| | | · | ŠPEC No.
ISSUE | : May 15 1996 | |-------------|---|--|---------------------|--| | <u>To</u> ; | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | | SPECI | FICAT | ION | S | | | | | | | | | | | | | | | Product Type 16M | Flash File | Memo | r y | | | LH28 | 8 F O 1 6 S | UR- | -70 | | | Model No | (LHF16S1) | 0) | | | | - S. | - | | | | | **This specifications cont If you have any objection | the state of s | | | | CUSTO | MERS ACCEPTANCE | | | | | DATE: | | | | 4 | | BY: | · | PRESENTED | | | | | | | 1. Kubi | <u>, </u> | | | | H. SHI M I <i>Z</i> U
Dept. Gene | ral M anagei | r. | | | | REVIEWED B | Υ: | PREPARED BY: | | | | | | T. Kshida | | • | | . , , , , , , , , , , , , , , , , , , , | | 1,1,000 | Engineering Dept. 2 Flash Memory Development Center Fukuyama Integrated Circuits Group SHARP CORPORATION - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company. - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions. - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3). - ·Office electronics - · Instrumentation and measuring equipment - · Machine tools - · Audiovisual equipment - ·Home appliance - ·Communication equipment other than for trunk lines - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system. - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment - · Mainframe computers - ·Traffic control systems - ·Gas leak detectors and automatic cutoff devices - ·Rescue and security equipment - ·Other safety devices and safety equipment, etc. - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy. - · Aerospace equipment - · Communications equipment for trunk lines - ·Control equipment for the nuclear power industry - · Medical equipment related to life support, etc. - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company. - Please direct all queries regarding the products covered herein to a sales representative of the company. Subject to be changed without notice. | • | The second secon | · · | |----------|--|-----| | LHF16S10 | ************************************** | | # LH28F016SUR-70 16 Mbit (1 Mbit x 16, 2 Mbit x 8) 5V Single Voltage Flash Memory | CONTENTS | PAGE | CONTENTS | PAGE | |-------------------|------|--|----------| | FEATURES | 2 | 4.0 BUS OPERATIONS, COM
AND STATUS REGISTER | | | 1.0 INTRODUCTION | 3 | DEFINITIONS | 10 | | 2.0 DEVICE PINOUT | 4 | 5.0 ELECTRICAL SPECIFICA | TIONS 16 | | 3.0 MEMORY MAPS | 8 | 6.0 PACKAGE AND PACKIN
SPECIFICATION | G
39 | # LH28F016SUR-70 16 MBIT (1
MBIT x 16, 2 MBIT x 8) 5V SINGLE VOLTAGE FLASH MEMORY #### **FEATURES** - 5V Write/Erase Operation (5V V_{pp}) - No Requirement for DC/DC Converter to Write/Erase - User-Selectable 3.3V or 5V V_{cc} - User-Configurable x8 or x16 Operation - 70 ns Maximum Access Time - Min. 2.7V Read capability - 160ns Maxmun Access Time(Vcc=2.7V) - 0.32 MB/sec Write Transfer Rate - 100 Thousand Erase Cycles per Block - 56-Lead, 1.2mm x 14mm x 20mm TSOP Package - Revolutionary Architecture - Pipelined Command Execution - Write During Erase - Command Superset of Sharp LH28F008SA - 5 μA (Typ.) I_{cc} in CMOS Standby - 1 μA (Typ.) Deep Power-Down - · 32 Independently Lockable Blocks - State-of-the-Art 0.55 μm ETOX[™] Flash Technology - · Not designed or rated as radiation hardened Sharp's LH28F016SUR-70 16-Mbit Flash Memory is a revolutionary architecture which enables the design of truly mobile, high performance, personal computing and communication products. With innovative capabilities, 5V single voltage operation and very high read/write performance, the LH28F016SUR-70 is also the ideal choice for designing embedded mass storage flash memory systems. The LH28F016SUR-70 is a very high density, highest performance non-volatile read/write solution for solid-state storage applications. Its symmetrically blocked architecture (100% compatible with the LH28F008SA 8-Mbit Flash memory), extended cycling, low power 3.3V operation, very fast write and read performance and selective block locking provide a highly flexible memory component suitable for high density memory cards, Resident Flash Arrays and PCMCIA-ATA Flash Drives. The LH28F016SUR-70 's dual read voltage enables the design of memory cards which can interchangeably be read/written in 3.3V and 5.0V systems. Its x8/x16 architecture allows the optimization of memory to processor interface. The flexible block locking option enables bundling of executable application software in a Resident Flash Array or memory card. Manufactured on Sharp's 0.55 μm ETOX™ process technology, the LH28F016SUR-70 is the most cost-effective, high-density 3.3V flash memory. ^{*} ETOX is a trademark of Intel corporation. #### 1.0 INTRODUCTION The specification intended to give an overview of the chip feature-set and of the operating AC/DC specifications. #### 1.1 Product Overview The LH28F016SUR-70 is a high performance 16 Mbit (16,777,216 bit) block erasable non-volatile random access memory organized as either 1 Mword x 16 or 2 Mbyte x 8. The LH28F016SUR-70 includes thirty-two 64 KB (65,536) blocks or thirty-two 32-KW (32,768) blocks. A chip memory map is shown in Figure 3. The implementation of a new architecture, with many enhanced features, will improve the device operating characteristics and results in greater product reliability and ease of use. Among the significant enhancements of the LH28F016SUR-70: - 5V Write/Erase Operation (5V Vpp) - 3.3V Low Power Capability(2.7V Vcc Read) - Improved Write Performance - · Dedicated Block Write/Erase Protection A 3/5# input pin reconfigures the device internally for optimized 3.3V or 5.0V read/write operation. The LH28F016SUR-70 will be available in a 56-lead, 1.2mm thick, 14mm x 20mm TSOP type 1 package. This form factor and pinout allow for very high board layout densities. A Command User Interface (CUI) serves as the system interface between the microprocessor or microcontroller and the internal memory operation. Internal Algorithm Automation allows Byte/Word Writes and Block Erase operations to be executed using a Two-Write command sequence to the CUI in the same way as the LH28F008SA 8-Mbit Flash memory. A Superset of commands have been added to the basic LH28F008SA command-set to achieve higher write performance and provide additional capabilities. These new commands and features include: - · Page Buffer Writes to Flash - · Command Queuing Capability - · Automatic Data Writes During Erase - · Software Locking of Memory Blocks - · Two-Byte Successive Writes in 8-bit Systems #### · Erase All Unlocked Blocks Writing of memory data is performed in either byte or word increments typically within 8 µsec, a 25% improvement over the LH28F008SA. A Block Erase operation erases one of the 32 blocks in typically 0.7 sec, independent of the other blocks, which is about 55% improvement over the LH28F008SA. The LH28F016SUR-70 incorporates two Page Buffers of 256 Bytes (128 Words) each to allow page data writes. This feature can improve a system write performance over previous flash memory devices. All operations are started by a sequence of Write commands to the device. Three Status Registers (described in detail later) and a RY/BY# output pin provide information on the progress of the requested operation. While the LH28F008SA requires an operation to complete before the next operation can be requested, the LH28F016SUR-70 allows queuing of the next operation while the memory executes the current operation. This eliminates system overhead when writing several bytes in a row to the array or erasing several blocks at the same time. The LH28F016SUR-70 can also perform write operations to one block of memory while performing erase of another block. The LH28F016SUR-70 provides user-selectable block locking to protect code or data such as Device Drivers, PCMCIA card information, ROM-Executable O/S or Application Code. Each block has an associated non-volatile lock-bit which determines the lock status of the block. In addition, the LH28F016SUR-70 has a master Write Protect pin (WP#) which prevents any modifications to memory blocks whose lock-bits are set. The LH28F016SUR-70 contains three types of Status Registers to accomplish various functions: - A Compatible Status Register (CSR) which is 100% compatible with the LH28F008SA Flash memory's Status Register. This register, when used alone, provides a straightforward upgrade capability to the LH28F016SUR-70 from a LH28F008SA-based design. - A Global Status Register (GSR) which informs the system of command Queue status, Page Buffer status, and overall Write State Machine (WSM) status. - 32 Block Status Registers (BSRs) which provide block-specific status information such as the block lock-bit status. The GSR and BSR memory maps for Byte-Wide and Word-Wide modes are shown in Figures 4.1 and 4.2. The LH28F016SUR-70 incorporates an open drain RY/BY# output pin. This feature allows the user to OR-tie many RY/BY# pins together in a multiple memory configuration such as a Resident Flash Array. The LH28F016SUR-70 also incorporates a dual chipenable function with two input pins, CE₀# and CE₁#. These pins have exactly the same functionality as the regular chip-enable pin CE# on the LH28F008SA. For minimum chip designs, CE₁# may be tied to ground and use CE₀# as the chip enable input. The LH28F016SUR-70 uses the logical combination of these two signals to enable or disable the entire chip. Both CE₀# and CE₁# must be active low to enable the device and if either one becomes inactive, the chip will be disabled. This feature, along with the open drain RY/BY# pin, allows the system designer to reduce the number of control pins used in a large array of 16-Mbit devices. The BYTE# pin allows either x8 or x16 read/writes to the LH28F016SUR-70 . BYTE# at logic low selects 8-bit mode with address A_0 selecting between low byte and high byte. On the other hand, BYTE# at logic high enables 16-bit operation with address A_1 becoming the lowest order address and address A_0 is not used (don't care). A device diagram is shown in Figure 1. The LH28F016SUR-70 is specified for a maximum access time of each version, as follows: LH28F016SUR-70 | Operating Temperature | Vcc Suply | Max. Access (tacc) | |-----------------------|---------------|--------------------| | 0 - 70 °C | 4.75 - 5.25 V | 70 ns | | 0 - 70 °C | 4.5 - 5.5 V | 80 ns | | 0 - 70 °C | 3.0 - 3.6 V | 120 ns | | 0 - 70 °C | 2.7 - 3.6 V | 160 ns | The LH28F016SUR-70 incorporates an Automatic Power Saving (APS) feature which substantially reduces the active current when the device is in static mode of operation (addresses not switching). In APS mode, the typical $I_{\rm cc}$ current is 2 mA at 5.0V (1 mA at 3.3V). A Deep Power-Down mode of operation is invoked when the RP# (called PWD# on the LH28F008SA) pin transitions low, any current operation is aborted and the device is put into the deep power-down mode. This mode brings the device power consumption to less than 5 μA, typically, and provides additional write protection by acting as a device reset pin during power transitions. When the power is turned on, RP# pin turned to low order to return the device to default configuration. When the 3/5# pin is switched, or when the power transition is occurred, or at the power on/off, RP# is required to stay low in order to protect data from noise. A recovery time of 400ns (Vcc=5.0V±0.25V) is required from RP# switching high until outputs are again valid. In the Deep Power-Down state, the WSM is reset (any current operation will abort) and the CSR, GSR and BSR registers are cleared. A CMOS Standby mode of operation is enabled when either $CE_0\#$ or $CE_1\#$ transitions high and RP# stays high with all input control pins at CMOS levels. In this mode, the device typically draws an I_{cc} standby current of 10 μ A. #### 2.0 DEVICE PINOUT The LH28F016SUR-70 56L-TSOP Type I pinout configuration is shown in Figure 2. 5 Figure 1. LH28F016SUR-70 Block Diagram Architectural Evolution Includes Page Buffers, Queue Registers and Extended Status Registers. # 2.1 Lead Descriptions | Symbol | Туре | Name and Function | |--------------------------------------|----------------------
---| | A ₀ | INPUT | BYTE-SELECT ADDRESS: Selects between high and low byte when device is in x8 mode. This address is latched in x8 Data Writes. Not used in x16 mode (i.e., the A ₀ input buffer is turned off when BYTE# is high). | | A ₁ -A ₁₅ | INPUT | WORD-SELECT ADDRESSES: Select a word within one 64-Kbyte block. A ₆₋₁₅ selects 1 of 1024 rows, and A ₁₋₅ selects 16 of 512 columns. These addresses are latched during Data Writes. | | A ₁₆ -A ₂₀ | INPUT | BLOCK-SELECT ADDRESSES: Select 1 of 32 Erase blocks. These addresses are latched during Data Writes, Erase and Lock-Block operations. | | DQ ₀ -DQ ₇ | INPUT/OUTPUT | LOW-BYTE DATA BUS: Inputs data and commands during CUI write cycles. Outputs array, buffer, identifier or status data in the appropriate Read mode. Floated when the chip is de-selected or the outputs are disabled. | | DQ ₈ -DQ ₁₅ | INPUT/OUTPUT | HIGH-BYTE DATA BUS: Inputs data during x16 Data-Write operations. Outputs array, buffer or identifier data in the appropriate Read mode; not used for Status register reads. Floated when the chip is de-selected or the outputs are disabled. | | CE ₀ #, CE ₁ # | INPUT | CHIP ENABLE INPUTS: Activate the device's control logic, input buffers, decoders and sense amplifiers. With either CE ₀ # or CE ₁ # high, the device is de-selected and power consumption reduces to Standby levels upon completion of any current Data-Write or Erase operations. Both CE ₀ #, CE ₁ # must be low to select the device. All timing specifications are the same for both signals. Device Selection occurs with the latter falling edge of CE ₀ # or CE ₁ #. The first rising edge of CE ₀ # or CE ₁ # disables the device. | | RP# | INPUT | RESET/POWER-DOWN: With RP# low, the device is reset, any current operation is aborted and device is put into the deep power down mode. When the power is turned on, RP# pin is turned to low in order to return the device to default configuration. When the 3/5# pin is switched, or when the power transition is occurred, or at the power on/off, RP# is required to stay low in order to protect data from noise. When returning from Deep Power-Down, a recovery time of 400ns (Vcc=5.0V±0.25V) is required to allow these circuits to power-up. When RP# goes low, any current or pending WSM operation(s) are terminated, and the device is reset. All Status registers return to ready (with all status flags cleared). After returning, the device is in read array mode. | | OE# | INPUT | OUTPUT ENABLE: Gates device data through the output buffers when low. The outputs float to tri-state off when OE# is high. NOTE: CEx# overrides OE#, and OE# overrides WE#. | | WE# | INPUT | WRITE ENABLE: Controls access to the CUI, Page Buffers, Data Queue Registers and Address Queue Latches. WE# is active low, and latches both address and data (command or array) on its rising edge. | | RY/BY# | OPEN DRAIN
OUTPUT | READY/BUSY: Indicates status of the internal WSM. When low, it indicates that the WSM is busy performing an operation. RY/BY# high indicates that the WSM is ready for new operations (or WSM has completed all pending operations), or Erase is Suspended, or the device is in deep power-down mode. This output is always active (i.e., not floated to tri-state off when OE# or CE ₀ #, CE ₁ # are high), except if a RY/BY# Pin Disable command is issued. | # 2.1 Lead Descriptions (Continued) | Symbol | Туре | Name and Function | |-----------------|--------|---| | WP# | INPUT | WRITE PROTECT: Erase blocks can be locked by writing a non-volatile lock-bit for each block. When WP# is low, those locked blocks as reflected by the Block-Lock Status bits (BSR.6), are protected from inadvertent Data Writes or Erases. When WP# is high, all blocks can be Written or Erased regardless of the state of the lock-bits. The WP# input buffer is disabled when RP# transitions low (deep power-down mode). | | BYTE# | INPUT | BYTE ENABLE: BYTE# low places device in x8 mode. All data is then input or output on DQ $_{0-7}$, and DQ $_{8-15}$ float. Address Ao selects between the high and low byte. BYTE# high places the device in x16 mode, and turns off the A $_0$ input buffer. Address A $_1$, then becomes the lowest order address. | | 3/5# | INPUT | 3.3/5.0 VOLT SELECT: 3/5# high configures internal circuits for 3.3V operation. 3/5# low configures internal circuits for 5.0V operation. NOTES: Reading the array with 3/5# high in a 5.0V system could damage the device. There is a significant delay from 3/5# switching to valid data. | | V _{PP} | SUPPLY | ERASE/WRITE POWER SUPPLY (5.0V \pm 0.5V): For erasing memory array blocks or writing words/bytes/pages into the flash array. | | Vcc | SUPPLY | DEVICE POWER SUPPLY (3.3V ± 0.3V, 5.0V ± 0.5V): Do not leave any power pins floating. | | GND | SUPPLY | GROUND FOR ALL INTERNAL CIRCUITRY: Do not leave any ground pins floating. | | NC | | NO CONNECT: No internal connection to die, lead may be driven or left floating. | Figure 2. TSOP Configuration -8 # 3.0 MEMORY MAPS | 1FFFFFH
1F0000H | 64 KByte Block | 31 | |--------------------------------|----------------|----------| | 1EFFFFH
1E0000H | 64 KByte Block | 30 | | 1DFFFFH
1D0000H | 64 KByte Block | 29 | | 1CFFFFH
1C0000H | 64 KByte Block | 28 | | 1BFFFFH
1B0000H | 64 KByte Block | 27 | | 1AFFFFH
1A0000H | 64 KByte Block | 26 | | 19FFFFH
190000H | 64 KByte Block | 25 | | 18FFFFH
180000H | 64 KByte Block | 24 | | 17FFFFH
170000H | 64 KByte Block | 23 | | 16FFFFH | 64 KByte Block | 22 | | 160000H
15FFFFH | 64 KByte Block | 21 | | 150000H
14FFFFH | 64 KByte Block | 20 | | 140000H
13FFFFH | 64 KByte Block | 19 | | 130000H
12FFFFH | 64 KByte Block | 18 | | 120000 H
11FFFFH | 64 KByte Block | 17 | | 110000H
10FFFFH | 64 KByte Block | 16 | | 100000H
0FFFFFH | 64 KByte Block | 15 | | 0F0000H
0EFFFFH | 64 KByte Block | 14 | | OEOOOOH
ODFFFFH | 64 KByte Block | 13 | | 0D0000H
0CFFFFH | 64 KByte Block | 12 | | OCOOOOH
OBFFFFH | 64 KByte Block | 11 | | 0B0000H
0AFFFFH | 64 KByte Block | 10 | | 0A0000H
09FFFFH | | 9 | | 090000H
08FFFFH | 64 KByte Block | | | 080000H
07FFFFH | 64 KByte Block | \dashv | | 070000H
06FFFFH | 64 KByte Block | | | 060000H
05FFFFH | 64 KByte Block | - 6 | | 050000H
04FFFFH | 64 KByte Block | 5 | | 040000H
03FFFFH | 64 KByte Block | 4 | | 030000H | 64 KByte Block | 3 | | 02FFFFH
020000H | 64 KByte Block | 2 | | 01FFFFH
010000H | 64 KByte Block | _1 | | 000000H | 64 KByte Block | 0 | | - | | | Figure 3. LH28F016SUR-70 Memory Map (Byte-wide mode) # 3.1 Extended Status Registers Memory Map | X8 MODE | A[20:0] | |----------|-----------| | RESERVED | 1F0006H | | | 1F0005H | | GSR | 1F0004H | | RESERVED | 1F0003H | | BSR31 | 1F0002H | | RESERVED | 1F0001H | | RESERVED | 1F0000H | | • | 11 000011 | | • | | | • | | | • | | | • | 010002H | | | | | RESERVED | | | | 000006H | | RESERVED | 000005H | | GSR | 000004H | | RESERVED | 000003H | | BSR0 | į | | RESERVED | 000002H | | RESERVED | 000001H | | | 000000H | | | | Figure 4.1 Extended Status Register Memory Map (Byte-wide mode) | • | | |-----------|-----------| | X16 MODE | A[20:1]* | | DECERVED | 7 F8003H | | RESERVED | 4 | | GSR | F8002H | | RESERVED |] . 6662 | | BSR31 | F8001H | | RESERVED | 7 -000111 | | RESERVED | | | • | → F8000H | | • | | | • | | | • | | | • | ¬ 08001H | | | 7 0000111 | | RESERVED | 1 | | | | | RESERVED | 00003H | | GSR | 1 | | RESERVED | 00002H | | BSR0 | 1 | | RESERVED | 00001H | | RESERVED | 1 | | TLOERVED. | 1 00000H | | | | Figure 4.2 Extended Status Register Memory Map (Word-wide mode) $^{^{\}star}$ In Word-wide mode $\rm A_{\rm o}$ don't care, address values are ignored $\rm A_{\rm o}$ - 110 # 4.0 BUS OPERATIONS, COMMANDS AND STATUS REGISTER DEFINITIONS # 4.1 Bus Operations for Word-Wide Mode (BYTE# = V_{H}) | Mode | Notes | RP# | CE ₁ # | CE ₀ # | OE# | WE# | A ₁ | DQ ₀₋₁₅ | RY/BY# | |-----------------|-------|-----------------|---|---|-----------------|-----------------|-----------------|--------------------|-----------------| | Read | 1,2,7 | VIH | V _{IL} | V _{IL} | VIL | V _{iH} | X | Dout | Х | | Output Disable | 1,6,7 | V _{IH} | V _{IL} | V _{IL} | V_{IH} | V _{IH} | X | High Z | Х | | Standby | 1,6,7 | V _{IH} | V _{IL}
V _{IH}
V _{IH} | V _{IH}
V _{IL}
V _{IH} | х | х | × | High Z | х | | Deep Power-Down | 1,3 | V _{IL} | Х | Х | Х | × | Х | High Z | Voh | | Manufacturer ID | 4 | V _{IH} | VIL | VıL | V _{IL} | V _{IH} | V _{IL} | 00B0H | V _{OH} | | Device ID | 4 | V_{IH} | V_{IL} | VIL | VIL | V _{IH} | V _{IH} | 6688H | V _{OH} | | Write | 1,5,6 | V _{IH} | V _{IL} | V _{IL} | V _{IH} | VIL | X | DiN | X | # 4.2 Bus Operations For Byte-Wide Mode
(BYTE# =V_{IL}) | Mode | Notes | RP# | CE ₁ # | CE ₀ # | OE# | WE# | Ao | DQ ₀₋₇ | RY/BY# | |-----------------|-------|-----------------|---|---|-----------------|-----------------|-----------------|-------------------|-----------------| | Read | 1,2,7 | V _{IH} | V _{IL} | V _{IL} | V _{IL} | V _{IH} | Х | D _{OUT} | Х | | Output Disable | 1,6,7 | V _{IH} | VIL | V _{IL} | VIH | V _{IH} | X | High Z | X | | Standby | 1,6,7 | V _{IH} | V _{IL}
V _{IH}
V _{IH} | V _{IH}
V _{IL}
V _{IH} | x [.] | X | × | High Z | x | | Deep Power-Down | 1,3 | V _{IL} | X | X | × | X | Х | High Z | V _{OH} | | Manufacturer ID | 4 | V _{IH} | V _{IL} | V _{IL} | V _{IL} | V _{IH} | V _{IL} | вон | V _{OH} | | Device ID | 4 | V _{IH} | V _{IL} | V _{IL} | VIL | V _{IH} | V _{IH} | 88H | V _{OH} | | Write | 1,5,6 | V _{IH} | VIL | V _{IL} | V _{IH} | V _{IL} | Х | DIN | Х | #### NOTES: 1. X can be V_{IH} or V_{II} for address or control pins except for RY/BY#, which is either V_{OL} or V_{OH}. - 3. RP# at GND ± 0.2V ensures the lowest deep power-down current. - 4. A_a and A_a at V_{μ} provide manufacturer ID codes in x8 and x16 modes respectively. - A_o and A₁ at V_{IH} provide device ID codes in x8 and x16 modes respectively. All other addresses are set to zero. - 5. Commands for different Erase operations, Data Write operations of Lock-Block operations can only be successfully completed when $V_{pp} = V_{ppH}$. - 6. While the WSM is running, RY/BY# in Level-Mode (default) stays at V_{OL} until all operations are complete. RY/BY# goes to V_{OH} when the WSM is not busy or in erase suspend mode. - 7. RY/BY# may be at V_{OL} while the WSM is busy performing various operations. For example, a status register read during a write operation. ^{2.} RY/BY# output is open drain. When the WSM is ready, Erase is suspended or the device is in deep power-down mode, RY/BY# will be at V_{OH} if it is tied to V_{CC} through a resistor. When the RY/BY# at V_{OH} is independent of OE# while a WSM operation is in progress. # 4.3 LH28F008SA-Compatible Mode Command Bus Definitions | O | Natas | First Bus Cycle | | | Second Bus Cycle | | | |---------------------------------|-------|-----------------|------|------|------------------|------|------| | Command | Notes | Oper | Addr | Data | Oper | Addr | Data | | Read Array | | Write | Х | FFH | Read | AA | AD | | Intelligent Identifier | 1 | Write | Х | 90H | Read | IA | ID | | Read Compatible Status Register | 2 | Write | X | 70H | Read | Х | CSRD | | Clear Status Register | 3 | Write | Х | 50H | | | | | Word/Byte Write | | Write | X | 40H | Write | WA | WD | | Alternate Word/Byte Write | | Write | X | 10H | Write | WA | WD | | Block Erase/Confirm | | Write | × | 20H | Write | BA | DOH | | Erase Suspend/Resume | | Write | × | вон | Write | X | D0H | #### **ADDRESS** AA = Array Address BA = Block Address IA = Identifier Address WA = Write Address X = Don't Care #### DATA AD = Array Data CSRD = CSR Data ID = Identifier Data WD = Write Data #### NOTES 1. Following the intelligent identifier command, two Read operations access the manufacturer and device signature codes. 2. The CSR is automatically available after device enters Data Write, Erase, or Suspend operations. | Standby | 1,6,7 | V _{IH} | V _{IL}
V _{IH}
V _{IH} | V _{IH}
V _{IL}
V _{IH} | × | X | × | High Z | X | |-----------------|-------|-----------------|---|---|-----------------|-----------------|-----------------|-----------------|-----------------| | Deep Power-Down | 1,3 | V _{IL} | х | X | × | × | Х | High Z | V _{OH} | | Manufacturer ID | 4 | V _{IH} | V _{IL} | VIL | V _{IL} | V _{IH} | VIL | вон | V _{OH} | | Device ID | 4 | V _{IH} | V _{IL} | V _{IL} | VIL | V _{iH} | V _{IH} | 88H | V _{OH} | | Write | 1,5,6 | ViH | V _{IL} | VIL | V _{IH} | V _{IL} | Х | D _{IN} | Х | # NOTES: - 1. X can be V_H or V_D for address or control pins except for RY/BY#, which is either V_{OL} or V_{OH}. - 2. RY/BY# output is open drain. When the WSM is ready, Erase is suspended or the device is in deep power-down mode, RY/BY# will be at V_{OH} if it is tied to V_{CC} through a resistor. When the RY/BY# at V_{OH} is independent of OE# while a WSM operation is in progress. - 3. RP# at GND ± 0.2V ensures the lowest deep power-down current. - 4. A_0 and A_1 at V_{II} provide manufacturer ID codes in x8 and x16 modes respectively. - A_o and A, at V_{IH} provide device ID codes in x8 and x16 modes respectively. All other addresses are set to zero. - 5. Commands for different Erase operations, Data Write operations of Lock-Block operations can only be successfully completed when $V_{pp} = V_{pph}$. - 6. While the WSM is running, RY/BY# in Level-Mode (default) stays at V_{OL} until all operations are complete. RY/BY# goes to V_{OH} when the WSM is not busy or in erase suspend mode. - 7. RY/BY# may be at V_{OL} while the WSM is busy performing various operations. For example, a status register read during a write operation. # 4.4 LH28F016SUR-70-Performance Enhancement Command Bus Definitions | Command | Mode | Notes | Firs | t Bus C | ycle | Seco | nd Bu | s Cycle | Thi | rd Bus | Cycle | |--------------------------------------|------------|----------|-------|---------|------|-------|-------|--------------|-------|--------|---------| | Command | Wiode | Notes | Oper | Addr | Data | Oper | Addr | Data | Oper | Addr | Data | | Read Extended
Status Register | | 1 | Write | х | 71H | Read | RA | GSRD
BSRD | | | | | Page Buffer Swap | | 7 | Write | Х | 72H | | | | | | | | Read Page Buffer | | | Write | х | 75H | Read | PA | PD | | | | | Single Load to
Page Buffer | | | Write | Х | 74H | Write | PA | PD | | | | |
 Sequential Load to | x 8 | 4,6,10 | Write | Χ | E0H | Write | Х | BCL | Write | Х | всн | | Page Buffer | x16 | 4,5,6,10 | Write | Х | E0H | Write | Х | WCL | Write | X | wch | | Page Buffer Write | x8 | 3,4,9,10 | Write | х | 0CH | Write | Α0 | BC(L,H) | Write | WA | BC(H,L) | | to Flash | x16 | 4,5,10 | Write | Х | 0CH | Write | Х | WCL | Write | WA | wch | | Two-Byte Write | x8 | 3 | Write | Х | FBH | Write | A0 | WD(L,H) | Write | WA | WD(H,L) | | Block Erase
/Confirm | | | Write | Х | 20H | Write | ВА | DOH | | | | | Lock Block
/Confirm | | | Write | Х | 77H | Write | ВА | DOH | | | | | Upload Status Bits
/Confirm | - | 2 | Write | Х | 97H | Write | Х | DOH | | | | | Upload Device
Information | | | Write | х | 99H | Write | Х | DOH | | | | | Erase All Unlocked
Blocks/Confirm | | | Write | Х | A7H | Write | х | D0H | | | | | RY/BY# Enable to
Level-Mode | | 8 | Write | Х | 96H | Write | х | 01H | | | | | RY/BY# Pulse-On-
Write | | 8 | Write | х | 96H | Write | Х | 02H | | | | | RY/BY# Pulse-On-
Erase | | 8 | Write | х | 96H | Write | х | 03H | | | | | RY/BY# Disable | | 8 | Write | х | 96H | Write | х | 04H | | | _ | | Sleep | | - | Write | х | F0H | | | | | | | | Abort | | | Write | х | 80H | | | | | | | # ADDRESS BA = Block Address PA = Page Buffer Address RA = Extended Register Address WA = Write Address X = Don't Care # DATA AD = Array Data PD = Page Buffer Data BSRD = BSR Data GSRD = GSR Data WC (L.H) = Word Count (Low, High) BC (L.H) = Byte Count (Low, High) WD (L.H) = Write Data (Low, High) #### NOTES: - 1. RA can be the GSR address or any BSR address. See Figure 4.1 and 4.2 for Extended Status Register Memory Maps. - 2. Upon device power-up, all BSR lock-bits come up locked. The Upload Status Bits command must be written to reflect the actual lock-bit status. - 3. A_0 is automatically complemented to load second byte of data. BYTE# must be at V_{ii} . - A₀ value determines which WD/BC is supplied first: A₀ = 0 looks at the WDL/BCL, A₀ = 1 looks at the WDH/BCH. - 4. BCH/WCH must be at 00H for this product because of the 256-Byte (128 Word) Page Buffer size and to avoid writing the Page Buffer contents into more than one 256-Byte segment within an array block. They are simply shown for future Page Buffer expandability. - 5. In x16 mode, only the lower byte DQ_{0.7} is used for WCL and WCH. The upper byte DQ_{0.15} is a don't care. - 6. PA and PD (Whose count is given in cycles 2 and 3) are supplied starting in the 4th cycle which is not shown. - 7. This command allows the user to swap between available Page Buffers (0 or 1). - 8. These commands reconfigure RY/BY# output to one of two pulse-modes or enable and disable the RY/BY# function. - 9. Write address, WA, is the Destination address in the flash array which must match the Source address in the Page Buffer. Refer to the LH28F016SU User's Manual. - 10. BCL = 00H corresponds to a Byte count of 1. Similarly, WCL = 00H corresponds to a Word count of 1. - 11. Unless you issue erase suspend command, it is no necessary to input D0H on third bus cycle. # 4.5 Compatible Status Register | WSMS | ESS | ES | DWS | VPPS | R | R | R | |------|-----|----|-----|------|---|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | CSR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy RY/BY# output or WSMS bit must be checked to determine completion of an operation (Erase Suspend, Erase or Data Write) before the appropriate Status bit (ESS, ES or DWS) is checked for success. CSR.6 = ERASE-SUSPEND STATUS (ESS) 1 = Erase Suspended 0 = Erase in Progress/Completed CSR.5 = ERASE STATUS (ES) 1 = Error in Block Erasure 0 = Successful Block Erase If DWS and ES are set to "1" during an erase attempt, an improper command sequence was entered. Clear the CSR and attempt the operation again. CSR.4 = DATA-WRITE STATUS (DWS) 1 = Error in Data Write 0 = Data Write Successful $CSR.3 = V_{pp} STATUS (VPPS)$ $1 = V_{pp}$ Low Detect, Operation Abort $0 = V_{pp} OK$ The VPPS bit, unlike an A/D converter, does not provide continuous
indication of $V_{\rm PP}$ level. The WSM interrogates $V_{\rm PP}$'s level only after the Data-Write or Erase command sequences have been entered, and informs the system if $V_{\rm PP}$ has not been switched on. VPPS is not guaranteed to report accurate feedback between $V_{\rm PPL}$ and $V_{\rm PPH}$. CSR.2-0 = RESERVED FOR FUTURE ENHANCEMENTS These bits are reserved for future use: mask them out when polling the CSR. # 4.6 Global Status Register | WSMS | OSS | DOS | DSS | QS | PBAS | PBS | PBSS | |------|-----|-----|-----|----|------|-----|------| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | GSR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy [1] RY/BY# output or WSMS bit must be checked to determine completion of an operation (Block Lock, Suspend, any RY/BY# reconfiguration, Upload Status Bits, Erase or Data Write) before the appropriate Status bit (OSS or DOS) is checked for success. NOTES: GSR.6 = OPERATION SUSPEND STATUS (OSS) 1 = Operation Suspended 0 = Operation in Progress/Completed GSR.5 = DEVICE OPERATION STATUS (DOS) 1 = Operation Unsuccessful 0 = Operation Successful or Currently Running GSR.4 = DEVICE SLEEP STATUS (DSS) 1 = Device in Sleep 0 = Device Not in Sleep MATRIX 5/4 00 = Operation Successful or Currently Running 01 = Device in Sleep Mode or Pending Sleep 10 = Operation Unsuccessful 11 = Operation Unsuccessful or Aborted If operation currently running, then GSR.7 \approx 0. If device pending sleep, then GSR.7 = 0. Operation aborted: Unsuccessful due to Abort command. GSR.3 = QUEUE STATUS (QS) 1 = Queue Full 0 = Queue Available GSR.2 = PAGE BUFFER AVAILABLE STATUS (PBAS) 1 = One or Two Page Buffers Available 0 = No Page Buffer Available The device contains two Page Buffers. GSR.1 = PAGE BUFFER STATUS (PBS) 1 = Selected Page Buffer Ready 0 = Selected Page Buffer Busy Selected Page Buffer is currently busy with WSM operation. GSR.0 = PAGE BUFFER SELECT STATUS (PBSS) 1 = Page Buffer 1 Selected 0 = Page Buffer 0 Selected # NOTE: ^{1.} When multiple operations are queued, checking BSR.7 only provides indication of completion for that particular block. GSR.7 provides indication when all queued operations are completed. # 4.7 Block Status Register | BS | BLS | BOS | BOAS | QS | VPPS | R | R | |----|-----|-----|------|----|------|---|---| | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | NOTES: BSR.7 = BLOCK STATUS (BS) 1 = Ready 0 = Busy [1] RY/BY# output or BS bit must be checked to determine completion of an operation (Block Lock, Suspend, Erase or Data Write) before the appropriate Status bits (BOS, BLS) is checked for success. BSR.6 = BLOCK-LOCK STATUS (BLS) 1 = Block Unlocked for Write/Erase 0 = Block Locked for Write/Erase BSR.5 = BLOCK OPERATION STATUS (BOS) 1 = Operation Unsuccessful 0 = Operation Successful or **Currently Running** BSR.4 = BLOCK OPERATION ABORT STATUS (BOAS) 1 = Operation Aborted 0 = Operation Not Aborted The BOAS bit will not be set until BSR.7 = 1. MATRIX 5/4 00 = Operation Successful or **Currently Running** 01 = Not a valid Combination 10 = Operation Unsuccessful 11 = Operation Aborted Operation halted via Abort command. BSR.3 = QUEUE STATUS (QS) 1 = Queue Full 0 = Queue Available BSR.2 = V_{pp} STATUS (VPPS) $1 = V_{pp}$ Low Detect, Operation Abort $0 = V_{pp} OK$ #### NOTES: BSR.1-0 = RESERVED FOR FUTURE ENHANCEMENTS These bits are reserved for future use; mask them out when polling the BSRs. 1. When multiple operations are queued, checking BSR.7 only provides indication of completion for that particular block. GSR.7 provides indication when all queued operations are completed. #### 5.0 **ELECTRICAL SPECIFICATIONS** #### **Absolute Maximum Ratings*** 5.1 Temperature Under Bias 0°C to + 80°C Storage Temperature - 65°C to + 125°C *WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability. # V_{cc} = 3.3V \pm 0.3V Systems⁽⁴⁾ | Symbol | Parameter | Notes | Min | Max | Units | Test Conditions | |-----------------|--|-------|-------|--------------------------|-------|---------------------| | T _A | Operating Temperature, Commercial | 1 | 0 | 70 | .c | Ambient Temperature | | Vcc | V _{CC} with Respect to GND | | - 0.2 | 7.0 | ٧ | | | V _{PP} | V _{PP} Supply Voltage with Respect to GND | 2 | - 0.2 | 7.0 | V | | | ٧ | Voltage on any Pin (except V _{CC} , V _{PP}) with Respect to GND | 2 | - 0.5 | V _{CC}
+ 0.5 | ٧ | | | 1 | Current into any Non-Supply Pin | | | ± 30 | mA | | | lout | Output Short Circuit Current | 3 | | 100 | mA | · | # $V_{cc} = 5.0V \pm 0.5V \text{ Systems}^{(4)}$ | Symbol | - Parameter | Notes | Min | Max | Units | Test Conditions | |-----------------|--|-------|-------|------|-------|---------------------| | TA | Operating Temperature, Commercial | 1 | 0 | 70 | .c | Ambient Temperature | | V _{CC} | V _{CC} with Respect to GND | 2 | - 0.2 | 7.0 | V | | | V _{PP} | V _{PP} Supply Voltage with Respect to GND | 2 | - 0.2 | 7.0 | ٧ | | | V | Voltage on any Pin (except V _{CC} , V _{PP}) with Respect to GND | 2 | - 0.5 | 7.0 | V | | | 1 | Current into any Non-Supply Pin | | | ± 30 | mA | | | lout | Output Short Circuit Current | 3 | | 100 | mA | | 1. Operating temperature is for commercial product defined by this specification. ^{2.} Minimum DC voltage is - 0.5V on input/output pins. During transitions, this level may undershoot to - 2.0V for periods < 20 ns. Maximum DC voltage on input/output pins is V_{cc} + 0.5V which, during transitions, may overshoot to V_{cc} + 2.0V for periods < 20 ns. 3. Output shorted for no more than one second. No more than one output shorted at a time. ^{4.} AC specifications are valid at both voltage ranges. See DC Characteristics tables for voltage range-specific specifications. # 5.2 Capacitance # For a 3.3V System: | Symbol | Parameter | Note | Тур | Max | Units | Test Conditions | |-------------------|--|------|-----|-----|-------|------------------------------------| | CiN | Capacitance Looking into an Address/Control Pin | 1 | 6 | 8 | рF | T _A = 25°C, f = 1.0 MHz | | Cout | Capacitance Looking into an Output Pin | 1 | 8 | 12 | pF | T _A = 25°C, f = 1.0 MHz | | C _{LOAD} | Load Capacitance Driven by Outputs for Timing Specifications | 1 | | 50 | pF | For $V_{CC} = 3.3V \pm 0.3V$ | | | Equivalent Testing Load Circuit | | | 2.5 | ns | 50Ω transmission line delay | # For a 5.0V System: | Symbol | Parameter | Note | Тур | Max | Units | Test Conditions | |-----------------|---|------|-----|-----|-------|------------------------------------| | C _{IN} | Capacitance Looking into an Address/Control Pin | 1 | 6 | 8 | pF | T _A = 25°C, f = 1.0 MHz | | Cout | Capacitance Looking into an Output Pin | 1 | 8 | 12 | pF | T _A = 25°C, f = 1.0 MHz | | | Load Capacitance Driven by Outputs | 1 | | 100 | pF | For V _{CC} = 5.0V ± 0.5V | | - LOND | for Timing Specifications | | | 30 | pF | For $V_{CC} = 5.0V \pm 0.25V$ | | | Equivalent Testing Load Circuit Vcc ±10% | | | 2.5 | ns | 25Ω transmission line delay | | | Equivalent Testing Load Circuit V _{CC} ±5% | | | 2.5 | ns | 83Ω transmission line delay | #### NOTE 1. Sampled, not 100% tested. 17 # 5.3 Timing Nomenclature All 3.3V system timings are measured from where signals cross 1.5V. For 5.0V systems use the standard JEDEC cross point definitions. Each timing parameter consists of 5 characters. Some common examples are defined below: t_{CE} t_{ELOV} time(t) from CE# (E) going low (L) to the outputs (Q) becoming valid (V) t_{OE} time(t) from OE# (G) going low (L) to the outputs (Q) becoming valid (V) t_{Acc} t_{Avov} time(t) from address (A) valid (V) to the outputs (Q) becoming valid (V) t_{AS} t_{AVWH} time(t) from address (A) valid (V) to WE# (W) going high (H) t_{DH} t_{WHDX} time(t) from WE# (W) going high (H) to when the data (D) can become undefined (X) | | Pin Characters | | Pin States | |----|---------------------------------|---|-----------------------------------| | Α | Address Inputs | Н | High | | D | Data Inputs | L | Low | | Q | Data Outputs | V | Valid | | E | CE# (Chip Enable) | Х | Driven, but not necessarily valid | | G | OE# (Output Enable) | Z | High Impedance | | W | WE# (Write Enable) | | | | Р | RP# (Deep Power-Down Pin) | | | | R | RY/BY# (Ready/Busy#) | | | | V | Any Voltage Level | - | | | Υ | 3/5# Pin | | | | 5V | V _{CC} at 4.5V Minimum | | | | 3V | V _{CC} at 3.0V Minimum | | | Figure 5. Transient Input/Output Reference Waveform ($V_{cc} = 5.0V$) Figure 6. Transient Input/Output Reference Waveform ($V_{cc} = 3.3V$) LHF16S10 20 Figure 7. Transient Equivalent Testing Load Circuit ($V_{cc} = 3.3V$) Figure 8. Transient Equivalent Testing Load Circuit ($V_{cc} = 5.0V$) Figure 9. High Speed Transient Equivalent Testing Load Circuit (V $_{\rm cc}$ = 5.0V \pm 5%) # 5.4 DC Characteristics $V_{cc} = 3.3V \pm 0.3V$, $T_A = 0^{\circ}C$ to + 70°C 3/5# = Pin Set High for 3.3V Operations | Symbol | Parameter | Notes | Min | Тур | Max | Units | Test Conditions | |------------------|--|-------|-----|-----|------|-------
---| | I _{IL} | Input Load Current | 1 | | | ± 1 | μΑ | V _{CC} = V _{CC} Max, V _{IN} = V _{CC} or GND | | ILO | Output Leakage
Current | 1 | | | ± 10 | μА | V _{CC} = V _{CC} Max, V _{IN} = V _{CC} or GND | | Iccs | V _{CC} Standby Current | 1,4 | | 4 | 8 | μА | $V_{CC} = V_{CC}$ Max,
CE_0 #, CE_1 #, RP # = $V_{CC} \pm 0.2V$
BYTE#, WP#, 3/5# = $V_{CC} \pm 0.2V$ or
$GND \pm 0.2V$ | | | | | | 1 | 4 | mA | $V_{CC} = V_{CC}$ Max,
CE_0 #, CE_1 #, RP # = V_{IH}
BYTE#, WP #, $3/5$ # = V_{IH} or V_{IL} | | ICCD | V _{CC} Deep Power-Down
Current | 1 | | 1 | 5 | μA | RP# = GND ± 0.2V | | Iccn1 | V _{CC} Read Current | 1,3,4 | | 30 | 35 | mA | $\begin{split} &V_{CC} = V_{CC} \text{ Max,} \\ &C\text{MOS: CE}_0 \text{\#, CE}_1 \text{\# = GND} \pm 0.2 \text{V} \\ &\text{BYTE} \text{\# = GND} \pm 0.2 \text{V or } V_{CC} \pm 0.2 \text{V} \\ &\text{Inputs = GND} \pm 0.2 \text{V or } V_{CC} \pm 0.2 \text{V,} \\ &\text{TTL: CE}_0 \text{\#, CE}_1 \text{\# = V}_{\text{IL}}, \\ &\text{BYTE} \text{\# = V}_{\text{IL}} \text{ or V}_{\text{IH}}, \\ &\text{Inputs = V}_{\text{IL}} \text{ or V}_{\text{IH}}, \\ &\text{f = 8 MHz, I}_{\text{OUT}} = 0 \text{ mA} \end{split}$ | | ICCR2 | V _{CC} Read Current | 1,3,4 | | 15 | 20 | mA | $\begin{split} &V_{CC} = V_{CC} \text{ Max}, \\ &C\text{MOS: } CE_0\#, CE_1\# = \text{GND} \pm 0.2\text{V}, \\ &\text{BYTE}\# = V_{CC} \pm 0.2\text{V or GND} \pm 0.2\text{V} \\ &\text{Inputs} = \text{GND} \pm 0.2\text{V or } V_{CC} \pm 0.2\text{V}, \\ &\text{TTL: } CE_0\#, CE_1\# = V_{IL} \\ &\text{BYTE}\# = V_{IH} \text{ or } V_{IL} \\ &\text{Inputs} = V_{IL} \text{ or } V_{IH}, \\ &\text{f} = 4 \text{ MHz, } I_{OUT} = 0 \text{ mA} \end{split}$ | | Iccw | V _{CC} Write Current | 1 | | 8 | 12 | mA | Word/Byte Write in
Progress | | ICCE | V _{CC} Block Erase - Current | 1 | | 6 | 12 | mA | Block Erase in Progress | | ICCES | V _{CC} Erase Suspend
Current | 1,2 | | 3 | 6 | mA | CE ₀ #, CE ₁ # =V _{IH}
Block Erase Suspended | | Ipps | V _{PP} Standby Current | 1 | | ± 1 | ± 10 | μΑ | V _{PP} ≤ V _{CC} | | I _{PPD} | V _{PP} Deep Power-Down
Current | 1 | | 0.2 | 5 | μA | RP# = GND ± 0.2V | DC Characteristics (Continued) $V_{cc} = 3.3V \pm 0.3V$, $T_{A} = 0^{\circ}C$ to + 70°C 3/5# = Pin Set High for 3.3V Operations | Symbol | Parameter | Notes | Min | Тур | Max | Units | Test Conditions | |-------------------|---|-------|-----------------------|-----|-----------------------|-------|---| | IPPR | V _{PP} Read Current | 1 | | | 200 | μA | V _{PP} > V _{CC} | | IPPW | V _{PP} Write Current | 1 | | 40 | 60 | mA | V _{PP} = V _{PPH} ,
Word/Byte Write in Progress | | IPPE | V _{PP} Erase Current | 1 | | 20 | 40 | mA | V _{PP} = V _{PPH} ,
Block Erase in Progress | | IPPES | V _{PP} Erase Suspend
Current | 1 | | | 200 | μА | V _{PP} = V _{PPH} ,
Block Erase Suspended | | V _{IL} | Input Low Voltage | | - 0.3 | | 0.8 | ٧ | | | V _{IH} | Input High Voltage | | 2.0 | | V _{CC} + 0.3 | ٧ | | | V _{OL} | Output Low Voltage | | | | 0.4 | ٧ | V _{CC} = V _{CC} Min and I _{OL} = 4 mA | | V _{OH} 1 | Output High Voltage | | 2.4 | | | ٧ | I _{OH} = - 2.0 mA
V _{CC} = V _{CC} Min | | V _{OH} 2 | | | V _{CC} - 0.2 | | | ٧ | I _{OH} = - 100 μA
V _{CC} = V _{CC} Min | | V _{PPL} | V _{PP} during Normal
Operations | | 0.0 | | 5.5 | ٧ | | | V _{PPH} | V _{PP} during Write/
Erase Operations | | 4.5 | 5.0 | 5.5 | ٧ | | | V _{LKO} | V _{CC} Erase/Write
Lock Voltage | | 2.0 | | | ٧ | | # NOTES: ^{1.} All currents are in RMS unless otherwise noted. Typical values at V_{cc} = 3.3V, V_{pp} = 5.0V, T = 25°C. These currents are valid for all product versions (package and speeds). 2. I_{cces} is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of I_{cces} and I_{cce}. ^{3.} Automatic Power Saving (APS) reduces I_{CCR} to less than 1 mA in static operation. 4. CMOS Inputs are either $V_{cc} \pm 0.2V$ or GND $\pm 0.2V$. TTL Inputs are either V_{IL} or V_{IH} . 23 # 5.5 DC Characteristics $V_{cc} = 5.0V \pm 0.5V$, $T_A = 0$ °C to + 70°C 3/5# Pin Set Low for 5V Operations | Symbol | Parameter | Notes | Min | Тур | Max | Units | Test Conditions | |-----------------|--|-------|-----|-----|------|-------|--| | lıL. | Input Load Current | 1 | | | ± 1 | μA | V _{CC} = V _{CC} Max, V _{IN} = V _{CC} or GND | | l _{LO} | Output Leakage
Current | 1 | | | ± 10 | μА | V _{CC} = V _{CC} Max, V _{IN} = V _{CC} or GND | | Iccs | V _{CC} Standby Current | 1,4 | | 5 | 10 | μА | $V_{CC} = V_{CC}$ Max,
CE_0 #, CE_1 #, RP # = $V_{CC} \pm 0.2V$
BYTE#, WP #, $3/5$ # = $V_{CC} \pm 0.2V$ or
$GND \pm 0.2V$ | | | | | | 2 | 4 | mA | V _{CC} = V _{CC} Max,
CE ₀ #, CE ₁ #, RP# = V _{IH}
BYTE#, WP#, 3/5# = V _{IH} or V _{IL} | | ICCD | V _{CC} Deep Power-Down
Current | 1 | - | 1 | 5 | μA | RP# = GND ± 0.2V | | ICCR1 | V _{CC} Read Current | 1,3,4 | | 50 | 60 | mA | $\begin{split} &V_{CC} = V_{CC} \text{ Max,} \\ &CMOS: CE_0\#, CE_1\# = GND \pm 0.2V \\ &BYTE\# = GND \pm 0.2V \text{ or } V_{CC} \pm 0.2V \\ &Inputs = GND \pm 0.2V \text{ or } V_{CC} \pm 0.2V, \\ &TTL: CE_0\#, CE_1\# = V_{IL}, \\ &BYTE\# = V_{IL} \text{ or } V_{IH} \\ &Inputs = V_{IL} \text{ or } V_{IH}, \\ &f = 10 \text{ MHz, } I_{OUT} = 0 \text{ mA} \end{split}$ | | ICCR2 | V _{CC} Read Current | 1,3,4 | | 30 | 35 | mA | $\begin{split} &V_{CC} = V_{CC} \text{ Max,} \\ &\text{CMOS: } \text{CE}_0 \text{\#, } \text{CE}_1 \text{\# = GND} \pm 0.2 \text{V,} \\ &\text{BYTE} \text{\# = } \text{V}_{CC} \pm 0.2 \text{V or GND} \pm 0.2 \text{V} \\ &\text{Inputs = GND} \pm 0.2 \text{V or } \text{V}_{CC} \pm 0.2 \text{V,} \\ &\text{TTL: } \text{CE}_0 \text{\#, } \text{CE}_1 \text{\# = V}_{IL} \\ &\text{BYTE} \text{\# = V}_{IH} \text{ or V}_{IL} \\ &\text{Inputs = V}_{IL} \text{ or V}_{IH,} \\ &\text{f = 5 MHz, } \text{I}_{OUT} = 0 \text{ mA} \end{split}$ | | Iccw | V _{CC} Write Current | 1 | | 25 | 35 | mA | Word/Byte Write in
Progress | | ICCE | V _{CC} Block Erase
Current | 1 | | 18 | 25 | mA | Block Erase in Progress | | | V _{CC} Erase Suspend
Current | 1,2 | | 5 | 10 | mA | CE ₀ #, CE ₁ # ≈V _{IH}
Block Erase Suspended | | IPPS | V _{PP} Standby Current | 1 | | | ± 10 | μА | V _{PP} ≤ V _{CC} | | (| V _{PP} Deep Power-Down
Current | 1 | | 0.2 | 5 | μА | RP# = GND ± 0.2V | # **DC Characteristics** (Continued) $V_{cc} = 5.0V \pm 0.5V$, $T_A = 0^{\circ}C$ to + $70^{\circ}C$ 3/5# Pin Set Low for 5V Operations | Symbol | Parameter | Notes | Min | Тур | Max | Units | Test Conditions | |-------------------|---|-------|-----------------------|-----|-----------------------|-------|---| | IPPR | V _{PP} Read Current | 1 | | 65 | 200 | μΑ | V _{PP} > V _{CC} | | IPPW | V _{PP} Write Current | 1 | | 40 | 60 | mA | V _{PP} = V _{PPH} ,
Word/Byte Write in Progress | | IPPE | V _{PP} Erase Current | 1 | | 20 | 40 | mA | V _{PP} = V _{PPH} ,
Block Erase in Progress | | IPPES | V _{PP} Erase Suspend
Current | 1 | | 65 | 200 | μA | V _{PP} = V _{PPH} ,
Block Erase Suspended | | VIL | Input Low Voltage | | - 0.5 | | 0.8 | ٧ | | | ViH | Input High Voltage | | 2.0 | | V _{CC} + 0.5 | ٧ | | | V _{OL} | Output Low Voltage | | | | 0.45 | ٧ | V _{CC} = V _{CC} Min and
I _{OL} = 5.8 mA | | V _{OH} 1 | Output High Voltage | | 0.85
Vcc | | | ٧ | I _{OH} = - 2.5 mA
V _{CC} = V _{CC} Min | | V _{OH} 2 | | | V _{CC} - 0.4 | | | ٧ | I _{OH} = - 100 μA
V _{CC} = V _{CC} Min | | V _{PPL} | V _{PP} during Normal
Operations | | 0.0 | | 5.5 | ٧ | | | V _{PPH} | V _{PP} during Write/
Erase Operations | _ | 4.5 | 5.0 | 5.5 | V | | | V _{LKO} | V _{CC} Erase/Write
Lock Voltage | | 2.0 | | | ٧ | | ^{1.} All currents are in RMS unless otherwise noted. Typical values at $V_{cc} = 5.0V$, $V_{pp} = 5.0V$, T = 25°C. These currents are valid for all product versions (package and speeds). ^{2.} I_{CCES} is specified with the device de-selected. If the device is read while in erase suspend mode, current draw is the sum of I_{CCES} and I_{CCR}. ^{3.} Automatic Power Saving (APS) reduces I_{CCR} to less than 2 mA in Static operation. 4. CMOS Inputs are either $V_{CC} \pm 0.2 V$ or GND $\pm 0.2 V$. TTL Inputs are either V_{IL} or V_{IH} . 5.6 AC Characteristics - Read Only Operations⁽¹⁾ T_A =0°C to +70°C | 0 | D | Natas | Vcc=3 | .3V±0.3V | Vcc=2. | 7V-3.6V | Units | |--|---|-------|-------|----------|--------|---------|-------| | Symbol | Parameter | Notes | Min | Max | Min | Max | Units | | t _{AVAV} | Read Cycle Time | |
120 | | 160 | | ns | | taveL | Address Setup to
CE# Going Low | 3,4 | 10 | | 10 | | ns | | tavgl | Address Setup to
OE# Going Low | 3,4 | 0 | | 0 | | ns | | tavqv | Address to Output Delay | | | 120 | | 160 | ns | | tELQV | CE# to Output Delay | 2 | | 120 | | 160 | ns | | t _{PHQV} | RP# High to Output Delay | | | 620 | | 650 | ns | | tGLQV | OE# to Output Delay | 2 | | 45 | | 45 | ns | | tELQX | CE# to Output in Low Z | 3 | 0 | | 0 | | ns | | t _{EHQZ} | CE# to Output in High Z | 3 | | 50 | | 50 | ns | | tGLQX | OE# to Output in Low Z | 3 | 0 | | 0 | | ns | | tgнoz | OE# to Output in High Z | 3 | | 30 | | 30 | ns | | tон | Output Hold from Address,
CE# or OE# Change,
Whichever Occurs First | 3 | 0 | | 0 | | ns | | t _{FLQV}
t _{FHQV} | BYTE# to Output Delay | 3 | | 120 | | 160 | ns | | tFLQZ | BYTE# Low to Output in High Z | 3 | | 30 | | 30 | ns | | telfl
telfh | CE# Low to BYTE#
High or Low | 3 | | 5 | | 5 | ns | AC Characteristics - Read Only Operations⁽¹⁾ (Continued) T_A =0°C to +70°C | | | | Vcc=5. | 0V±0.25V | Vcc=5. | 0V±0.5V | Units | |--|---|-------|--------|----------|--------|---------|-------| | Symbol | Parameter | Notes | Min | Max | Min | Max | Units | | t _{AVAV} | Read Cycle Time | | 70 | | 80 | | ns | | tavel | Address Setup to CE# Going Low | 3,4 | 10 | | 10 | | ns | | t _{AVGL} | Address Setup to
OE# Going Low | 3,4 | 0 | | 0 | | ns | | t _{AVQV} | Address to Output Delay | | | 70 | | 80 | ns | | tELQV | CE# to Output Delay | 2 | | 70 | | 80 | ns | | t _{PHQV} | RP# High to Output Delay | | · | 400 | | 480 | ns | | t _{GLQV} | OE# to Output Delay | 2 | | 30 | | 35 | ns | | tELQX | CE# to Output in Low Z | 3 | 0 | | 0 | | ns | | t _{EHQZ} | CE# to Output in High Z | 3 | | 25 | | 30 | ns | | tGLQX | OE# to Output in Low Z | 3 | 0 | | 0 | | ns | | t _{GHQZ} | OE# to Output in High Z | 3 | | 25 | | 30 | ns | | tон | Output Hold from Address,
CE# or OE# Change,
Whichever Occurs First | 3 | 0 | - | 0 | | ns | | t _{FLQV}
t _{FHQV} | BYTE# to Output Delay | 3 | | 70 | | 80 | ns | | tFLQZ | BYTE# Low to Output in High Z | 3 | | 25 | | 30 | ns | | telfl
telfh | CE# Low to BYTE#
High or Low | 3 | | 5 | | 5 | ns | - See AC Input/Output Reference Waveforms for timing measurements, Figures 5 and 6. OE# may be delayed up to t_{ELOV} t_{GLOV} after the falling edge of CE# without impact on t_{ELOV}. Sampled, not 100% tested. - 4. This timing parameter is used to latch the correct BSR data onto the outputs. Figure 10. Read Timing Waveforms CEx# (E)(1) BYTE# (F) DATA (DQ0 - DQ7) DATA (DQ8 - DQ15) NOTE: HIGH Z LHF16S10 IAVAV ADDRESSES STABLE tavel = telel t_{ELFL} tELOV t_{ELQX} tavov 1. CE_x # is defined as the latter of CE_0 # or CE_1 # going Low or the first of CE_0 # or CE_1 # going High. tavel T_{EHOZ} DATA OUTPUT DATA OUTPUT DATA OUTPUT \\ HIGH Z Figure 11. BYTE# Timing Waveforms t_{GLQV} # 5.7 Power-Up and Reset Timings LHF16S10 Figure 12. V_{cc} Power-Up and RP# Reset Waveforms | Symbol | Parameter | Note | Min. | Max. | Unit | |----------------|---|------|------|------|------| | tPLYL
tPLYH | RP# Low to 3/5# Low (High) | | 0 | | μs | | tYLPH
tYHPH | 3/5# Low (High) to
RP# High | 1 | 2 | | μS | | tPL5V
tPL3V | RP# Low toVcc at 4.5V Minmum (to Vcc at 3.0V min or 3.6V max) | 2 | 0 | | μs | | tPLPH | RP# "Low"期間 | | 100 | | ns | | t5VPH | Vcc at 4.5V to RP# High | 3 | 100 | | ns | | t3VPH | Vcc at 3.0V to RP# High | 3 | 100 | | ns | | tAVQV | Address Valid to Data Valid | 4 | | 100 | ns | | tPHQV | RP# High to Data Valid for Vcc=5V±10% | 4 | | 480 | ns | # NOTES: CE,#, CE,# and OE# are switched low after Power-Up. - 1. Minimum of 2 μs is required to meet the specified t_{PHOV} times. 2. The power supply may start to switch concurrently with RP# going Low. - 3. The address access time and RP# high to data valid time are shown for 5V V_{cc} operation. Refer to the AC Characteristics Read Only Operations 3.3V $\rm V_{\rm cc}$ operation and all other speed options. # 5.8 AC Characteristics for WE# - Controlled Command Write Operations(1) $T_A = 0^{\circ}C$ to + 70°C | | <u> </u> | 1 | Vcc | ≔3.3V ± | 0.3V |
 | |-------------------|---|-------|-----|----------------|------|------| | Symbol | Parameter | Notes | Min | Тур | Max | Unit | | t _{AVAV} | Write Cycle Time | | 120 | | | ns | | typwh | V _{PP} Setup to WE# Going High | 3 | 100 | | | ns | | t _{PHEL} | RP# Setup to CE# Going Low | | 480 | | | ns | | t _{ELWL} | CE# Setup to WE# Going Low | | 10 | | | ns | | t _{AVWH} | Address Setup to WE# Going High | 2,6 | 75 | | | ns | | t _{DVWH} | Data Setup to WE# Going High | 2,6 | 75 | | | ns | | twLwH | WE# Pulse Width | | 75 | | | ns | | t _{WHDX} | Data Hold from WE# High | 2 | 10 | | | ns | | twhax | Address Hold from WE# High | 2 | 10 | | | ns | | twheh | CE# Hold from WE# High | | 10 | | | ns | | twhwL | WE# Pulse Width High | | 45 | | | ns | | tghwl | Read Recovery before Write | | 0 | | | ns | | twhal | WE# High to RY/BY# Going Low | | _ | | 100 | ns | | t _{RHPL} | RP# Hold from Valid Status Register (CSR, GSR, BSR) Data and RY/BY# High | 3 | 0 | | | ns | | t _{PHWL} | RP# High Recovery to WE# Going Low | | 1 | | | μs | | twhgL | Write Recovery before Read | | 95 | | | ns | | tavvl | V _{PP} Hold from Valid Status Register (CSR, GSR, BSR)
Data and RY/BY# High | | 0 | | | μs | | twHQV1 | Duration of Word/Byte Write Operation | 4,5 | 5 | 12 | | μs | | twHQV2 | Duration of Block Erase Operation | 4 | 0.3 | | | s | AC Characteristics for WE# - Controlled Command Write Operations(1) (Continued) $T_{A} = 0^{\circ}C \text{ to } + 70^{\circ}C$ | | | | Vcc | =5.0V±0 |).25V | Vcc | =5.0V± | 0.5V | l lmia | |---------------------|--|-------|-----|---------|-------|-----|--------|------|--------| | Symbol | Parameter | Notes | Min | Тур | Max | Min | Тур | Max | Unit | | tavav | Write Cycle Time | | 70 | | | 80 | | | ns | | tvpwh | V _{PP} Setup to WE# Going High | 3 | 100 | | | 100 | | | ns | | tPHEL | RP# Setup to CE# Going Low | | 480 | | | 480 | | | ns | | tELWL | CE# Setup to WE# Going Low | | 0 | | | 0 | | | ns | | tavwh | Address Setup to WE#
Going High | 2,6 | 50 | | | 50 | | | ns | | t _{DVWH} | Data Setup to WE# Going High | 2,6 | 50 | | | 50 | | | ns | | twLWH | WE# Pulse Width | | 40 | | | 50 | | | ns | | twhox | Data Hold from WE# High | 2 | 0 | | | 0 | | | ns | | twhax | Address Hold from WE# High | 2 | 10 | | | 10 | | | ns | | twheh | CE# Hold from WE# High | | 10 | | | 10 | | | ns | | twhwL | WE# Pulse Width High | | 30 | | | 30 | - | | ns | | tGHWL | Read Recovery before Write | | 0 | | | 0 | | | ns | | twhrL | WE# High to RY/BY# Going Low | | | | 100 | | | 100 | ns | | t _{RHPL} | RP# Hold from Valid Status
Register (CSR, GSR, BSR) Data
and RY/BY# High | 3 | 0 | | | 0 | | | ns | | tpHWL | RP# High Recovery to
WE# Going Low | · | 1 | | | 1 | | | μs | | twhgL | Write Recovery before Read | | 60 | | | 65 | | | ns | | tavvl | V _{PP} Hold from Valid Status
Register (CSR, GSR, BSR) Data
and RY/BY# High | | 0 | | | 0 | | | µs | | twHQv1 | Duration of Word/Byte
Write Operation | 4,5 | 4.5 | 8 | | 4.5 | 8 | | рѕ | | t _{WHQV} 2 | Duration of Block
Erase Operation | 4 | 0.3 | | | 0.3 | | | S | #### NOTES CE# is defined as the latter of CE_o# or CE₁# going Low or the first of CE_o# or CE₁# going High. - 1. Read timing during write and erase are the same as for normal read. - 2. Refer to command definition tables for valid address and data values. - 3. Sampled, but not 100% tested. - 4. Write/Erase durations are measured to valid Status Register (CSR) Data. - 5. Word/Byte write operations are typically performed with 1 Programming Pulse. - 6. Address and Data are latched on the rising edge of WE# for all Command Write operations. Figure 13. AC Waveforms for Command Write Operations # 5.9 AC Characteristics for CE# - Controlled Command Write Operations⁽¹⁾ $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$ | | | | Vcc | =3.3V± | 0.3V | | |---------------------|--|-------|-----|--------|------|----------| | Symbol | Parameter | Notes | Min | Тур | Max | Unit | | t _{AVAV} | Write Cycle Time | | 120 | | | ns | | t _{PHWL} | RP# Setup to WE# Going Low | 3 | 480 | | | ns | | t _{VPEH} | V _{PP} Setup to CE# Going High | 3 | 100 | | | ns | | twlel | WE# Setup to CE# Going Low | | 0 | | | ns | | taveh | Address Setup to CE# Going High | 2,6 | 75 | | | ns | | t _{DVEH} | Data Setup to CE# Going High | 2,6 | 75 | | | ns | | t _{ELEH} | CE# Pulse Width | | 75 | | | ns | | t _{EHDX} | Data Hold from CE# High | 2 | 10 | | | ns | | t _{EHAX} | Address Hold from CE# High | 2 | 10 | | | ns | | tehwh | WE# Hold from CE# High | | 10 | | | ns | | tehel | CE# Pulse Width High | | 45 | | | ns | | tGHEL | Read Recovery before Write | | 0 | | | ns | | t _{EHRL} | CE# High to RY/BY# Going Low | | | | 100 | ns | | ^t RHPL | RP# Hold from Valid Status Register (CSR, GSR, BSR) Data and RY/BY# High | 3 | 0 | | | ns | | t _{PHEL} | RP# High Recovery to CE# Going Low | | 1 | | | μs | | tEHGL | Write Recovery before Read | | 95 | | | ns | | I . | VPP Hold from Valid Status Register (CSR, GSR, BSR) Data and RY/BY# High | | 0 | | | μs | | t _{EHQV} 1 | Duration of Word/Byte Write Operation | 4,5 | 5 | 12 | | μs | | t _{EHQV} 2 | Duration of Block Erase Operation | 4 | 0.3 | | | s | SS10 34 # AC Characteristics for CE# - Controlled Command Write Operations(1) (Continued) $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$ | | _ | | Vcc | =5.0V±(|).25V | Vcc=5.0V ± 0.5V | | | Unit | |---------------------
--|-------|-----|---------|-------|-----------------|-----|-----|------| | Symbol | Parameter | Notes | Min | Тур | Max | Min | Тур | Max | Unit | | t _{AVAV} | Write Cycle Time | | 70 | | | 80 | | | ns | | t _{PHWL} | RP# Setup to WE# Going Low | | 480 | | | 480 | | | ns | | tvpeh | V _{PP} Setup to CE# Going High | 3 | 100 | | | 100 | | | ns | | twLEL | WE# Setup to CE# Going Low | | 0 | | | 0 | | | ns | | taveh | Address Setup to
CE# Going High | 2,6 | 50 | | | 50 | | | ns | | t _{DVEH} | Data Setup to CE# Going High | 2,6 | 50 | | | 50 | | | ns | | tELEH | CE# Pulse Width | · | 40 | | | 50 | | | ns | | t _{EHDX} | Data Hold from CE# High | 2 | 0 | | | 0 | | | ns | | t _{EHAX} | Address Hold from CE# High | 2 | 10 | | | 10 | | | ns | | t _{EHWH} | WE# Hold from CE# High | | 10 | | | 10 | | | ns | | t _{EHEL} | CE# Pulse Width High | | 30 | | | 50 | | | ns | | tGHEL | Read Recovery before Write | | 0 | | | 0 | | | ns | | tehal | CE# High to RY/BY# Going Low | | | | 100 | | | 100 | ns | | t _{RHPL} | RP# Hold from Valid Status
Register (CSR, GSR, BSR) Data
and RY/BY# High | 3 | 0 - | | | 0 | | | ns | | t _{PHEL} | RP# High Recovery to CE# Going Low | | 1 | | | 1 | | | μs | | tEHGL | Write Recovery before Read | | 60 | | | 80 | | | ns | | tavvl | VPP Hold from Valid Status
Register (CSR, GSR, BSR) Data
and RY/BY# High | | 0 | | | 0 | | | μs | | t _{EHQV} 1 | Duration of Word/Byte
Write Operation | 4,5 | 4.5 | 8 | · | 4.5 | 8 | | μs | | t _{EHQV} 2 | Duration of Block
Erase Operation | 4 | 0.3 | | | 0.3 | | | s | #### NOTES CE# is defined as the latter of CE_o# or CE₁# going Low or the first of CE_o# or CE₁# going High. - 1. Read timing during write and erase are the same as for normal read. - 2. Refer to command definition tables for valid address and data values. - 3. Sampled, but not 100% tested. - 4. Write/Erase durations are measured to valid Status Register (CSR) Data. - 5. Word/Byte write operations are typically performed with 1 Programming Pulse. - 6. Address and Data are latched on the rising edge of CE# for all Command Write Operations. Figure 14. Alternate AC Waveforms for Command Write Operations PALIMINA Y # 5.10 AC Characteristics for Page Buffer Write Operations (1) $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$ | 0 | Boundary | Nasa | Vcc | =3.3V± | 0.3V | | |-------------------|--------------------------------|-------|-----|--------|------|------| | Symbol | Parameter | Notes | Min | Тур | Max | Unit | | t _{AVAV} | Write Cycle Time | | 120 | | | ns | | tELWL | CE# Setup to WE# Going Low | | 10 | | | ns | | t _{AVWL} | Address Setup to WE# Going Low | 3 | 0 | | | ns | | tovwh | Data Setup to WE# Going High | 2 | 75 | | | ns | | t _{WLWH} | WE# Pulse Width | | 75 | | | ns | | twHDX | Data Hold from WE# High | 2 | 10 | | | ns | | twhax | Address Hold from WE# High | 2 | 10 | | | ns | | twheh | CE# Hold from WE# High | | 10 | | | ns | | twhwL | WE# Pulse Width High | | 45 | | | ns | | tGHWL | Read Recovery before Write | | 0 | | | ns | | twHGL | Write Recovery before Read | | 95 | | | ns | | 0 | D | Nata | Vcc: | =5.0V±(|).25V | Vcc | =5.0∨ ± | 0.5V | J | |-------------------|--------------------------------|-------|------|---------|-------|-----|----------------|------|------| | Symbol | Parameter | Notes | Min | Тур | Max | Min | Тур | Max | Unit | | tavav | Write Cycle Time | | 70 | | | 80 | | | ns | | t _{ELWL} | CE# Setup to WE# Going Low | | 0 | | | 0 | | | ns | | t _{AVWL} | Address Setup to WE# Going Low | 3 | 0 | | | 0 | | | ns | | t _{DVWH} | Data Setup to WE# Going High | 2 | 50 | | | 50 | | | ns | | t _{WLWH} | WE# Pulse Width | | 40 | | | 50 | | | ns | | t _{WHDX} | Data Hold from WE# High | 2 | 0 | | | 0 | | | ns | | twhax | Address Hold from WE# High | 2 | 10 | | | 10 | | | ns | | twheh | CE# Hold from WE# High | | 10 | | | 10 | | | ns | | twhwL | WE# Pulse Width High | | 30 | | | 30 | | | ns | | tghwL | Read Recovery before Write | | 0 | | | 0 | | | ns | | twhgL | Write Recovery before Read | | 60 | | | 65 | | | ns | #### **NOTES** CE# is defined as the latter of CE_0 # or CE_1 # going Low or the first of CE_0 # or CE_1 # going High. - 1. These are WE#-controlled write timings, equivalent CE#-controlled write timings apply. - 2. Sampled, but not 100% tested. - 3. Address must be valid during the entire WE# Low pulse. Figure 15. Page Buffer Write Timing Waveforms 38 # 5.11 Erase and Word/Byte Write Performance $V_{cc} = 3.3V \pm 0.3V$, $T_{A} = 0$ °C to + 70°C | Symbol | Parameter | Notes | Min | Typ ⁽¹⁾ | Max | Units | Test Conditions | |---------------------|----------------------|-------|-----|--------------------|-----|-------|-----------------| | t _{WHRH} 1 | Word/Byte Write Time | 2 | | 12 | | μs | | | twhRH2 | Block Write Time | 2 | | 0.8 | 2.1 | s | Byte Write Mode | | twhRH3 | Block Write Time | 2 | | 0.4 | 1.0 | s | Word Write Mode | | | Block Erase Time | 2 | | 0.9 | 10 | S | | | | Full Chip Erase Time | 2 | | 28.8 | | S | | V_{cc} = 5.0V ± 0.5V, T_{A} = 0°C to + 70°C | Symbol | Parameter | Notes | Min | Typ ⁽¹⁾ | Max | Units | Test Conditions | |---------------------|----------------------|-------|-----|--------------------|-----|-------|-----------------| | t _{WHRH} 1 | Word/Byte Write Time | 2 | | 8 | | μs | · | | t _{WHRH} 2 | Block Write Time | 2 | | 0.54 | 2.1 | s | Byte Write Mode | | t _{WHRH} 3 | Block Write Time | 2 | | 0.27 | 1.0 | s | Word Write Mode | | | Block Erase Time | 2 | | 0.7 | 10 | s | | | | Full Chip Erase Time | 2 | | 22.4 | | S | | # NOTES: 25°C, V_{PP} = 5.0V. Excludes System-Level Overhead. # 6 Package and packing specification 1. Package Outline Specification Refer to drawing No. AA 1 1 1 3 ### 2. Markings 2-1. Marking contents (1) Product name : LH28F016SUR-70 (2) Company name : SHARP (3) Date code (4) The marking of "JAPAN" indicates the country of origin. 2-2. Marking layout Refer drawing No. AA1113 (This layout do not define the dimensions of marking character and marking position.) 3. Packing Specification (Dry packing for surface mount packages) Dry packing is used for the purpose of maintaining IC quality after mounting packages on the PCB (Printed Circuit Board). When the epoxy resin which is used for plastic packages is stored at high humidity, it may absorb 0.15% or more of its weight in moisture. If the surface mount type package for a relatively large chip absorbs a large amount of moisture between the epoxy resin and insert material (e.g. chip, lead frame) this moisture may suddenly vaporize into steam when the entire package is heated during the soldering process (e.g. VPS). This causes expansion and results in separation between the resin and insert material, and sometimes cracking of the package. This dry packing is designed to prevent the above problem from occurring in surface mount packages. 3-1. Packing Materials | Material Name | Material Specificaiton | Purpose | | | |------------------------|-------------------------------------|---------------------------------|--|--| | Tray | Conductive plastic (50devices/tray) | Fixing of device | | | | Upper cover tray | Conductive plastic (ltray/case) | Fixing of device | | | | Laminated aluminum bag | Aluminum polyethylene (lbag/case) | Drying of device | | | | Desiccant | Silica gel | Drying of device | | | | P P band | Polypropylene (3pcs/case) | Fixing of tray | | | | Inner case | Card board (500devices/case) | Packaging of device | | | | Label | Paper | Indicates part number, quantity | | | | | | and date of manufacture | | | | Outer case | Card board | Outer packing of tray | | | (Devices shall be placed into a tray in the same direction.) SHARP - 3-2. Outline dimension of tray Refer to attached drawing - 4. Storage and Opening of Dry Packing - 4-1. Store under conditions shown below before opening the dry packing (1) Temperature range : 5~40℃ (2) Humidity : 80% RH or less - 4-2. Notes on opening the dry packing - (1) Before opening the dry packing, prepare a working table which is grounded against ESD and use a grounding strap. - (2) The tray has been treated to be conductive or anti-static. If the device is transferred to another tray, use a equivalent tray. - 4-3. Storage after opening the dry packing Perform the following to prevent absorption of moisture after opening. - (1) After opening the dry packing, store the ICs in an environment with a temperature of 5~25℃ and a relative humidity of 60% or less and mount ICs within 72 hours after opening dry packing. - 4-4. Baking (drying) before mounting - (1) Baking is necessary - (A) If the humidity indicator in the desiccant becomes pink - (B) If the procedure in section 4-3 could not be performed - (2) Recommended baking conditions If the above conditions (A) and (B) are applicable, bake it before mounting. The recommended conditions are 16~24 hours at 120°C. Heat resistance tray is used for shipping tray. - 5. Surface Mount Conditions Please perform the following conditions when mounting ICs not to deteriorate IC quality. 5-1. Soldering conditions (The following conditions are valid only for one time soldering.) | Mounting Method | Temperature and Duration | Measurement Point | |------------------|--|-------------------| | Reflow soldering | Reflow soldering Peak temperature of 230℃ or less, | | | (air) | duration less than 15 seconds. | | | | 200℃ or over, duration less than 40 seconds. | | | | Temperature increase rate of $1\sim4$ C/second. | | | Manual soldering | 260℃ or less, duration less | IC outer lead | | (soldering iron) | than 10 seconds. | surface | 5-2. Conditions for removal of residual flux (1) Ultrasonic washing power(2) Washing time25 Watts/liter or lessTotal 1 minute maximum (3) Solvent temperature : 15~40°C