
		Min	Тур	Max	Test Level	Units
T _S	Setup Time 5 mV Overdrive		12	20	11	ns
TH	Hold Time		-3	0	īv	ns
TOPOUT	Clock to Output Delay		20	25	īv	ns
TOPMIN	Minimum Clock Width		7		v	ns
T_{EN}	Output 3-State Enable Delay		40	70	IV	ns
T _{DIS}	Output 3-State Disable Delay		150	300	IV IV	ns

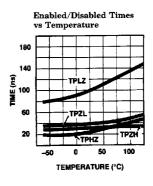

Note 1: $V_{CM} = +12V_{to} - 12V_{to}$

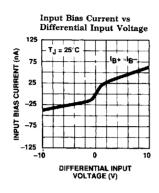

Note 2: $V_S = \pm 5V$ to $\pm 15V$.

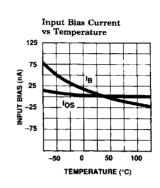

Note 3: The maximum power dissipation depends on package type, ambient temperature and heat sinking. See the Typical Performance curves for more details.

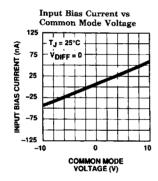

Fast, High Voltage Comparator with Master Slave Flip-Flop

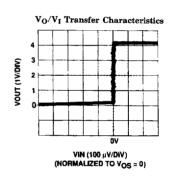

Typical AC Performance Curves

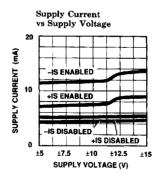


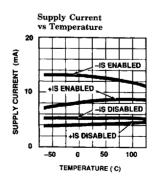


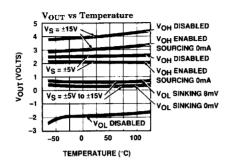


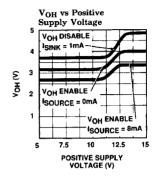


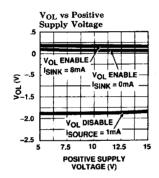

Fast, High Voltage Comparator with Master Slave Flip-Flop

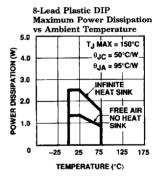

Typical AC Performance Curves - Contd.



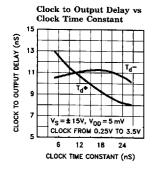


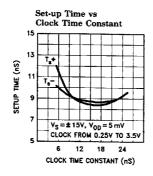


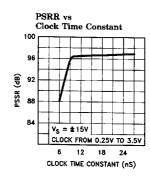


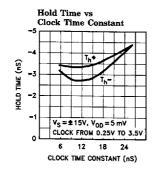

Fast, High Voltage Comparator with Master Slave Flip-Flop

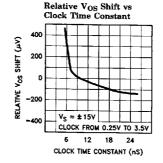
Typical AC Performance Curves - Contd.

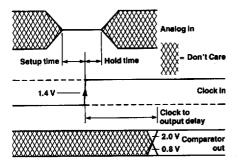







Fast, High Voltage Comparator with Master Slave Flip-Flop

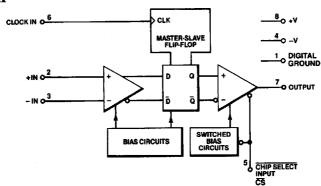

Typical AC Performance Curves - Contd.



2019-6

3129557 0005333 952

Fast, High Voltage Comparator with Master Slave Flip-Flop


Timing Diagram

Note: Since the hold time is negative the input is a don't care at the clock time. This ensures that clock noise will not affect the measurement.

2019-7

Block Diagram

2019-8

Function Table

	Inpu (Time :			Internal Q (Time n)	Notes	Output (Time n)	
+ IN	-IN	CS	CLK				
+	_	L	7	н	Normal Comparator Operation	н	
-	+ L		_ F ~	L	With "D" Flip-Flop	L	
+	_	н		H	Normal Comparator Operation	High Z	
-	+	H		L	With "D" Flip-Flop; Power Down Mode	High Z	
x	x	L	н	Qn-1	Data Retained in Flip-Flop	Qn-1	
X	X	L	L	Qn-1	Data Retained in Flip-Flop	Qn-1	
x	X	L	7.	Qn-1	Data Retained in Flip-Flop	Qn-1	
х	х	Н	Н	Qn-1	Data Retained in Flip-Flop, Output Power Down Mode	High Z	
x	x	н	L	Qn-1	Data Retained in Flip-Flop, Output Power Down Mode	High Z	
x	х х н 🤼		Qn-1	Data Retained in Flip-Flop, Output Power Down Mode	High Z		

Fast, High Voltage Comparator with Master Slave Flip-Flop

Application Hints

Device Overview

The EL2019 is the first comparator of its kind. It is capable of 24V differential signals, yet has excellent accuracy, linearity and voltage gain. The EL2019 has an internal master/slave flip-flop between the input and output. It even has a 3-state output feature that reduces the power supply currents 50% when the output is disabled, yet the input stage and latch remain active. This extremely fast and accurate device is built with the proprietary Elantec Complementary Bipolar Process, which is immune to power sequencing and latch up problems.

Power Supplies

The EL2019 will work with $\pm 5V$ to $\pm 18V$ supplies or any combination between (Example +12V and -5V). The supplies should be well bypassed with good high frequency capacitors (0.01 μ F monolithic ceramic recommended) within $\frac{1}{4}$ inch of the power supply leads. Good ground plane construction techniques improve stability, and the lead from pin 1 to ground should be short.

Front End

The EL2019 uses schottky diodes to make a "bullet proof" front end with very low input bias currents, even if the two inputs are tied to very large differential voltages (±24V).

The large common mode range ($\pm 12V$ minimum) and differential voltage handling ability ($\pm 24V$ min.) of the device make it useful in ATE applications without the need for an input attenuator with its associated delay.

Recovery from Large Overdrives

Timing accuracy is excellent for all signals within the common mode range of the device ($\pm 12V$ with $\pm 15V$ supply). When the common mode range is exceeded the input stage will saturate, input bias currents increase and it may take as much as 200 ns for the device to recover to normal operation after the inputs are returned to the common mode range. If signals greater than the common mode range of the device are anticipated, the inputs should be diode clamped to remain within the common mode range of the device, or

the supply voltage be raised to encompass the input signal in the common mode range.

Input Slew Rate

All comparators have input slew rate limitations. The EL2019 operates normally with any input slew rate up to 300 V/ μ s. Input signal slew rates over 300 V/ μ s induce offset voltages of 5 mV to 20 mV. This induced offset voltage settles out in about 20 ns, 20 times faster than previous high voltage comparators. This shows up as an increased set-up time.

Master Slave Flip-Flop

The built-in Master/Slave Flip-Flop only allows the output to change when a positive edge is received on the clock input. This feature has some major benefits to the user. First, the device cannot oscillate due to feedback from the output to the inputs. Second, the device must make a decision when it receives a clock input, and the difference between deciding on a "0" or a "1" is limited only by the input circuit noise, both internal and external to the EL2019. With low impedance sources and a good layout this uncertainty can be less than 30 μ V/RMS. Since a 30 μ V change on the input can cause a 4V change on the output this works out to an effective gain of 103 dB, more than adequate for a 16-bit analog to digital converter.

The hold time of the EL2019 is worst case 0 ns, and typically -3 ns. This means that the analog signal is sampled typically 3 ns before the clock time and, worst case, concurrent with the clock.

The EL2019 is sensitive to a large clock edge rates. More than a 500 V/ μ s edge rate at the clock input will induce VOS shifts, reduce PSRR, and cause the device to operate incorrectly at low temperatures and low supply voltages. A good method to control the clock edge rate is to place a resistor in series and a capacitor to ground in parallel with the clock input. Generally, any time constant 10 ns or greater will suffice.

Elantec tests the EL2019 with a nominal 20 ns time constant, using a series 330Ω resistor and 61 pF of capacitance to ground (including strays). All clocks are generated by Schottky TTL and have a 0.25V to 3.5V swing.

3129557 0005335 725

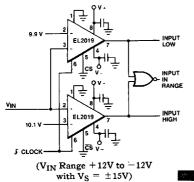
Fast, High Voltage Comparator with Master Slave Flip-Flop

Application Hints - Contd.

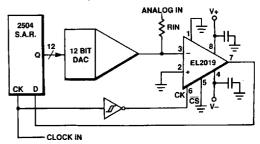
Output Stage

The output stage of the EL2019 is a pair of complementary emitter followers operating as a linear amplifier. This makes the output stage of the EL2019 glitch free, and improves accuracy and stability when operating with small signals.

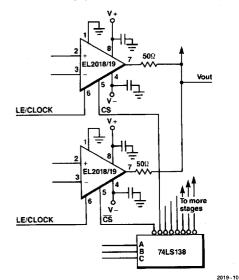
3-State Output, Power Saving Feature


The EL2019 has an output stage which can be put into a high impedance "3-state" mode. When it is in this mode, the input stage and latch remain active, yet the device dissipates only 50% of the power used when the output is active. This has advantages in large ATE systems where there may be 1000 comparators, but only 10% are in use at any one time.

The EL2019 will work properly with the chip select input (pin 5) floating, however, good R.F. technique would be to ground this input if it is not used.

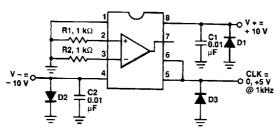

Due to the power saving feature and linear output stage, the EL2019 does not have a standard TTL 3-state output stage. As such one must be careful when using the 3-state feature with devices other than other EL2018's or EL2019's. When operating from $\pm 15 \mathrm{V}$ supplies the 3-state feature is compatible with all TTL families, however CMOS families may conflict on high outputs. Since the output stage of the EL2019 turns on faster than it turns off, a 50Ω to 100Ω resistor in series with the output will limit fault currents between devices with minimum impact on logic drive capability.

Typical Applications


A Wide Input Range Window Comparator

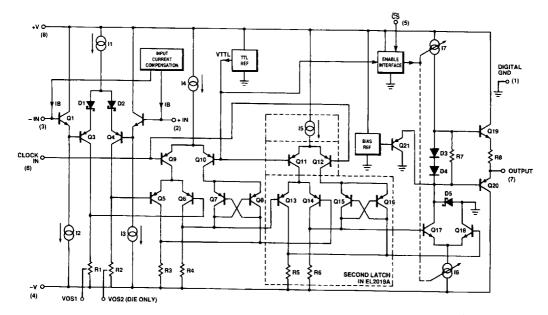
The EL2019 makes an excellent comparator in most analog to digital converters, due to its high gain and fast response. Most 2504 based A to D designs can be modified to use the EL2019 simply by using an inverted clock to the EL2019 as shown below. This results in improved performance due to less jitter of the transition voltages.

Using the Power Down/ 3-State Feature



3129557 0005336 661 9

2019-12


Fast, High Voltage Comparator with Master Slave Flip-Flop

Burn-In Circuit

Pin numbers are for DIP packages. All packages use the same schematic.

Equivalent Schematic

Fast, High Voltage Comparator with Master Slave Flip-Flop

EL2019 Macromodel

ı								
I	* Connections:	+ i1	put					
I	*		— in	put				
1	*			$+\mathbf{v}$				
Ì	*	1			$-\mathbf{v}$			
	*	ĺ	İ	ĺ		Cpin		
	*	i	i	Ì	İ	1	$\overline{\mathbf{CS}}$	
	*	i	i	i	i	i	1	output
I	*	i	i	i	í	i	i	1
	.subckt M2019	2	3	8	4	6	5	7
	*	2.		J	•	•	•	•
	* Input Stage							
	*							
	i1 8 10 700µA							
	r1 13 4 1K							
	r2 14 4 1K							
	q18311qn							
	q2 8 2 12 qn							
	q3 13 11 10 qp							
	q4 14 12 10 qp							
	i2 11 4 200μA							
	i3 12 4 200μ A							
	*							
	* 2nd Stage & Fli	ip Flo	p					
	*							
	*i4 8 24 700µA							

i4 8 24 1mA q9 22 6 24 qp

q10 18 17 24 qp

v1 17 0 2.5V q5 15 14 22 qp

q6 16 13 22 qp r3 15 4 1K

r4 16 4 1K

q7 16 15 18 qp q8 15 16 18 qp

i5 8 40 500μA q11 41 17 40 qp

q12 42 6 40 qp

q13 43 16 41 qp

q14 44 15 41 qp q15 44 43 42 qp

q16 43 44 42 qp r5 43 4 1K

r6 44 4 1K

* Output Stage

i7 8 35 2mA s1 35 20 5 0 sw

d2 35 8 ds i6 26 34 5mA

Fast, High Voltage Comparator with Master Slave Flip-Flop

EL2019 Macromodel - Contd.

```
s2 34 4 5 0 sw
d3 34 26 ds
q19 8 20 21 qn 2
q20 4 19 7 qp 2
r8 21 7 60
r7 20 19 4K
q17 19 44 26 an 5
q18 0 43 26 qn 5
q22 20 20 30 an 5
q23 19 19 30 qn 8
d1 0 19 ds
q21 0 17 19 qp
```

* Power Supply Current

ips 8 4 4mA

* Models

.model qn npn (is = 2e - 15 bf = 400 tf = 0.05nS cje = 0.3pF cjc = 0.2pF ccs = 0.2pF) .model qp pnp (is = 0.6e – 15 bf = 60 tf = 0.3nS cje = 0.5pF cjc = 0.5pF ccs = 0.4pF) .model ds d(is = 2e - 12 tt = 0.05nS eg = 0.62V vj = 0.58)

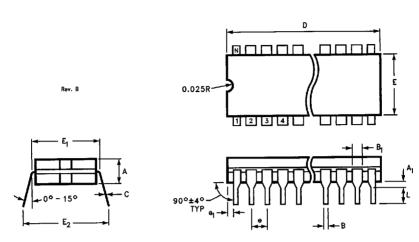
.model sw vswitch (von = 0.4V voff = 2.5V) .ends

Soldering Packages to PC Boards

DIP Packages

Wave soldering is recommended for DIP packages. Solder plated boards are recommended. Rosin mildly activated (RMA) flux is needed. Wave soldering using a dual wave system at 250°C ±10°C for two seconds per wave is preferable. Thorough cleaning of boards after soldering is required.

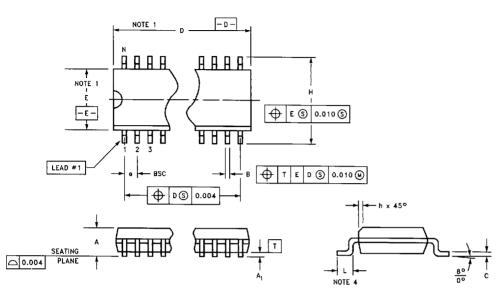
Hand soldering, Elantec's DIP packages will survive a peak temperature of 300°C (at leads) for a maximum period of 10 seconds.


Surface Mount Packages

Wave soldering and vapor phase or infrared (IR) reflow can be used for soldering surface mount packages to PC boards. Solder plated boards are recommended for wave soldering and vapor phase or IR reflow methods.

Wave Soldering: Adhesive is used to hold components on the boards during wave soldering. Place components on the board and cure adhesive before wave soldering. Rosin mildly activated (RMA) flux or organic flux is needed. Wave soldering using a dual wave system at 250°C ±10°C for a maximum of two seconds per wave is preferable. Thorough cleaning of boards after soldering is required.

Reflow Soldering: Screen solder paste on board and attach components to board. Solder paste with RMA flux is recommended. Bake boards at 65°C-90°C for 15 minutes. Preheat boards to within 60°C-70°C of the solder temperature. To reflow solder paste with vapor phase method, the solder paste temperature must be maintained at or above 200°C for at least 30 seconds. The components temperature can not exceed 215°C. For the IR reflow method, the solder paste temperature must be maintained at or above 200°C for at least 30 seconds. The components temperature can not exceed 220°C. The temperature/time ramp-up during vapor phase or IR reflow shall be no greater than 2°C/sec.


Hand soldering, Elantec's surface mount packages will survive a peak temperature of 260°C (at leads) for a maximum period of 10 seconds.

MDP0016 Rev. B CerDIP Package

Lead Finish (Coml)—Tin Plate or Hot Solder DIP Lead Finish (Mil)—Hot Solder DIP

Common Dimensions	Min	Max	Min	Max	Min	Max	Min	Max
A	0.140	0,160	0.140	0.160	0.140	0.160	0.140	0.160
A ₁	0.115	0.055	0.020	0.050	0.015	0.060	0.020	0.050
В	0.016	0.023	0,016	0.021	0.014	0.026	0.016	0.021
B ₁	0.050	0.065	0.050	0.060	0.038	0.068	0.050	0.060
С	0.008	0.012	0.008	0.012	0.008	0.018	0.008	0.012
D	0.375	0.395	0.760	0.785	0.940	0.960	1040.925	1.060
E	0.245	0.265	0.220	0.291	0.220	0.310	0.2780	0.298
E ₁	0.300	0.320	0.300	0.320	0.290	0.320	0.300	0.320
\mathbf{E}_2	0.340	0.390	0.340	0.390	0.360	0.410	0.340	0.390
e	0.090	0.110	0.090	0.110	0.090	0.110	0.090	0.110
e ₁	0.020	0.055	0.078	0,098	0.068	0.098	0.078	0.098
L	0.125	0.150	0.125	0.150	0.125	0.150	0.130	0.150
N	8-Lead		14-Lead		18-Lead		20-Lead	

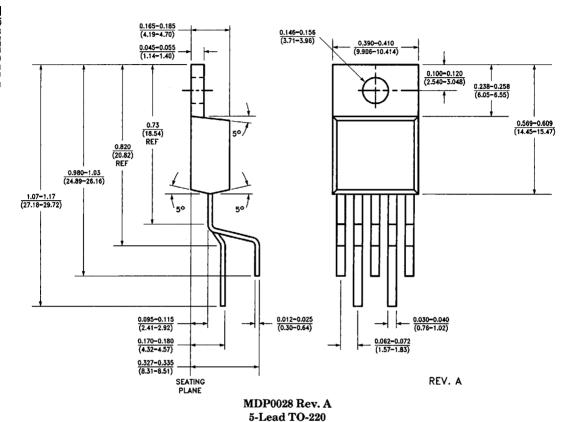
REV. C

Note 1: These dimensions do not include mold flash or protrusions. Mold flash protrusion shall not exceed .006" on any side.

Note 2: SO-8, SO-14, S0-16 packages are narrow body (0.150"). Note 3: Dimensions and tolerancing per ANSI Y14.5M-1982.

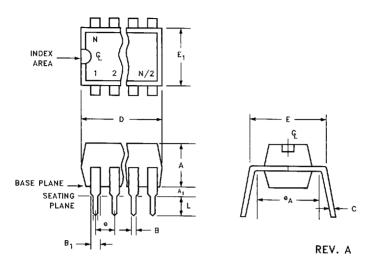
Note 4: Flat area of lead foot.

Note 5: SOL-24T2 (thermal package) has 2 fused leads on each side of package.


Note 6: SOL-20T (thermal package) has 4 fused leads on each side of package.

Note 7: SOL-28T contains a thermal metal slug.

MDP0027 Rev. C Package Outline—SOIC


Lead Finish-Solder Plate

	Lead Count													
Symbol	SOL-28		SOL-20		SOL-16		SO-16		SO-14		SO-8		SOL-24	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
A	0.096	0.104	0.096	0.104	0.096	0.104	0.061	0.068	0.061	0.068	0.061	0.068	0.096	0.104
A ₁	0.004	0.011	0.004	0.011	0.004	0.011	0.004	0.010	0.004	0.010	0.004	0.010	0.004	0.011
В	0.014	0.019	0.014	0.019	0.014	0.019	0.014	0.019	0.014	0.019	0.014	0.019	0.014	0.019
С	0.009	0.012	0.009	0.012	0.009	0.012	0.008	0.010	0.008	0.010	0.008	0.010	0.009	0.012
D	0.696	0.712	0.498	0.510	0.397	0.430	0.386	0.394	0.337	0.344	0.189	0.196	0.598	0.614
E	0.291	0.299	0.291	0.299	0.291	0.299	0.150	0.157	0.150	0.157	0.150	0.157	0.291	0.299
e	0.050	BSC	0.050	BSC	0.050	BSC	0.050 BSC		0.050	BSC	0.050 BSC		0.050 BSC	
Н	0.398	0.414	0.398	0.414	0.398	0.414	0.230	0.244	0.230	0.244	0.230	0.244	0.398	0.414
h	0.010	0.016	0.010	0.016	0.010	0.016	0.010	0.016	0.010	0.016	0.010	0.016	0.010	0.016
L	0.016	0.024	0.016	0.024	0.016	0.024	0.016	0.024	0.016	0.024	0.016	0.024	0.016	0.024

Lead Finish-Solder Plate

3129557 0005560 742 ■

MDP0031 Rev. A
Plastic Package
Lead Finish—Hot Solder DIP

Common Dimensions	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
A ₁	0.020	0.040	0.020	0.040	0.020	0.040	0.020	0.040	0.020	0,040
A	0.125	0.145	0.125	0.145	0.125	0.145	0.125	0.145	0.125	0.145
В	0.016	0.020	0.016	0.020	0.016	0.020	0.016	0.020	0.015	0.021
В1	0.050	0.070	0.050	0.070	0.050	0.070	0.050	0.070	0.050	0.070
С	0.008	0.012	0.008	0.012	0.008	0.012	0.008	0.012	0.008	0.012
D	0.350	0.385	0.745	0.755	0.745	0.755	0.875	0.905	0.925	1.045
E	0.295	0.320	0.295	0.320	0.295	0.320	0.295	0.320	0.295	0.320
E 1	0.245	0.255	0.245	0.255	0.245	0.255	0.245	0.255	0.245	0,255
e	0.100	Тур	0.100	Тур	0.100	Тур	0.100 Typ		0.100 Typ	
$e_{\mathbf{A}}$	0.300 Ref		0.30	0 Ref	0.30	0 Ref	0.30	0 Ref	0.300 Ref	
L	0.115	0.135	0.115	0.135	0.115	0.135	0.115	0.135	0.115	0.135
N	8		14		16		18		20	

Note: Package outline exclusive of any mold flashes. Mold flash protrusion shall not exceed 0.006" on any side.