Quad, Low-Voltage, SPST Analog Switches

General Description

The MAX4521/MAX4522/MAX4523 are quad, low-voltage, single-pole/single-throw (SPST) analog switches. On-resistance (100Ω max) is matched between switches to 4Ω max, and is flat (12Ω max) over the specified signal range. Each switch can handle Rail-to-Rail@ ana\log signals. The off-leakage current is only 1 nA at $+25^{\circ} \mathrm{C}$ and 10 nA at $+85^{\circ} \mathrm{C}$.
The MAX4521 has four normally closed (NC) switches, and the MAX4522 has four normally open (NO) switches. The MAX4523 has two NC switches and two NO switches.
These CMOS switches can operate with dual power supplies ranging from $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ or a single supply between +2 V and +12 V . They are fully specified for single +2.7 V operation.
All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using $\pm 5 \mathrm{~V}$ or a single +5 V supply.
Battery-Operated Equipment
Data Acquisition
Test Equipment
Avionics
Audio Signal Routing
\quad Networking
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- +2V to $+\mathbf{1 2 V}$ Single Supply $\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ Dual Supplies
- 100Ω Signal Paths with $\pm 5 \mathrm{~V}$ Supplies
- Low Power Consumption, <1 $\mu \mathrm{W}$
- 4 Separately Controlled SPST Switches
- Rail-to-Rail Signal Handling
- Pin Compatible with Industry-Standard DG211/DG212/DG213
- >2kV ESD Protection per Method 3015.7
- TTL/CMOS-Compatible Inputs with $\pm 5 \mathrm{~V}$ or Single +5V Supply

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4521CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4521CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4521CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4521CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4521CGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QFN
MAX4521C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice *

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
Pin Configurations continued at end of data sheet.

Quad, Low-Voltage, SPST Analog Switches

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) (Note 2)
Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 842 mW
Narrow SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW
QSOP (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................. 762 mW
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............$~ 800 m W ~$
TSSOP (derate $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 457 mW
QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1349 mW
Operating Temperature Ranges
MAX452_C_E.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX452_E_E .. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX452_MJE ...-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ}$

Note 1: Signals on NC_NO_COM」 or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: All leads are soldered or welded to PC boards.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	T_{A}	MIN	TYP (Note 3)	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\underset{\substack{\mathrm{V}_{\mathrm{NC}} \\ \mathrm{~V}_{-}, \mathrm{V}_{\mathrm{NO}_{-}}}}{ }$	(Note 4)	C, E, M	V-		V+	V
COM_to NO, COM_to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {cOM_ }}= \pm 3 \mathrm{~V}, \mathrm{I}_{\text {cOM }}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		65	100	Ω
			C, E, M			125	
COM_to NO, COM_to NC_ On-Resistance Match Between Channels (Note 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}= \pm 3 \mathrm{~V}, \mathrm{I}_{\text {coM }}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	4	Ω
			C, E, M			6	
COM_to NO, COM_to NC_ On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {COM }}= \pm 3 \mathrm{~V}, \mathrm{I}_{\text {coM }}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		7	12	Ω
			C, E, M			15	
NO_, NC_Off-Leakage Current (Note 7)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COM }}=\mp 4.5 \mathrm{~V}, \mathrm{~V}_{-}= \pm 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			C, E	-10		10	
			M	-100		100	
COM_ Off-Leakage Current (Note 7)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COM }}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{N_{-}}=\mp 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			C, E	-10		10	
			M	-100		100	
COM_ On-Leakage Current (Note 7)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {COM }}= \pm 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
			C, E	-20		20	
			M	-200		200	

Quad, Low-Voltage, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP (Note 3)	MAX	UNITS
LOGIC INPUT							
IN_Input Logic Threshold High	VIN_H		C, E, M		1.6	2.4	V
IN_Input Logic Threshold Low	VIN_L		C, E, M	0.8	1.6		V
IN_Input Current Logic High or Low	$\mathrm{IINH}_{\sim}, \mathrm{l} \mathrm{INL}_{-}$	$\mathrm{V}_{1 \mathrm{~N}_{-}}=0.8 \mathrm{~V}$ or 2.4 V	C, E, M	-1	0.03	1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}= \pm 3 \mathrm{~V}, \mathrm{~V}_{+}=4.5 \mathrm{~V} \\ & \mathrm{~V}-=-\overline{4} .5 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		45	80	ns
			C, E, M			100	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 3 \mathrm{~V}, \mathrm{~V}_{+}=4.5 \mathrm{~V}, \\ & \mathrm{~V}-=-4.5 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	30	ns
			C, E, M			40	
Break-Before-Make Time Delay (MAX4523 only)	tBBM	$\begin{aligned} & \mathrm{V}_{\text {COM }}= \pm 3 \mathrm{~V}, \mathrm{~V}_{+}=5.5 \mathrm{~V}, \\ & \mathrm{~V}-=-5.5 \mathrm{~V} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$	5	20		ns
Charge Injection (Note 4)	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0, \mathrm{R}_{\mathrm{S}}=0 \Omega$ Figure 3	$+25^{\circ} \mathrm{C}$		1	5	pC
NO_, NC_Off-Capacitance	CN_(OFF)	$\mathrm{V}_{\mathrm{NO}_{-}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 6	$+25^{\circ} \mathrm{C}$		2		pF
COM_Off-Capacitance	Ccom_(OFF)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 6	$+25^{\circ} \mathrm{C}$		2		pF
COM_On-Capacitance	Ccom_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\text {NO_ }}=\mathrm{GND}, \\ & \mathrm{f}=1 \mathrm{MHz} \text {, Figure } 7 \end{aligned}$	$+25^{\circ} \mathrm{C}$		5		pF
Off-Isolation (Note 8)	VISO	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, C_{L}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{N}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}, \\ & \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		<-90		dB
Channel-to-Channel Crosstalk (Note 9)	V_{C} T	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{N}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}, \\ & \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		<-90		dB
POWER SUPPLY							
Power-Supply Range	V_{+}, V-		C, E, M	-6		6	V
V+ Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}$, all $\mathrm{V}_{\text {IN }}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$	-1	0.05	1	$\mu \mathrm{A}$
+ Supply Current			C, E, M	-1		1	$\mu \mathrm{A}$
V- Supply Current	I-	$\mathrm{V}-=-5.5 \mathrm{~V}$	$\begin{aligned} & \hline+25^{\circ} \mathrm{C} \\ & \hline \mathrm{C}, \mathrm{E}, \mathrm{M} \end{aligned}$	-1 -1	0.05	1	$\mu \mathrm{A}$

Quad, Low-Voltage, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP (Note 3)	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{VCOM}_{\mathrm{CO}}, \mathrm{~V}_{\mathrm{NO}}, \\ \mathrm{~V}_{\mathrm{NC}}^{2} \end{gathered}$	(Note 4)	C, E, M	0		V+	V
COM_to NO_ COM_to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=3.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		125	200	Ω
			C, E, M			250	
COM_to NO, COM_ to NC On-Resistance Match Between Channels (Note 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{-}=3.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		2	8	Ω
			C, E, M			10	
NO_, NC_Off-Leakage Current (Notes 7, 10)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{N}_{-}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			C, E	-10		10	
			M	-100		100	
COM_ Off-Leakage Current (Notes 7, 10)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{N}_{-}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			C, E	-10		10	
			M	-100		100	
COM_ On-Leakage Current (Notes 7, 10)	ICOM_(ON)	$\mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {com }}=4.5 \mathrm{~V}, 1 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-2	0.01	2	nA
			C, E,	-20		20	
			M	-200		200	
LOGIC INPUT							
IN_Input Logic Threshold High	VIN_H		C, E		1.6	2.4	V
IN_Input Logic Threshold Low	VIN_L		C, E	0.8	1.6		V
IN_Input Current Logic High or Low	linh_, ${ }_{\text {INL_ }}$	VIN_ $=0.8 \mathrm{~V}$ or 2.4 V	C, E	-1	0.03	1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{~V}_{+}=4.5 \mathrm{~V},$ Figure 1	$+25^{\circ} \mathrm{C}$		60	100	ns
			C, E, M			150	
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{COM}}^{-}=3 \mathrm{~V}, \mathrm{~V}_{+}=4.5 \mathrm{~V},$ Figure 1	$+25^{\circ} \mathrm{C}$		20	50	ns
			C, E, M			75	
Break-Before-Make Time Delay (MAX4523 only)	tBBM	$\mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{~V}_{+}=5.5 \mathrm{~V},$ Figure 2	$+25^{\circ} \mathrm{C}$	10	30		ns
Charge Injection (Note 4)	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0, \mathrm{R}_{\mathrm{S}}=0 \Omega,$ Figure 3	$+25^{\circ} \mathrm{C}$		1	5	pC
POWER SUPPLY							
V+ Supply Current	$1+$	$\mathrm{V}_{+}=5.5 \mathrm{~V}$, all $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$	-1	0.05	1	$\mu \mathrm{A}$
			C, E, M	-1		1	
V- Supply Current	I-	V - $=0$	$+25^{\circ} \mathrm{C}$	-1	0.05	1	$\mu \mathrm{A}$
			C, E, M	-1		1	

Quad, Low-Voltage, SPST Analog Switches

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP (Note 3)	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{~V}_{\mathrm{NO}},$ V_{NC}	(Note 4)	C, E, M	0		V+	V
COM_to NO, COM_to NC_ On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=1.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}^{-}=0.1 \mathrm{~mA} \end{aligned}$	$+25^{\circ} \mathrm{C}$		260	500	Ω
			C, E, M			600	
LOGIC INPUT							
IN_Input Logic Threshold High	VIN_H		C, E		1.6	2.4	V
IN_Input Logic Threshold Low	VIN_L		C, E	0.8	1.6		V
IN_Input Current Logic High or Low	linh_, ${ }_{\text {IINL }}$	$\mathrm{VIN}_{-}=0.8 \mathrm{~V}$ or 2.4 V	C, E	-1	0.03	1	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS (Note 4)							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}, \mathrm{~V}_{+}=2.7 \mathrm{~V}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		120	250	ns
			C, E, M			300	
Turn-Off Time	toff	$\mathrm{V}_{\text {COM }}=1.5 \mathrm{~V}, \mathrm{~V}_{+}=2.7 \mathrm{~V} \text {, }$ Figure 1	$+25^{\circ} \mathrm{C}$		40	80	ns
			C, E, M			100	
Break-Before-Make Time Delay (MAX4523 only)	tBBM	$\mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \mathrm{~V}_{+}=3.6 \mathrm{~V},$ Figure 2	$+25^{\circ} \mathrm{C}$	15	50		ns
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0, \mathrm{RS}=0 \Omega,$ Figure 3	$+25^{\circ} \mathrm{C}$		0.5	5	pC
POWER SUPPLY							
V+ Supply Current	I+	$\mathrm{V}_{+}=3.6 \mathrm{~V}$, all $\mathrm{V}_{1 \mathrm{~N}_{-}}=0$ or V_{+}	$+25^{\circ} \mathrm{C}$	-1	0.05	1	$\mu \mathrm{A}$
			C, E, M	-1		1	
V- Supply Current	I-	V - $=0$	$+25^{\circ} \mathrm{C}$	-1	0.05	1	$\mu \mathrm{A}$
			C, E, M	-1		1	

Note 3: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 4: Guaranteed by design.
Note 5: $\Delta \mathrm{RON}=\Delta \mathrm{RON}(\mathrm{MAX})-\Delta \mathrm{RON}(\mathrm{MIN})$.
Note 6: Resistance flatness is defined as the difference between the maximum and minimum on-resistance values, as measured over the specified analog signal range.
Note 7: Leakage parameters are 100% tested at maximum rated temperature, and guaranteed by correlation at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 8: Off-Isolation = $20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right]$, $\mathrm{V}_{\mathrm{COM}}=$ output, V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between any two switches.
Note 10: Leakage testing for single-supply operation is guaranteed by testing with dual supplies.

Quad, Low-Voltage, SPST Analog Switches

\qquad

Quad, Low-Voltage, SPST Analog Switches

Typical Operating Characteristics (continued)

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Pin Description

MAX4521		PIN		MAX4522	MAX4523		NAME	FUNCTION

*NO_ (or NC_) and COM_ pins are identical and interchangeable. Either may be considered as an input or output; signals pass equally well in either direction.

Quad, Low-Voltage, SPST Analog Switches

Applications Information

Power-Supply Considerations

Overview
The MAX4521/MAX4522/MAX4523 construction is typical of most CMOS analog switches. They have three supply pins: V_{+}, V -, and GND. V_{+}and V - are used to drive the internal CMOS switches, and they set the limits of the analog voltage on any switch. Reverse ESDprotection diodes are internally connected between each analog-signal pin and both $\mathrm{V}+$ and V -. If any analog signal exceeds V_{+}or V-, one of these diodes conducts. During normal operation these reverse-biased ESD diodes leak, forming the only current drawn from V+ or V-.
Virtually all the analog leakage current is through the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or V- and the analog signal. This means their leakages vary as the signal varies. The difference in the two diode leakages from the signal path to the V_{+}and V- pins constitutes the analog-signal-path leakage current. All analog leakage current flows to the supply terminals, not to the other switch terminal. This explains how both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no connection between the analog-signal paths and GND. The analog-signal paths consist of an N -channel and P-channel MOSFET with their sources and drains paralleled, and their gates driven out of phase to V_{+}and V - by the logic-level translators.
V_{+}and GND power the internal logic and logic-level translators, and set the input logic thresholds. The logic-level translators convert the logic levels to switched $V+$ and V - signals to drive the gates of the analog switches. This drive signal is the only connection between the logic supplies and the analog supplies. V_{+}and V - have ESD-protection diodes to GND. The logic-level inputs and output have ESD protection to V_{+}and to GND.
Increasing V- has no effect on the logic-level thresholds, but it does increase the drive to the P-channel switches, reducing their on-resistance. V- also sets the negative limit of the analog-signal voltage.

The logic-level thresholds are CMOS/TTL compatible when $\mathrm{V}_{+}=+5 \mathrm{~V}$. The threshold increases slightly as V_{+} is raised, and when $\mathrm{V}+$ reaches +12 V , the level threshold is about 3.1 V . This is above the TTL output highlevel minimum of 2.8 V , but still compatible with CMOS outputs.

Bipolar Supplies

The MAX4521/MAX4522/MAX4523 operate with bipolar supplies between $\pm 2 \mathrm{~V}$ and $\pm 6 \mathrm{~V}$. The $\mathrm{V}+$ and V - supplies need not be symmetrical, but their sum cannot exceed the absolute maximum rating of 13.0 V . Do not connect the MAX4521/MAX4522/MAX4523 V+ to +3V, and then connect the logic-level-input pins to TTL logic-level signals. TTL logic-level outputs in excess of the absolute maximum ratings can damage the part and/or external circuits.
Caution: The absolute maximum V+ to V- differential voltage is 13.0 V . Typical $\pm 6 \mathrm{~V}$ or 12 V supplies with $\pm 10 \%$ tolerances can be as high as 13.2 V . This voltage can damage the MAX4521/MAX4522/MAX4523. Even $\pm 5 \%$ tolerance supplies may have overshoot or noise spikes that exceed 13.0 V .

Single Supply
The MAX4521/MAX4522/MAX4523 operate from a single supply between +2 V and +12 V when V - is connected to GND. All of the bipolar precautions must be observed.

High-Frequency Performance In 50Ω systems, signal response is reasonably flat up to 50 MHz (see Typical Operating Characteristics). Above 20 MHz , the on-response has several minor peaks that are highly layout dependent. The problem with high-frequency operation is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10 MHz , off-isolation is about -52 dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also make off-isolation worse. Adjacent channel attenuation is about 3dB above that of a bare IC socket, and is due entirely to capacitive coupling.

Quad, Low-Voltage, SPST Analog Switches

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval (MAX4523 only)

MAXIMV

Figure 3. Charge Injection

Quad, Low-Voltage, SPST Analog Switches

Figure 4. Off-Isolation

Figure 6. Channel-Off Capacitance

Test Circuits/Timing Diagrams (continued)

Figure 5. Crosstalk

Figure 7. Channel-On Capacitance
\qquad

Quad, Low-Voltage, SPST Analog Switches

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4521EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4521ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4521EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4521EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4521EGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN
MAX4521MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP**
MAX4522CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4522CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4522CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4522CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4522CGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QFN
MAX4522C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice
MAX4522EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4522ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4522EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4522EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4522EGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN
MAX4522MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mathrm{CERDIP**}$
MAX4523CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4523CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX4523CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP
MAX4523CUE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 TSSOP
MAX4523CGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QFN
MAX4523C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice $*$
MAX4523EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX4523ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX4523EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP
MAX4523EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX4523EGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN
MAX4523MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$16 \mathrm{CERDIP**}$

*Contact factory for dice specifications.
**Contact factory for availability.

Chip Topography

MAX4521		MAX4522		MAX4523	
PIN	NAME	PIN	NAME	PIN	NAME
A	NC1	A	NO1	A	NO1
B	NC4	B	NO4	B	NO4
C	NC3	C	NO3	C	NC3
D	NC2	D	NO2	D	NC2

TRANSISTOR COUNT: 97
SUBSTRATE CONNECTED TO V+

Quad, Low-Voltage, SPST Analog Switches

Package Information

Quad, Low-Voltage, SPST Analog Switches

Package Information (continued)

Quad, Low-Voltage, SPST Analog Switches

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMUM (. 012 INCHES MAXIMUM)
2. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
3. N IS THE NUMBER OF TERMINALS.

Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION \&
Ne is the number of terminals in Y-direction
4. Dimension b applies to plated terminal and is measured DIMENSION b APPLIES TO PLATED TERMINAL AND
BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST EXIST ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.
6. EXACt Shape and size of this feature is optional
7. ALL DIMENSIONS ARE IN MILIMETERS.
3. PACKAGE WARPAGE MAX 0.05 mm
. APPLIED FOR EXPOSED PAD AND TERMINALS
exclude embedding part of exposed pad from measuring.
10. meets jedec moz20.

. this package outline applies to anvil singulation (stepped sides) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

