
Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
1

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-2021248, Issue 1

PM8610, PM8611, PM8620, PM8621

NSE/SBS
NARROWBAND CHIPSET DRIVER

DRIVER MANUAL

PROPRIETARY AND CONFIDENTIAL
PRELIMINARY

ISSUE 1: AUGUST, 02

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-2021248, Issue 1

LEGAL INFORMATION

Copyright

© 2000, 2001, 2002 PMC-Sierra, Inc.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’
internal use. In any event, you cannot reproduce any part of this document, in any form, without
the express written consent of PMC-Sierra, Inc.

Disclaimer

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any
portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all
representations and warranties of any kind regarding the contents or use of the information,
including, but not limited to, express and implied warranties of accuracy, completeness,
merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost data
resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has
been advised of the possibility of such damage.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-2021248, Issue 1

CONTACTING PMC-SIERRA

PMC-Sierra
8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: +1-604-415-6000
Fax: +1-604-415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-2021248, Issue 1

OVERVIEW

Scope

This document is the driver manual for the NSE/SBS Narrowband Chipset (PM8610, PM8611,
PM8620, PM8621) driver software. It describes the features and functionality provided by the
chipset driver, the software architecture, and the external interface of the chipset driver software.
The document also describes how the chipset driver can be ported to a different platform.

Objectives

The main objectives of this document are as follows:

�� To provide a detailed list of the chipset driver’s features

�� To describe the software architecture of the driver (e.g., data structures, state diagrams and
function descriptions)

�� To describe the external interface of the driver; this interface illustrates how the chipset driver
interacts with the underlying hardware devices, the RTOS, and the external application
software.

References

The main references for this document are as follows:

�� Narrowband Chipset System Architecture, Issue 1, PMC-2000413 (PMC-Sierra, Inc.)

�� SBI Bus Serializer Data Sheet, Issue 5, PMC- 2000168 (PMC-Sierra, Inc.)

�� NSE Data Sheet, Issue 5, PMC- 2000170 (PMC-Sierra, Inc.)

�� SBS and SBSLITE Device Driver Manual, Issue 3, PMC-2011471 (PMC-Sierra, Inc.)

�� NSE-20G and NSE-8G Device Driver Manual, Issue 2, PMC-2010053 (PMC-Sierra, Inc.)

�� ANSI – T1.105 – 1995, “Synchronous Optical Network (SONET) – Basic Description
including Multiplex Structure, Rates, and Formats”, 1995

�� ITU – G.707 – 2000, “Network Node Interface for the Synchronous Digital Hierarchy
(SDH)”, 2000

�� NSE/SBS Open Path Algorithm API Design Specification, Issue 1, PMC-2010601 (PMC-
Sierra, Inc)

�� A Survey of Rollback-recovery Protocols in Message-Passing Systems, Elnozahy, M., Alvisi,
L., Wang, Y., and Johnson, D., CMU-CS-99-148, Carnegie Mellon University, 1999.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-2021248, Issue 1

�� CHESS-NB Designing a Non-blocking Fabric for 1:2 Multicast, Issue 2, PMC-2020050
(PMC-Sierra Inc.)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-2021248, Issue 1

TABLE OF CONTENTS

Legal Information .. 2
Copyright ... 2
Disclaimer.. 2

Contacting PMC-Sierra ... 3

Overview ... 4
Scope .. 4
Objectives.. 4
References .. 4

Table of Contents .. 6

List of Figures.. 15

List of Tables ... 17

1 Introduction ... 21

2 Narrowband Chipset Overview... 22
Centralized and Distributed System Configurations ... 23
Scalability .. 24
TeleCombus and SBI Bus Mode Switching... 25
TeleCombus and SBI Bus Tributary Naming Convention 26
Chipset Loopback State .. 28
Fabric Wiring Topology.. 29
1+1 and 1:N Port Protection.. 30
Unidirectional Path Switching Ring (UPSR).. 31
Working and Protection Fabric .. 33
Standard and Doubled Fabric.. 33
CAS Traffic Routing... 35
In-band Link Communication... 36
SBS Egress Bus Integrity .. 37

3 Software Architecture ... 38

3.1 Driver External Interfaces ... 38
Application Programming Interface ... 40
Real-Time OS (RTOS) Interface ... 41
Driver Abstraction Layer (DAL) ... 41

3.2 Main Components... 41
Chipset Module Data-Block... 43
Module and Chipset Device Management .. 43
Event Processing .. 43
Status and Counts ... 43
Interface/Clock Configuration.. 44
LVDS Serial Link Control... 44
Space/Time Switch Configuration ... 45

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-2021248, Issue 1

Fabric Management Module.. 45
In-band Link Communication Module.. 46
PRGM Diagnostics .. 47
Chipset Device Diagnostics... 47

3.3 Software States... 48
Module States.. 48
Chipset Group and Device States ... 49

3.4 Operation Processing Flows... 50
Module Management... 50
Chipset Device Management .. 51
Group Management .. 52
Typical CSD Startup Sequence... 53
Connection Setup and Teardown .. 55
1+1 Port Protection in Distributed System .. 58
Adding New Line/Service Card ... 58
Replacing Working Line/Service Card .. 59

3.5 Event Processing.. 59
Calling nbcsPoll ... 60

3.6 CSD API Availability.. 61

4 Data Structures ... 62

4.1 Constants.. 62

4.2 Structures Passed by the Application ... 63
Module and Device Management ... 64
Event Servicing ... 72
Status and Counts Structures.. 76
In-band Link Controller .. 80
LVDS Link Controller ... 81
Space/Time Switch Configuration ... 82
Pseudo Random Bit Sequence Generator/Monitor Configuration 83
Interface/Clock Configuration.. 83
Fabric Management Module.. 87
Device Diagnostics Structures (DIAG_TEST)... 89

4.3 Structures in the Driver’s Allocated Memory... 90
Chipset Module Data Block: CSMDB.. 90
Group Data Block: GDB .. 94
Device Driver Database Block: DRV_SBS, DRV_NSE... 95
OPA Library Database Block: LIB_OPA .. 95
Device Settings Header: DEV_SETTINGS... 97
SBS Chipset Device Data Block: CSDDB_SBS.. 97
NSE Chipset Device Data Block: CSDDB_NSE ... 100
Device Identification Parameter Block: DEV_ID_PARM 101
Generic Device/Group Handle: HANDLE.. 102

4.4 Structures Passed through RTOS Buffers.. 102
Deferred Processing Vector: DPV... 102

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-2021248, Issue 1

4.5 Global Variables.. 102

5 Application Programming Interface .. 104

5.1 Module, Device and Group Management... 104
Opening the Driver Module: nbcsModuleOpen... 104
Closing the Driver Module: nbcsModuleClose .. 105
Starting the Driver Module: nbcsModuleStart.. 105
Stopping the Driver Module: nbcsModuleStop .. 106
Adding a Device: nbcsAdd .. 106
Defining a Group or Adding Devices to a Group: nbcsGroupAdd......................... 107
Deleting a Group or Devices from a Group: nbcsGroupDelete............................. 108
Getting the state of a Group: nbcsGroupGetState .. 109
Deleting a Device: nbcsDelete .. 109
Initializing a Device: nbcsInit ... 110
Resetting a Device: nbcsReset ..111
Activating a Device: nbcsActivate ..111
De-Activating a Device: nbcsDeActivate... 112
Adding an Initialization Profile: nbcsAddInitProfile .. 112
Getting an Initialization Profile: nbcsGetInitProfile .. 113
Deleting an Initialization Profile: nbcsDeleteInitProfile.. 113
Reading from Device Registers: nbcsRead .. 113
Writing to Device Registers: nbcsWrite... 114
Reading from a block of Device Registers: nbcsReadBlock................................. 115
Writing to a Block of Device Registers: nbcsWriteBlock 115

5.2 Interface/Clock Configuration ... 116
Configuring Bus Interface: nbcsIntfCfgBus ... 116
Configuring Bus Payload Type: nbcsIntfCfgPyld... 117
Configuring SBI Bus Tributaries: nbcsIntfCfgTrib.. 118
Configuring the CSU/DLL: nbcsIntfCfgCsu... 119
Configuring the C1 Frame Pulse Delay: nbcsIntfCfgC1FrmDly 119

5.3 LVDS Serial Link Control .. 120
Inserting line code violation: nbcsLkcInsertLcv... 120
Centering transmit FIFO: nbcsLkcCenterFifo.. 121
Forcing out-of-character alignment: nbcsLkcForceOca.. 121
Forcing out-of-frame alignment: nbcsLkcForceOfa... 122
Controlling LVDS link operation mode: nbcsLkcCntl... 123
Configuring LVDS link parameters: nbcsLkcCfg ... 124
Inserting Test Pattern in LVDS link: nbcsLkcInsertTp ... 125

5.4 Space/Time Switch Configuration... 125
Mapping the time slot: nbcsStswMapSlot.. 126
Getting the source slot: nbcsStswGetSrcSlot.. 127
Copying connection page: nbcsStswCopyPage.. 128
Getting active connection page number: nbcsStswGetPage 129
Toggling the connection page: nbcsStswTogglePage ... 130
Setting active connection page number: nbcsStswSetPage................................. 131

5.5 In-band Communication Link.. 131
Controlling in-band link controller: nbcsIlcCntl .. 131
Retrieving the received header bytes: nbcsIlcGetRxHdr 132
Retrieving the received messages: nbcsIlcGetRxMsg.. 133

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-2021248, Issue 1

Getting the number of received messages: nbcsIlcGetRxNumMsg 134
Sending in-band link messages: nbcsIlcTxMsg .. 135
Querying Free Space in ILC Tx FIFO: nbcsIlcGetTxFifoLvl.................................. 137
Setting Tx Message Header: nbcsIlcSetTxHdr ... 138

5.6 PRBS Generator and Monitor... 139
Configuring payload for the PRGM: nbcsPrgmCfgPyld .. 139
Configuring the PRGM: nbcsPrgmCfg .. 140
Forcing a bit error in the PRGM: nbcsPrgmForceErr.. 140
Resynchronizing in the PRGM: nbcsPrgmResync.. 141

5.7 Narrowband Switching Service Module.. 141
Mapping virtual tributaries: nbcsFmgtMapTrib .. 142
Unmapping virtual tributary: nbcsFmgtUnMapTrib.. 143
Setting chipset to loopback state: nbcsFmgtSetLpbkMode 143
Retrieving Current Connection Map: nbcsFmgtGetMap 144
Retrieving Changed Setting of the Connection Map: nbcsFmgtGetChgMap 146
Defining the Physical Wiring of the Fabric: nbcsFmgtDefWiring........................... 148
Mapping DS0 in SBI bus mode: nbcsFmgtMapDS0 ... 149
Unmapping DS0 in SBI bus mode: nbcsFmgtUnMapDS0.................................... 150
Reserving total number of virtual tributaries for CAS routes:

nbcsFmgtRsvpCasRoute.. 151
Setting Port Protection: nbcsFmgtSetProtect ... 151
Clearing Port Protection: nbcsFmgtClearProtect .. 152
Switching Over a Port Protection: nbcsFmgtSwitchProtect 153

5.8 Event Processing Functions ... 154
Polling the Chipset Driver Events: nbcsPoll .. 154
Getting the Event Enable Mask: nbcsEventGetMask ... 154
Setting the Event Mask: nbcsEventSetMask .. 155
Clearing the Event Mask: nbcsEventClearMask... 155
Detecting C1 Frame Pulse: nbcsEventDetectC1FP ... 156

5.9 Status and Counts Functions.. 157
Reading the Device Counters: nbcsStatsGetCounts .. 157
Getting the Current Status: nbcsStatsGetStatus ... 157

5.10 Device Diagnostics.. 158
Testing Register Accesses: nbcsDiagTestReg.. 158
Testing RAM Accesses: nbcsDiagTestRam .. 159
Controlling diagnostic loopback: nbcsDiagLpbk ... 159

5.11 Callback Functions.. 160
Notifying the Application of ILC data received events: cbackIlcRxData................ 160
Notifying the Application of ILC header bits changed events: cbackIlcHead 161
Notifying the Application of Interface events: cbackIntf... 161
Notifying the Application of LVDS Link events: cbackLkc 162
Notifying the Application of Space/time Switch events: cbackStsw....................... 163
Notifying the Application of C1 Frame Pulse: cbackC1FP.................................... 163
Notifying the Application of PRGM events: cbackPrgm .. 164

6 Hardware Interface ... 165

7 RTOS Interface... 166

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-2021248, Issue 1

7.1 Memory Allocation / De-Allocation.. 166
Allocating Memory: sysNbcsMemAlloc ... 166
Freeing Memory: sysNbcsMemFree ... 166

7.2 Buffer Management .. 167
Starting Buffer Management: sysNbcsBufferStart ... 167
Getting a DPV Buffer: sysNbcsDPVBufferGet .. 167
Returning a DPV Buffer: sysNbcsDPVBufferRtn .. 167
Stopping Buffer Management: sysNbcsBufferStop ... 168

7.3 Timers... 168
Creating a Timer: sysNbcsTimerCreate .. 168
Starting a Timer: sysNbcsTimerStart ... 168
Aborting a Timer: sysNbcsTimerAbort... 169
Deleting a Timer: sysNbcsTimerDelete ... 169
Suspending a Task: sysNbcsTimerSleep .. 169

7.4 Semaphores ... 170
Creating a Semaphore: sysNbcsSemCreate .. 170
Taking a Semaphore: sysNbcsSemTake... 170
Giving a Semaphore: sysNbcsSemGive ... 170
Deleting a Semaphore: sysNbcsSemDelete ... 171

7.5 Preemption ... 171
Disabling Preemption: sysNbcsPreemptDisable... 171
Re-Enabling Preemption: sysNbcsPreemptEnable .. 171

8 Porting the Narrowband Chipset Driver.. 173

8.1 Driver Source Files ... 173

8.2 Driver Porting Procedures .. 174
Step 1: Porting Driver RTOS Extensions .. 175
Step 2: Porting Driver Application-Specific Elements.. 176
Step 3: Building the Driver... 177

Appendix A: Coding Conventions ... 178
Variable Type Definitions... 178
Naming Conventions ... 178
File Organization ... 180

Appendix B: Narrowband Chipset Error Codes .. 182

Appendix C: Narrowband Chipset Events... 185

Appendix D: Narrowband Chipset Initialization Profiles.. 191
Centralized TeleCombus Application... 191
Module Initialization Vector: nbcsInitMivCentralTelecombus 191
SBS Device Initialization Vector: nbcsInitSbsDivHPT77....................................... 191
NSE Device Initialization Vector: nbcsNseDivHPT ... 192
Centralized SBI Bus Application.. 192
Module Initialization Vector: nbcsInitMivCentralSbiByte 192
SBS Device Initialization Vector: nbcs InitSbsDivLPT19 192

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-2021248, Issue 1

NSE Device Initialization Vector: nbcsInitNseDivLPT ... 193
Distributed TeleCombus Core Card Application .. 193
Module Initialization Vector: nbcsInitMivDistCoreTelecombus.............................. 193
Distributed TeleCombus Line Card Application ... 193
Module Initialization Vector: nbcsInitMivDistLineTelecombus............................... 194

Appendix F: Narrowband Chipset Driver Synchronization.. 195
Overview.. 195
Getting Checkpoint Information from the CSD: nbcsGetCheckPoint.................... 196
Setting Checkpoint Information in the CSD: nbcsSetCheckPoint 197

Appendix G: Driver Abstraction Layer (DAL) .. 198

DAL Data Structures.. 199
Constants .. 199
Data Structures.. 199

Space Switch Device Driver Interface... 205
Module and Device Management ... 205
Opening the Space Switch Driver Module: dalNbcsSswModuleOpen.................. 205
Closing the Space Switch Driver Module: dalNbcsSswModuleClose 205
Starting the Space Switch Driver Module: dalNbcsSswModuleStart..................... 206
Stopping the Space Switch Driver Module: dalNbcsSswModuleStop 206
Adding a Device: dalNbcsSswAdd.. 206
Deleting a Device: dalNbcsSswDelete.. 207
Initializing a Device: dalNbcsSswInit ... 207
Updating the Configuration of a Device: dalNbcsSswUpdate............................... 207
Resetting a Device: dalNbcsSswReset... 208
Activating a Device: dalNbcsSswActivate ... 208
De-Activating a Device: dalNbcsSswDeActivate .. 208
Reading from Device Registers: dalNbcsSswRead.. 209
Writing to Device Registers: dalNbcsSswWrite... 209
Reading from a block of Device Registers: dalNbcsSswReadBlock 209
Writing to a Block of Device Registers: dalNbcsSswWriteBlock........................... 210
Adding an Initialization Profile: dalNbcsSswAddInitProfile.................................... 210
Getting an Initialization Profile: dalNbcsSswGetInitProfile.................................... 211
Deleting an Initialization Profile: dalNbcsSswDeleteInitProfile.............................. 211
Interface/Clock Configuration.. 211
Getting/Setting Control: dalNbcsSswCntlIntf... 211
Connection Switch Configuration .. 212
Configuring the Space Switch: dalNbcsSswCfgSwhParm 212
Setting Up Connections: dalNbcsSswMapSlot ... 212
Getting Source Connections: dalNbcsSswGetSrcSlot.. 214
Getting Active Page: dalNbcsSswGetActivePage... 214
Setting Active Page: dalNbcsSswSetActivePage ... 215
Updating Inactive Page: dalNbcsSswUpdateInactivePage................................... 215
LVDS Link Controller ... 215
Inserting line code violation: dalNbcsSswInsertLkcLcv... 215
Centering transmit FIFO: dalNbcsSswCenterLkcFifo ... 216
Forcing out-of-character alignment: dalNbcsSswForceLkcOca............................ 216
Forcing out-of-frame alignment: dalNbcsSswForceLkcOfa 216
Enabling/Disabling the LVDS Link: dalNbcsSswCntlLkc....................................... 217
Accessing Link Operation Mode: dalNbcsSswCntlLkcOpMode............................ 217
Configuring LVDS link parameters: dalNbcsSswCfgLkc....................................... 217

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-2021248, Issue 1

Inserting Test Pattern in LVDS link: dalNbcsSswInsertLkcTp 218
In-band Link Controller .. 218
Configuring the In-band Link Controller: dalNbcsSswCfgIlc 218
Enabling/Disabling Tx/Rx ILC: dalNbcsSswEnableIlc... 219
Sending Messages in ILC: dalNbcsSswTxIlcMsg... 219
Querying Free Space in ILC Tx FIFO: dalNbcsSswGetIlcTxFifoLvl...................... 220
Setting Tx Message Header: dalNbcsSswSetIlcTxHdr... 220
Setting PAGE bits in Tx Message Header: dalNbcsSswSetIlcTxHdrPage 221
Setting USER bits in Tx Message Header: dalNbcsSswSetIlcTxHdrUser............ 221
Getting Tx Message Header: dalNbcsSswGetIlcTxHdr .. 222
Getting Number of Messages in Rx FIFO: dalNbcsSswGetIlcRxNumMsg........... 222
Getting Messages in Rx FIFO: dalNbcsSswGetIlcRxMsg 222
Getting Rx Header Bytes: nbcsIlcGetRxHdr ... 223
Status and Counts ... 224
Reading the Device Counters: dalNbcsSswGetCounts .. 224
Getting the Current Status: dalNbcsSswGetStatus ... 224
Interrupt Service Functions ... 224
Configuring ISR Processing: dalNbcsSswCfgISRMode 224
Getting the Interrupt Enable Mask: dalNbcsSswGetISRMask.............................. 225
Setting the Interrupt Enable Mask: dalNbcsSswSetISRMask............................... 225
Clearing the Interrupt Enable Mask: dalNbcsSswClearISRMask 225
Polling the Interrupt Status Registers: dalNbcsSswPoll .. 226
Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsSswEnaIsrC1fp......... 226
Diagnostics .. 227
Testing Register Accesses: dalNbcsSswDiagTestReg.. 227
Testing RAM Accesses: dalNbcsSswDiagTestRam .. 227

Time Switch Device Driver Interface... 228
Module and Device Management ... 228
Opening the Space Switch Driver Module: dalNbcsTswModuleOpen 228
Closing the Space Switch Driver Module: dalNbcsTswModuleClose.................... 228
Starting the Space Switch Driver Module: dalNbcsTswModuleStart 229
Stopping the Space Switch Driver Module: dalNbcsTswModuleStop.................... 229
Adding a Device: dalNbcsTswAdd .. 229
Deleting a Device: dalNbcsTswDelete .. 230
Initializing a Device: dalNbcsTswInit ... 230
Updating the Configuration of a Device: dalNbcsTswUpdate 230
Resetting a Device: dalNbcsTswReset ... 231
Activating a Device: dalNbcsTswActivate.. 231
De-Activating a Device: dalNbcsTswDeActivate ... 231
Reading from Device Registers: dalNbcsTswRead .. 232
Writing to Device Registers: dalNbcsTswWrite ... 232
Reading from a block of Device Registers: dalNbcsTswReadBlock 232
Writing to a Block of Device Registers: dalNbcsTswWriteBlock 233
Adding an Initialization Profile: dalNbcsTswAddInitProfile 233
Getting an Initialization Profile: dalNbcsTswGetInitProfile 234
Deleting an Initialization Profile: dalNbcsTswDeleteInitProfile 234
Connection Switch Configuration .. 234
Configuring the Time Switch: dalNbcsTswCfgSwhParm....................................... 234
Setting Up Connections: dalNbcsTswMapSlot .. 235
Getting Source Connections: dalNbcsTswGetSrcSlot .. 235
Getting Active Page: dalNbcsTswGetActivePage ... 236
Setting Active Page: dalNbcsTswSetActivePage .. 236
Updating Inactive Page: dalNbcsTswUpdateInactivePage 237

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-2021248, Issue 1

LVDS Link Controller ... 237
Inserting line code violation: dalNbcsTswInsertLkcLcv ... 237
Centering transmit FIFO: dalNbcsTswCenterLkcFifo.. 237
Forcing out-of-character alignment: dalNbcsTswForceLkcOca 238
Forcing out-of-frame alignment: dalNbcsTswForceLkcOfa 238
Enabling/Disabling the LVDS Link: dalNbcsTswCntlLkc 238
Configuring LVDS link parameters: dalNbcsTswCfgLkc.. 239
Inserting Test Pattern in LVDS link: dalNbcsTswInsertLkcTp................................ 239
Selecting Active LVDS link: dalNbcsTswSelectLkc ... 239
In-band Link Controller .. 240
Configuring the In-band Link Controller: dalNbcsTswCfgIlc.................................. 240
Enabling/Disabling Tx/Rx ILC: dalNbcsTswEnableIlc ... 240
Sending Messages in ILC: dalNbcsTswSetIlcTxMsg .. 241
Querying Free Space in ILC Tx FIFO: dalNbcsTswGetIlcTxFifoLvl 241
Setting Tx Message Header: dalNbcsTswSetIlcTxHdr ... 242
Getting Number of Messages in Rx FIFO: dalNbcsTswGetIlcRxNumMsg 242
Getting Messages in Rx FIFO: dalNbcsTswGetIlcRxMsg..................................... 242
Getting Rx Header Bytes: dalNbcsGetIlcRxHdr.. 243
Status and Counts ... 243
Reading the Device Counters: dalNbcsTswGetCounts... 243
Getting the Current Status: dalNbcsTswGetStatus.. 244
Interrupt Service Functions ... 244
Configuring ISR Processing: dalNbcsTswCfgISRMode .. 244
Getting the Interrupt Enable Mask: dalNbcsTswGetISRMask............................... 244
Setting the Interrupt Enable Mask: dalNbcsTswSetISRMask 245
Clearing the Interrupt Enable Mask: dalNbcsTswClearISRMask.......................... 245
Polling the Interrupt Status Registers: dalNbcsTswPoll .. 245
Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsTswEnaIsrC1fp 246
Diagnostics .. 246
Testing Register Accesses: dalNbcsTswDiagTestReg .. 246
Testing RAM Accesses: dalNbcsTswDiagTestRam... 247
Controlling diagnostic loopbacks: dalNbcsTswDiagLpbk 247
PRBS Generation/Monitoring Control ... 247
Configuring payload for the PRGM: dalNbcsTswCfgPrgmPyld............................. 247
Configuring the PRGM: dalNbcsTswCfgPrgm... 248
Forcing a bit error in the PRBS sequence: dalNbcsTswForcePrgmErr 249
Forcing Resynchronization in incoming PRBS data stream:

dalNbcsTswForcePrgmResync... 249
Interface/Clock Configuration.. 249
Configuring the TeleCombus/SBI Bus Mode: dalNbcsTswCfgIntfBusMode.......... 250
Configuring the bus parameters: dalNbcsTswCfgIntfBusParms 250
Configuring the TeleCombus Parameters: dalNbcsTswCfgTelecomParms 250
Configuring the TeleCombus Payload: dalNbcsTswCfgTelecomPyld 251
Configuring the SBI Bus Payload: dalNbcsTswCfgSbiPyld................................... 251
Enabling/Disabling CAS in a SBI Bus Tributary: dalNbcsTswEnableCas 252
Enabling/Disabling SBI Bus Tributary Output:

dalNbcsTswEnableSbiTribOutput ... 252
Configuring the SBI Bus Tributary Mode: dalNbcsTswCfgSbiTribTransMode 253
Configuring the C1 frame pulse delay: dalNbcsTswCfgC1fpDly 253
Controlling the CSU/DLL : dalNbcsTswCntlIntf ... 253

List of Terms.. 255

Acronyms .. 256

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-2021248, Issue 1

Index.. 257

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-2021248, Issue 1

LIST OF FIGURES

Figure 1: NSE/SBS Switching Fabric - Centralized System Model 22

Figure 2: NSE/SBS Switching Fabric - Distributed System Model 23

Figure 3: Stage-3 Switch Fabric: 64 SBSLITEs, 6 NSE-20G, Bandwidth = 40
Gbps.. 24

Figure 4: NSE/SBS Tributary Naming Convention for TeleCombus and SBI336
Bus .. 28

Figure 5: NSE/SBS Switching Fabric – Loopback State .. 28

Figure 6: NSE/SBS Switching Fabric – Default vs. Custom LVDS Wiring..................... 30

Figure 7: 1+1 Port Protection Before and After a Switchover .. 30

Figure 8: 1:N Port Protection (with N = 2) : Before and After a Switchover to
Protect Working A Ingress Port... 31

Figure 9: UPSR Protection - 2-fiber ... 32

Figure 10: Stage-1 Narrowband Switch Fabric: 32 SBSLITEs, 1 NSE-20G for
Working Fabric and 1 for Protect Fabric .. 32

Figure 11: Doubled SBS Fabric – 10Gbps Aggregate Bandwidth using NSE-20G 34

Figure 12: Doubled SBS and NSE Fabric – 20Gbps Aggregate Bandwidth using
Two NSE-20G... 35

Figure 13: CAS Traffic Routing Across NSE/SBS Fabric.. 36

Figure 14: Driver External Interfaces – Typical Centralized Configuration..................... 38

Figure 15: Driver External Interfaces – Typical Distributed Configurations.................... 39

Figure 16: Driver External Interfaces – Typical Distributed Configurations
(Standalone OPA) ... 40

Figure 17: Driver Architecture – Internal Components .. 42

Figure 18: Driver Software States... 48

Figure 19: Module Management Flow Diagram... 50

Figure 20: Chipset Device Management Flow Diagram... 51

Figure 21: Example of overlapping groups... 53

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-2021248, Issue 1

Figure 22: Chipset Driver Call Setup Flow Diagram – Distributed Model 57

Figure 23: NSE/SBS Chipset Driver Event Processing Model – Interrupt-Mode 60

Figure 24: NSE/SBS Chipset Driver Event Processing Model – Polling Mode............... 61

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-2021248, Issue 1

LIST OF TABLES

Table 1: Narrowband Chipset Scalable Fabric with NSE-20G... 24

Table 2: Narrowband Chipset Scalable Fabric with NSE-8G... 25

Table 3: SONET vs. SDH Virtual Tributary Naming Convention in TeleCombus........... 26

Table 4: TeleCombus and SBI336 Bus STS-1 Path Numbering....................................... 26

Table 5: Narrowband Chipset Module Initialization Vector: sNBCS_MIV...................... 64

Table 6: Narrowband Chipset SBS Device Initialization Vector:
sNBCS_DIV_SBS .. 69

Table 7: Narrowband Chipset NSE Device Initialization Vector:
sNBCS_DIV_NSE.. 69

Table 8: Narrowband Chipset Group Initialization Vector: sNBCS_GIV 70

Table 9: Narrowband Chipset Device Information Block: sNBCS_DEVINFO 72

Table 10: Narrowband Chipset Event Mask for SBS Device:
sNBCS_MASK_EVT_SBS.. 72

Table 11: Narrowband Chipset Event Mask for NSE Device:
sNBCS_MASK_EVT_NSE.. 73

Table 12: Narrowband Chipset Event Mask for Interface/Clock Block:
sNBCS_MASK_EVT_INTF .. 74

Table 13: Narrowband Chipset Event Mask for Space/Time Configuration Block:
sNBCS_MASK_EVT_STSW .. 74

Table 14: Narrowband Chipset Event Mask for LVDS Link Control Block:
sNBCS_MASK_EVT_LKC ... 74

Table 15: Narrowband Chipset Event Mask for In-band Link Controller Block:
sNBCS_MASK_EVT_ILC... 75

Table 16: Narrowband Chipset Event Mask for PRGM Block:
sNBCS_MASK_EVT_PRGM.. 76

Table 17: Narrowband Chipset Status Block: sNBCS_STATUS...................................... 76

Table 18: Narrowband Chipset Status for Interface/Clock Configuration Block:
sNBCS_STATUS_INTF ... 77

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-2021248, Issue 1

Table 19: Narrowband Chipset Status for DLL Sub-Block:
sNBCS_STATUS_DLL .. 78

Table 20: Narrowband Chipset Status for Bus Signal: sNBCS_STATUS_SIGBUS 78

Table 21: Narrowband Chipset Status for Space/Time Switch Configuration
Block: sNBCS_STATUS_STSW.. 78

Table 22: Narrowband Chipset Status for LVDS Link Controller Block:
sNBCS_STATUS_LKC .. 79

Table 23: Narrowband Chipset Status for PRGM Block:
sNBCS_STATUS_PRGM... 79

Table 24: Narrowband Chipset Device Counts Block: sNBCS_CNTR............................ 79

Table 25: Narrowband Chipset In-band Link Message Header:
sNBCS_HEADER_ILC.. 80

Table 26: Narrowband Chipset In-band Link Message Descriptor:
sNBCS_MSG_DESC_ILC ... 80

Table 27: Narrowband Chipset In-band Link Message Descriptor:
sNBCS_RXBUF_DESC_ILC .. 80

Table 28: Narrowband Chipset In-band Link Tx Buffer Descriptor:
sNBCS_TXBUF_ILC... 81

Table 29: Narrowband Chipset In-band Link Configuration: sNBCS_CFG_ILC............ 81

Table 30: Narrowband Chipset LVDS Link Configuration: sNBCS_CFG_LKC............. 81

Table 31: Narrowband Chipset Space/Time Switch Map Setting:
sNBCS_CONMAP_STSW... 82

Table 32: Narrowband Chipset PRGM Configuration: sNBCS_CFG_PRGM................. 83

Table 33: Narrowband Chipset PRGM Payload Configuration:
sNBCS_CFG_PRGM_PYLD... 83

Table 34: Narrowband Chipset CSU/DLL Configuration:
sNBCS_CFG_INTF_CSU.. 83

Table 35: Narrowband Chipset Interface Bus Configuration:
sNBCS_CFG_INTF_BUS.. 84

Table 36: Narrowband Chipset Interface Bus Mode Configuration:
sNBCS_CFG_BUSMODE ... 84

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-2021248, Issue 1

Table 37: Narrowband Chipset Interface SBI/TeleCombus Configuration
Parameter: sNBCS_CFG_BUSPARAM... 85

Table 38: Narrowband Chipset Fabric Management TeleCombus Payload
Configuration: sNBCS_CFG_PYLD_TCB.. 86

Table 39: Narrowband Chipset Fabric Management SBI Bus Payload
Configuration: sNBCS_CFG_PYLD_SBI.. 87

Table 40: Narrowband Chipset Fabric Management SBI Virtual Tributaries
Configuration Structure: sNBCS_CFG_TRIB_SBI ... 87

Table 41: Narrowband Chipset Fabric Management Timeslot Structure:
sNBCS_SLOT .. 87

Table 42: Narrowband Chipset Fabric Management TeleCombus Virtual
Tributaries Structure: sNBCS_TRIB_TCB... 88

Table 43: Narrowband Chipset Fabric Management SBI Bus Virtual Tributaries
Structure: sNBCS_TRIB_SBI .. 88

Table 44: Narrowband Chipset Fabric Management Edge Wiring:
sNBCS_EDGE_WIRING... 89

Table 45: Narrowband Chipset RAM Test Structure: sNBCS_DIAG_TEST_REG......... 89

Table 46: Narrowband Chipset RAM Test Structure:
sNBCS_DIAG_TEST_RAM.. 90

Table 47: Narrowband Chipset Module Data Block: sNBCS_CSMDB........................... 91

Table 48: Narrowband Chipset Group Data Block: sNBCS_GDB................................... 94

Table 49: Narrowband Chipset Device Driver Database Block:
sNBCS_DRV_SBS, sNBCS_DRV_NSE.. 95

Table 50: Narrowband Chipset OPA Library Database Block: sNBCS_LIB_OPA.......... 95

Table 51: Narrowband Chipset Device Setting Header:
sNBCS_DEV_SETTINGS ... 97

Table 52: Narrowband Chipset SBS Device Data Block: sNBCS_CSDDB_SBS............ 97

Table 53: Narrowband Chipset NSE Device Data Block: sNBCS_CSDDB_NSE......... 100

Table 54: Narrowband Chipset Device Information Block:
sNBCS_DEV_ID_PARM ... 101

Table 55: Narrowband Chipset Generic Device/Group Handle:
uNBCS_HANDLE.. 102

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-2021248, Issue 1

Table 56: Narrowband Chipset Deferred Processing Vector: sNBCS_DPV................... 102

Table 57: Narrowband Chipset Connection Map Header Definition – Entire Map........ 144

Table 58: Narrowband Chipset Connection Map Header Definition – Changed
Map... 146

Table 59: Variable Type Definitions.. 178

Table 60: Naming Conventions... 178

Table 61: File Naming Conventions ... 180

Table 62: Narrowband Chipset Error Codes ... 182

Table 63: Narrowband Chipset Events for PRGM Callbacks... 185

Table 64: Narrowband Chipset Events for STSW Callbacks.. 187

Table 65: Narrowband Chipset Events for LKC Callbacks .. 187

Table 66: Narrowband Chipset Events for ILC Callbacks.. 188

Table 67: Narrowband Chipset Events for INTF Callbacks ... 188

Table 68: DAL Module Initialization Vector: sNBCS_MIV_DAL 199

Table 69: DAL Time/Space Switch Configuration: sNBCS_CFG_SWH_DAL 199

Table 70: DAL Space Switch Device Initialization Vector:
sNBCS_DIV_SSW_DAL... 200

Table 71: DAL Time Switch Device Initialization Vector:
sNBCS_DIV_TSW_DAL... 201

Table 72: DAL Space Switch Interface Control Structure:
sNBCS_CTL_INTF_SSW_DAL.. 202

Table 73: DAL CSU Control Structure: sNBCS_CTL_CSU_DAL 202

Table 74: DAL TeleCombus Configuration Structure: sNBCS_CFG_INTF_TCB
_DAL .. 202

Table 75: DAL Interface Bus Configuration Structure:
sNBCS_CFG_INTF_BUSPARM_DAL... 203

Table 76: DAL Interface Bus Mode Structure: sNBCS_CFG_BUSMODE_DAL......... 203

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Introduction

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-2021248, Issue 1

1 INTRODUCTION
The following sections of the Narrowband Chipset Device Driver Manual describe the
Narrowband Chipset device driver. The chipset driver is written in ANSI-C programming
language to promote greater driver portability to other embedded hardware and Real Time
Operating System environments.

Section 2 gives an overview of the Narrowband chipset and the main features provided by the
chipset driver to the user from an application perspective. Section 3 defines the software
architecture of the Narrowband Chipset driver. It also includes a discussion of the driver’s
external interface and its main components. The Data Structure information in Section 4 describes
the elements of the driver that either configure or control its behavior. Included here are the
constants, variables, and structures that the Narrowband Chipset device driver uses to store
initialization, configuration, and status information. Section 5 provides a detailed description of
each function that is a member of the Narrowband Chipset driver Application Programming
Interface (API). This section outlines function calls that hide device-specific details and
application callbacks that notify the user of significant events.

For your convenience, Section 8 of this manual provides a brief guide for porting the Narrowband
Chipset driver to your hardware and RTOS platform. In addition, an extensive Appendix (page
178) and Index (page 257) provides you with useful reference information.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-2021248, Issue 1

2 NARROWBAND CHIPSET OVERVIEW
The NSE/SBS narrowband chipset forms a time-space-time switching fabric capable of cross
connecting traffic down to DS0 granularity. It scales the existing SBI family products from OC-3
rates to OC-12 and OC-48 rates for the Any-Service-Any-Port type (ASAP) multi-service
equipment. The chipset not only supports SBI bus devices but also TeleCombus devices. In SBI
mode, it provides DS0 granularity time-space-time switching fabric and in TeleCombus mode, it
provides a VT1.5/VT2 (TU-11/TU-12) granularity. The chipset also provides a seamless
integration to the CHESS family of PMC-Sierra Inc. The addition of NSE/SBS to the CHESS-
enabled devices allows user to perform VT-level cross connect functions. Targeted applications
for the chipset include OC-48 ADM, and channelized OC-48/4xOC-12 ASAP architecture for
carrier class products.

The Narrowband Chipset Driver (CSD) presents a unified interface for the chipset under all
different configurations and provides a synchronized access and coordinated control over the
underlying devices (PM8620/1 NSE-20/8G, and PM8610/1 SBS/SBSLITE) for Narrowband
switching applications. The main functionality includes configuration of chipset devices,
connection setup/maintenance/teardown, 1:1 and 1:N port protection, and also UPSR protection.
In addition, the chipset driver is designed to handle various NSE/SBS switching fabric
configurations including multi-stage fabric architecture that supports higher bandwidth traffic
(Note: The CSD software is designed and implemented to accommodate 1- or 3-stage fabrics;
however, the OPA library is implemented to support only 1-stage fabric. Therefore, only 1-stage
fabric is currently supported).

Figure 1: NSE/SBS Switching Fabric - Centralized System Model

TEMUX84

TEMUX84

TEMUX84

TEMUX84

SBS-Lite

SBS-lIte

SBS-Lite

SBS-LIte

NSE-8G

SBS

SBS

SBS-Lite

SBS-Lite

AAL1gator-
32

S/UNI-IMA84

FREEDM336

FREEDM336uP

Ch i

The chipset driver provides a high level of abstraction to the user for using the NSE/SBS
switching fabric. It is built on top of the following software components- the NSE and SBS
device drivers for accessing the underlying NSE and SBS devices, and the narrowband Open Path
Algorithm library (OPA Library). Central to this library is the open path algorithm (OPA) engine
that provides the intelligence for establishing calls and generating connection map settings for all
individual devices in the fabric.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-2021248, Issue 1

The chipset driver is designed to be flexible and can easily be adapted to various system
configurations. Some of the typical system configurations are shown in the following. A typical
centralized configuration (Figure 1) has all SBS(s) and NSE(s) under the control of one
microprocessor that also runs the OPA library; a distributed configuration (Figure 2) has SBS(s)
controlled by one microprocessor and then the NSE(s) by a different microprocessor, which may
also host the OPA library optionally. Additional microprocessor can be deployed to host the OPA
library for dedicated processing.

Figure 2: NSE/SBS Switching Fabric - Distributed System Model

Line Card

TEMUX84 SBS-Lite

uP

Line Card

TEMUX84 SBS-Lite

uP Switch Card

NSE-20G

uP

Service Card

SBS AAL1gator32

uP

Service Card

SBS-Lite FREEDM336

uP

LVDS
Cable

LVDS
Cable

LVDS
Cable

LVDS
Cable

NSE-20G

In-band communication links via LVDS between SBSs and NSEs are provided to facilitate inter-
device (or inter-card) communication. In a distributed configuration, one of the intended
applications is to distribute switch fabric settings from the NSE side to the remote SBSs. The
chipset driver provides functionality to receive and transmit messages using these links. However,
the definition of the in-band link message content/format and the design of any additional
communication protocol running on top of the link are beyond the scope of the chipset driver and
are left to the user application.

Centralized and Distributed System Configurations

In a centralized configuration, the chipset driver API interacts with all NSE and SBS devices that
are controlled by one microprocessor. In a distributed configuration, multiple instances of the
chipset driver can be deployed to run under multiple microprocessors. The configuration of each
of the instances varies depending on whether it is a line or switch card. The interface for all
configurations remains the same for the applicable features.

In a distributed configuration, each CSD instance is configured according to the devices under its
control. For instance, a typical line card may consist of some PHY layer devices and one or more
SBS devices. This CSD will then be configured to run just the SBS device driver and all the
physical SBS devices on the line card. In a typical switch card that consists of NSE devices, the
CSD instance will be configured to run with the NSE device driver and/or the OPA. All NSE
devices will be registered (added) as physical devices attached to the card and the remote SBS
devices will be registered as logical devices.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-2021248, Issue 1

�� It is important to note that typically, only one CSD instance should be configured to run the
OPA. (One exception is in the case of a 1+1 redundant fabric system where a second
(standby) copy of the OPA is allowed to run in parallel with the working copy.) The OPA
schedules calls in the fabric and keeps the record of all existing calls. It therefore acts as the
central repository for all the records. Since this CSD/OPA has to be aware of all devices in the
fabric, devices that are not local to this CSD/OPA must be added as “logical” devices. This
allows the CSD/OPA to properly recognize the existence of the SBS or NSE devices in the
fabric, though not directly under its control.

Scalability

The CSD is designed to support 1- or 3-stage fabrics for applications that require higher
bandwidth (Figure 3 illustrates a 3-stage, and 2-depth fabric composed of NSE-20G and SBS lite
devices). The maximum bandwidth for a 3-stage fabric is 640 Gbps for NSE-20G fabric and 96
Gbps for NSE-8G fabric. There is no real theoretical limitation to a large switching core other
than physical limitation such as board size or heat dissipation. Please refer to Table 1 (NSE-20G)
and Table 2 (NSE-8G) for other possible configurations for a switching fabric with DS0
granularity. The current CSD implementation supports only 1-stage fabric.

Figure 3: Stage-3 Switch Fabric: 64 SBSLITEs, 6 NSE-20G, Bandwidth = 40 Gbps

NSE-20G
(1,1)

SBS-lite

SBS-lite

SBS-lite

SBS-lite

SBS-lite

SBS-lite

SBS-lite

SBS-lite

Stage

NSE-20G
(2,1)

NSE-20G
(3,1)

NSE-20G
(1,2)

NSE-20G
(2,2)

NSE-20G
(3,2)

D
epth

Table 1: Narrowband Chipset Scalable Fabric with NSE-20G

Stage Depth NSE-20G SBS Bandwidth (Gbps)

1 1 1 32 20

3 2 6 64 40

3 4 12 128 80

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-2021248, Issue 1

3 8 24 256 160

3 16 48 512 320

3 32 96 1024 640

Table 2: Narrowband Chipset Scalable Fabric with NSE-8G

Stage Depth NSE-8G SBS Bandwidth (Gbps)

1 1 1 12 8

3 2 6 24 16

3 3 9 36 24

3 4 12 48 32

3 6 18 72 48

3 12 36 144 96

On the line/service card side, the CSD supports the addition/deletion of new chipset components
into the system without affecting the operation of the existing fabric. For instance, a new line card
with SBS devices can be added to the CSD when there is additional link requirements. Such an
action does not affect the operation of the existing links. Similarly, a faulty line card can be taken
out of service without affecting the rest of the system. The assumption is that the chipset system
is built on a backplane technology with hot-swap capability.

TeleCombus and SBI Bus Mode Switching

In TeleCombus mode, the switching granularity is VT1.5/VT2. The CSD takes advantage of the
column-switching mode available in the hardware to support the switching operation. The
advantage is simpler and faster connection setup since connection setting is specified for the
entire column, not just on a per-DS0 basis. Each SBS in the chipset can be set up for quad 19.44
MHz TeleCombus or single 77.76 MHz TeleCombus operation.

In SBI mode, the finest switching granularity is DS0. Each SBS device can be configured to work
in a quad SBI (19.44 MHz) or single SBI336 (77.76 MHz) mode. In addition, CAS processing
can be enabled/disabled on a per-tributary basis for DS0s with CAS bytes associated with them.
Alternately, the CSD can set up the chipset to operate in a column-switching mode, similar to the
TeleCombus mode if no DS0 routing is expected.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-2021248, Issue 1

TeleCombus and SBI Bus Tributary Naming Convention

In SBI mode, the tributary payload type on the SBS has to be properly defined for the chipset to
function properly. SBI336 column multiplexed 4 SBI buses together. It complies with most of the
SBI bus specification. Each SBI bus consists of 3 SPEs and each SPE can consist of T1, E1,
TVT1.5, TVT2, DS3/E3, and fractional T1/E1 type payloads. Traffic type cannot be mixed within
one SPE but can be mixed independently across SPEs. For instance, the first SPE can carry 28
T1s (Note: T1 and TVT1.5 can be mixed within one SPE), the second SPE can carry 21 E1s and
the third can be defined for one DS3.

In either bus mode, the user specifies the VTs to be switched across the fabric. For instance, the
user need only specify the source and destination SBS, SBI bus number, SPE number, and the T1
number to route the entire T1 across the fabric. In TeleCombus mode, SONET specification is
used to label the virtual tributaries specified by the STS-3 (ranges from 1 to 4) and STS-1 (ranges
from 1 to 3) numbers, the VT group number ranges from 1 to 7, and the VTx number where x =
1.5, 2, 3, and 6. The tributary number for VT1.5, VT2, VT3, and VT6 varies from 1 to 4, 3, 2, and
1 respectively (Figure 4). Note that there can only be one type of VT defined in one particular VT
group.

SDH naming convention may also be employed in place of SONET. The AUG-1, AU-3, and
TUG-2 replace the STS-3, STS-1 and VT group numbers. The VTs are replaced by TU-11, TU-12
and TU-2 that correspond to the VT1.5, VT2, and VT6 in SONET (Note: There is no SDH
equivalent of SONET’s VT3). This naming convention applies to frames with AU-3 structure. For
AU-4 structured frame, all are the same except the TUG-3 number replaces the AU-3 number.

Table 3: SONET vs. SDH Virtual Tributary Naming Convention in TeleCombus

SONET SDH AU-3 structured frame SDH AU-4 structured frame

STS-3 number AUG-1 number AUG-1 number

STS-1 number AU-3 number TUG-3 number

VT group number TUG-2 number TUG-2 number

Virtual Tributary number: Tributary Unit (TU) number Tributary Unit (TU) number

The API functions for status retrieval and PRGM refer to the STS-1 path number. The “order of
transmission” of the bytes in a SONET/SDH frame is followed and Table 4 provides the
translation between the tributary numbering and the STS-1 path number. It can also be interpreted
as how the columns from different STS-1 data streams are interleaved with each other. In other
words, the column of (1,1) is followed by that of (2,1), then the column of (3,1), and etc.

Table 4: TeleCombus and SBI336 Bus STS-1 Path Numbering

TeleCombus (STS3 num, STS1 num)
SBI336 Bus (SBI num, SPE num)

STS-1 Path number

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-2021248, Issue 1

TeleCombus (STS3 num, STS1 num)
SBI336 Bus (SBI num, SPE num)

STS-1 Path number

(1,1) 1

(2,1) 2

(3,1) 3

(4,1) 4

(1,2) 5

(2,2) 6

(3,2) 7

(4,2) 8

(1,3) 9

(2,3) 10

(3,3) 11

(4,3) 12

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-2021248, Issue 1

Figure 4: NSE/SBS Tributary Naming Convention for TeleCombus and SBI336 Bus

SBI
336

1

2

3

4

1

2

3

1

2

3

1

2

3

1

2

3

SBI Bus #
SPE #

TCB

1

7

1

5

7

VT Group # T1 #1

T1 #28 (CAS)

E1 #1

E1 #21

DS3

TVT1.5 #1

TVT1.5 #28

TVT2 #1

TVT2 #21

VT1.5 #1

VT1.5 #4

4 VT3 #1
VT3 #2

VT2 #1

VT3 #2

VT1.5 #3
VT1.5 #2

VT6

VT3 #1

VT2 #3
VT2 #2

VT2 #1
VT2 #2
VT2 #3

1

2

3

4

1

2

3

1

2

3

1

2

3

1

2

3

STS-3 #

STS-1 #

Chipset Loopback State

Figure 5: NSE/SBS Switching Fabric – Loopback State

Line Interface

TEMUX84 SBS-Lite

Line Interface

TEMUX84 SBS-Lite

Space Switch Fabric

NSE-20G
Service Module

SBS AAL1gator32

Service Module

SBS-Lite FREEDM336

NSE-20G

data loopback

Line Interface

TEMAP
84 SBS-LiteOCTLIU

The loopback state (Figure 5) can be viewed as the “point of reference” for the state of the
switching fabric. The CSD initializes the system to this state by default at the beginning. An API
is also available to upper layer application to aid in bringing the fabric to this loopback state at
any time. Doing so wipes out all the existing connections.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-2021248, Issue 1

Fabric Wiring Topology

The CSD is designed to take into account arbitrary wiring topologies between SBS devices and
the NSE core (Figure 6) in the system. However, designer should try to use the default, or
standard SBS/NSE wiring in the system. Non-standard wiring topologies increase the processing
overhead of the CSD.

In the case of a 3-stage fabric, the physical wiring between all NSE devices cannot be arbitrary
and must follow the “PMC-standard” NSE/NSE wiring scheme. This wiring standard is outlined
as follows: For the NSE switching core, the interconnection between all NSE devices is defined
below. The mapping specifies the core (stage 1) NSE connection associated with a given edge
(stage 0 or stage 2) NSE connection.

 depth(core) = NSEport(edge) / portsPerNSE

NSEport(core) = depth(edge) * portsPerNSE + NSEport(edge) / portsPerNSE

where portsPerNSE = NSEports / Depth. All divisions are integer division.

For the SBS-to-NSE connections, a SBS device must connect to the same port number of the two
NSE devices that are at the same depth.

For instance, if it is a 3-stage fabric made up of NSE-20Gs with depth 2, here is the “standard"
connection. NSE(x,y) specifies the NSE devices in the fabric with x denotes the stage and y
denotes the depth. SBS(z) specifies the SBS devices attached to the 3-stage NSE core.

NSE(1,0) incoming ports(0-15) connects to NSE(0,0) outgoing ports(0-15)
NSE(1,0) incoming ports(16-31) connects to NSE(0,1) outgoing ports(0-15)
NSE(1,0) outgoing ports(0-15) connects to NSE(2,0) incoming ports(0-15)
NSE(1,0) outgoing ports(16-31) connects to NSE(2,1) incoming ports(0-15)
NSE(1,1) incoming ports(0-15) connects to NSE(0,0) outgoing ports(16-31)
NSE(1,1) incoming ports(16-31) connects to NSE(0,1) outgoing ports(16-31)
NSE(1,1) outgoing ports(0-15) connects to NSE(2,0) incoming ports(16-31)
NSE(1,1) outgoing ports(16-31) connects to NSE(2,1) incoming ports(16-31)
SBS(0) transmit LVDS link connects to NSE(1,0) port 5
SBS(0) receive LVDS link connects to NSE(3,0) port 5
SBS(1) transmit LVDS link connects to NSE(1,1) port 20
SBS(1) receive LVDS link connects to NSE(3,1) port 20

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-2021248, Issue 1

Figure 6: NSE/SBS Switching Fabric – Default vs. Custom LVDS Wiring

SBS #0
Transmit

SBS #1
Transmit

SBS #7
Transmit

NSE-8G

SBS #0
Receive

SBS #1
Receive

SBS #7
Receive

0

1

7

0

1

7

SBS #0
Transmit

SBS #1
Transmit

SBS #7
Transmit

NSE-8G

SBS #0
Receive

SBS #1
Receive

SBS #7
Receive

0

1

7

1

0

7

PMC-standard SBS/NSE
Wiring Custom SBS/NSE Wiring

1+1 and 1:N Port Protection

Figure 7: 1+1 Port Protection Before and After a Switchover

Working
Ingress Port

Protection
Ingress Port

Other Ingress
Port

Working
Egress Port

Protection
Egress Port

Other Egress
Port

Working
Ingress Port

Protection
Ingress Port

Other Ingress
Port

Working
Egress Port

Protection
Egress Port

Other Egress
Port

Before Switchover

After Switchover

The chipset driver supports 1+1 and 1:N port protection. A 1+1 port protection (Figure 7)
involves a pair of logical ports. One port is labeled as the working and the other as protection.
These labels are arbitrary and active traffic could pass through either port after a switchover.
Traffic is multicast to both the working and protection egress ports at all times. Functions are
available to group/ungroup logical ports and perform switchovers for the 1+1 port protection.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-2021248, Issue 1

For 1:N port protection (Figure 8), one logical port is reserved to protect N working ports.
Functions are available to reserve a logical port for protection purpose for a group of working
ports. At a switch over, external equipment is responsible for redirecting traffic from one of the
working ingress port to the protection port.

Figure 8: 1:N Port Protection (with N = 2) : Before and After a Switchover to Protect Working
A Ingress Port

Before Switchover

After Switchover

Working A
Ingress Port

Working B
Ingress Port

Protection
Ingress Port

Working A
Egress Port

Working B
Egress Port

Protection
Egress Port

Other Ingress
Port

Other Egress
Port

Working A
Ingress Port

Working B
Ingress Port

Protection
Ingress Port

Working A
Egress Port

Working B
Egress Port

Protection
Egress Port

Other Ingress
Port

Other Egress
Port

Unidirectional Path Switching Ring (UPSR)

UPSR (Unidirectional Path Switching Ring) is supported by the chipset driver. Traffic can be
added to or dropped from a UPSR. Figure 9 illustrates a typical UPSR operation. When adding
traffic to a UPSR, the traffic is added to both the outer and inner loops (timeslots do not have to
be the same in both loops). In the case of dropping traffic from the UPSR, traffic is either sourced
from the outer or inner loop depending upon the state of the switchover. Note that the two SBS
devices associated with a UPSR have to be declared as a UPSR protection pair prior to the
add/drop operation.

Traffic can also be added to a UPSR without protection, i.e., traffic is only added to either the
outer or inner loop in a user-specified timeslot without duplicating the same traffic on the other
loop. Likewise, unprotected traffic can also be dropped from either loop. A path level switchover
is not applicable in this case.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-2021248, Issue 1

Figure 9: UPSR Protection - 2-fiber

NE3

NE1

NE1 NE2

NE4 NE3

SBS
Outer Loop

Egress

SBS
Inner Loop

Egress

SBS
Ingress

SBS
Outer Loop

Ingress

SBS
Inner Loop

Ingress

SBS
Egress

Add
Traffic

Outer
Loop
Traffic

Inner
Loop
Traffic

Drop
Traffic

Outer
Loop

Traffic

Inner
Loop

 Traffic

D
rop

Traffic

Add
Traffic

UPSR

NE = network element

UPSR Protected Traffic Add

UPSR Protected Traffic Drop

Figure 10: Stage-1 Narrowband Switch Fabric: 32 SBSLITEs, 1 NSE-20G for Working Fabric
and 1 for Protect Fabric

NSE-20G
(WORKING)

SBS-lite #0

SBS-lite #1

SBS-lite #2

SBS-lite #15

SBS-lite #16

SBS-lite #17

SBS-lite #18

SBS-lite #31

SBS-lite #14 SBS-lite #30

working LVDS

NSE-20G
(PROTECT)

protect LVDS Working Fabric

Protect Fabric

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-2021248, Issue 1

Working and Protection Fabric

Figure 10 shows a working NSE-20G fabric with 32 SBSLITEs protected by another NSE-20G
device. The traffic can be selected to be using the working or protect LVDS links on the
SBS/SBSLITE devices. This is to protect against any hardware failure that may occur in the
fabric card. The switching over to the protect fabric card is easily achieved by one of the
following options: (a) software control, or (b) hardware control via the RWSEL pin. In either
case, user is responsible for synchronizing the connection pages between the working and the
protect fabric cards.

Standard and Doubled Fabric

Our discussion has so far been limited to standard fabric only. A limitation with the standard
fabric is its ability to handle multicasting without blocking. This limitation can be partially
(guaranteed non-blocking for 2:1 casts) alleviated by introducing more SBS or NSE devices to
the fabric. This is sometimes referred to as fabric “speed-up”.

Figure 11 shows a doubled SBS fabric. In this configuration, SBS devices are doubled up to
provide twice the number of timeslots available in a standard fabric. Each SBS pair has an
external multiplexer attached on the egress side to control the traffic selection. Traffic is either
selected from the “A” device or the “B” device at anytime depending on the control signal of the
multiplexer. The control signal is one of the TeleCombus signals from the “A” SBS device.
Depending on the path termination mode (MST, LPT, or HPT) employed by the system, different
TeleCombus signal is used for the multiplexer control. If the system is configured to run in either
MST or HPT mode, the OPL signal should be employed; otherwise, the OTAIS signal should be
used. User determines which control signal, OPL or OTAIS, when initializing the CSD via the
MIV. Please note that the OPL signal is shown in the figure. For a more in depth discussion on
doubled fabric, please refer to the “CHESS-NB Designing a Non-blocking Fabric for 1:2
Multicast (PMC-2020050).

Figure 12 shows a doubled SBS and NSE fabric. It is designed to circumvent the reduced
bandwidth supported by a doubled SBS fabric. Since the SBS devices are doubled up in a
doubled SBS fabric, the overall aggregate bandwidth is halved. The doubled SBS and NSE fabric
reclaims the lost bandwidth in a doubled SBS fabric.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-2021248, Issue 1

Figure 11: Doubled SBS Fabric – 10Gbps Aggregate Bandwidth using NSE-20G

NSE-20G

SBS #15A
Transmit

SBS #15B
Transmit

30

31

SBS #0A
Transmit

SBS #0B
Transmit

0

1

ODATA

other signals

MUXSBS #0A
Receive

SBS #0B
Receive

0

1

ODATA_A

other signals_A

OPL_A

OPL_B

ODATA_B

other signals_B

OPL

MUXSBS #15A
Receive

SBS #15B
Receive

30

31

ODATA_A

other signals_A

OPL_A

OPL_B

ODATA_B

other signals_B

OPL

ODATA

other signals

1

0

1

0

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-2021248, Issue 1

Figure 12: Doubled SBS and NSE Fabric – 20Gbps Aggregate Bandwidth using Two NSE-20G

NSE-
20G

SBS #0B
Transmit

SBS #31B
Transmit

0

31

SBS #0A
Transmit

SBS #31A
Transmit

0

31

ODATA

other signals

MUXSBS #0A
Receive

SBS #0B
Receive

0 ODATA_A

other signals_A

OPL_A

OPL_B

ODATA_B

other signals_B

OPL

MUXSBS #31A
Receive

SBS #31B
Receive

ODATA_A

other signals_A

OPL_A

OPL_B

ODATA_B

other signals_B

OPL

ODATA

other signals

NSE-
20G

31

31

0

1

0

1

0

CAS Traffic Routing

When routing CAS traffic through the fabric, the DS0s has to be first packed into a tributary with
CAS processing enabled, (The assumption is the DS0s fills a T1/E1 virtual tributary. Multiple
tributaries are required if there are more DS0s than a tributary can hold) and then switched as a
whole across the NSE space switch fabric to the destination SBS. This is deemed necessary
because only SBS has the ability to process CAS. The concept of a CAS route across the fabric is
introduced as a result when routing CAS traffic across the fabric.

A CAS route can be viewed as a channel setup for CAS traffic between the two SBSs. All CAS
DS0 traffic is first routed to the CAS reserved tributaries (Figure 13) before going through the
NSE space switch to the same CAS reserved tributaries in the output SBS. The traffic is then
routed to the destination tributary from the reserved tributary on the output SBS side.

The CSD automatically handle all aspects of CAS traffic routing and is transparent to the user.
Currently, the CSD does not support a mixture of T1 and E1 CAS traffic in the fabric.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-2021248, Issue 1

Figure 13: CAS Traffic Routing Across NSE/SBS Fabric

NSE
Fabric

soruce tributary
CAS reserved tributary
destination tributary

CAS DS0

SPEx

SPEx

(a) (b)

(c)

SPEy

In-band Link Communication

In-band links are dedicated point-to-point communication links over LVDS. This in-band link
provides a clear channel for communication between devices located remotely from each other. It
is in place to facilitate shelf-to-shelf or rack-to-rack intercommunication. Sent at every frame
(125us), each message is 36 bytes long, with 2 bytes of header, 32 bytes for payload, and 2 bytes
for the CRC-16 trailer. The header bytes provide some near-realtime control signals between
devices to synchronize page switching, indicate switchover between working or protected links
and exchange three user defined signals (hardware) and 8 Auxiliary signals (software). The User
and Auxiliary signals can be used to indicate interrupts or can be used for handshaking between
the end point microprocessors. The CSD provides API for sending, receiving messages, and
manipulating the header bytes via the in-band links.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Narrowband Chipset Overview

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-2021248, Issue 1

SBS Egress Bus Integrity

Egress bus integrity on SBS has to be preserved at all time or the operation of downstream
devices can be adversely affected. Egress bus integrity includes the proper setup of all the
transport overhead (TOH), J1, stuff, V1/2/3/4/5 and the payload columns/bytes in the frame that
are vital to the well being of the bus signals. For example, improper bus signals can be generated
as a result of a misplaced J1 byte in the outgoing bus. Leveraging the MSU programming
capability on the egress side (applicable only to SBS revision B or later devices), the CSD
automatically handles all the bus integrity issues by fixing up all the bus-related columns/bytes.
This is done when virtual tributaries (VTs) or DS0s are setup using nbcsFmgtMapTrib or
nbcsFmgtMapDs0. It is noteworthy to point out that, once the payload types are defined, these
columns/bytes can be setup in advance before any VT/DS0 connections are setup. The advantage
is to reduce the connection time because these special columns/bytes are only setup once. Aside
from disconnecting a valid circuit, API nbcsFmgtUnMapTrib and nbcsFmgtUnMapDs0 can be
used to setup these special columns/bytes in advance. The connection map settings can then be
retrieved/populated by nbcsFmgtGetChgMap. This unmapping is important to define the
“unused” DS0s or tributaries so that they have proper egress bus signal for the downstream
device. Extreme care should be taken on handling the unused DS0s (inside a tributary) or
tributaries (inside a SPE). Without unmapping the “unused” DS0s/tributaries, they may
inadvertently draw input from undesirable input timeslots and affect the egress bus signal.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-2021248, Issue 1

3 SOFTWARE ARCHITECTURE
This section of the manual describes the software architecture of the Narrowband Chipset device
driver. It includes a discussion of the driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 14, Figure 15, and Figure 16 illustrate the external interfaces defined for the Narrowband
Chipset device driver in different system configurations. The CSD can be initialized to work with
centralized, distributed or various other system configurations.

The interface between the CSD and the upper layer application is consistent regardless of
configuration. This is an attempt to present a unified interface to the upper layer regardless of
whether it is configured to run in a line card or a switch card. There are, of course, some API
functions and callbacks that are not available on the switch card or line card side when the
functionality does not belong. For instance, the switch card application cannot access PRGM
functionality that is provided by SBS devices. Below is a description of how the CSD adapts to
some typical system configurations

Figure 14: Driver External Interfaces – Typical Centralized Configuration

System Application

Narrowband Chipset Driver

NSE DriverSBS Driver

Open Path Library
(OPA Lib)

SBS device(s) NSE device(s)

RTOS

System
Calls

System
Calls

Application CallbaclsFunction Calls

PHY
Driver

PHY
device

Driver Abstraction Layer (DAL)

In a typical centralized configuration, all devices are under the control of a single microprocessor.
It is the most straightforward configuration since all devices, SBS, NSE, and other supporting
devices, are assumed to be under the control of a single microprocessor. The CSD can easily be
configured to accommodate such configuration.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-2021248, Issue 1

Figure 15: Driver External Interfaces – Typical Distributed Configurations

Switch Card Application

Narrowband CSD-
SwitchCard

NSE Driver

Open Path
Library

(OPA Lib)

NSE device(s)

LVDS

RTOS

SBS Driver

SBS device(s)

Line/Service Card Application

Narrowband
CSD-

Line/Service CardPHY
Deivce
Driver

PHY
devices

RTOS

Function
Calls

Application
Callbacks

System
Calls

System
Calls

Function
Calls

Application
CallbacksAPI Call &

Callbacks

System
Calls

System
Calls

System
Calls

Link
Layer

Link
Layer

DALDAL

In a typical distributed configuration, multiple instances of the chipset driver can be deployed to
run under multiple microprocessors. Each CSD instance is most likely configured differently to
accommodate different system configurations. For instance, a typical line card may consist of
some PHY layer devices and one or more SBS devices, the CSD will then be configured to run
just the SBS device driver and all the physical SBS devices attached to the line card. On the
contrary, a typical switch card that consists of NSE devices requires the CSD to run with the NSE
device driver. All the NSE devices will be registered (added) as physical devices that are attached
to the card. Figure 16 shows another variation in a distributed system model with the CSD/OPA
physically detached from any physical SBS and NSE devices. An external link (e.g., Ethernet) is
required to act as the communication channel between all boards.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-2021248, Issue 1

Figure 16: Driver External Interfaces – Typical Distributed Configurations (Standalone OPA)

Switch Card
Application

CSD-
SwitchCard

NSE Driver

Open Path
Library

(OPA Lib)

NSE device(s)
LVDS

SBS Driver

SBS
device(s)

Line/Service Card
Application

CSD-
Line/Service

CardPHY
Deivce
Driver

PHY
devices

RTOS

Function
Calls Application

Callbacks

Function
Calls Application

Callbacks

API Call
&

Callbacks

System
Calls

System
Calls

System
Calls

CSD-
Standalone

Switch Card Application

Communication Link

Function
Calls

DALDAL DAL-
NULL

The flexibility of the CSD lends itself to easy adaptation to all of the different system
configurations shown (or any other custom system configurations). The most important concept is
that there should only be one active OPA in the working system of a distributed system. In other
words, only one CSD instance should be configured to run the OPA. The OPA schedules calls in
the fabric and keeps the record of all existing calls. It therefore acts as the central repository for
all the records. Since this CSD/OPA has to be aware of all devices in the fabric, devices that are
not local to this CSD/OPA must be added as “logical” devices (The status of the device is
declared when adding the device via nbcsAdd). This allows the CSD/OPA to properly recognize
the existence of the SBS or NSE devices in the fabric, though not directly under its control. (In
the case of a 1+1 redundant fabric system, a second (standby) copy of the OPA is allowed to run
in parallel with the working copy.)

Application Programming Interface

The driver’s Application Programming Interface (API) is a list of high-level functions that can be
invoked by application programmers to configure, control, and monitor Narrowband Chipset
devices. The API includes functions that:

�� Manage the chipset devices

�� Perform diagnostic tests

�� Perform run-time system diagnostics with PRBS generators and monitors

�� Configure and control system interface/clock

�� Retrieve status and counts information

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-2021248, Issue 1

�� Control LVDS links operation

�� Manage the switching fabric

�� Configure the map setting in the space and time switches

�� Configure and access the in-band link communication channels

The chipset driver’s API functions use the services of the other driver components to provide this
system-level functionality to the application programmer.

The chipset driver’s API also consists of callback routines that are used to notify the application
of significant events that take place within the chipset device(s) and module.

Real-Time OS (RTOS) Interface

The chipset driver’s Real-Time Operating System (RTOS) interface provides functions that let the
chipset driver use the RTOS’s memory, interrupt, and pre-emption services. These RTOS
interface functions perform the following tasks for the chipset driver:

�� Allocate and de-allocate memory

�� Manage buffers for the ISR and the DPR

�� Take and give semaphores

�� Enable and disable pre-emption

The RTOS interface also includes service callbacks. These are functions installed by the driver
using RTOS service calls such as installing interrupts. These service callbacks are invoked when
an interrupt occurs.

Driver Abstraction Layer (DAL)

The driver abstraction layer provides abstraction to the underlying device drivers. The interface of
this layer models after the functionality of a generic time stage switch and a space stage switch.
This layer isolates the CSD from the device drivers and lends itself to easy porting of the CSD to
various hardware configurations or even to new devices that provide similar time:space:time
switching capabilities. Please refer to Appendix for more details regarding the DAL.

3.2 Main Components

Figure 17 illustrates the top-level architectural components of the Narrowband Chipset device
driver:

�� Module data-block

�� Module and chipset device management

�� Interface/clock configuration

�� Event processing module

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-2021248, Issue 1

�� Status and counts

�� In-band link communication module

�� Fabric management

�� Space/time switch configuration

�� Link control

�� PRBS generator and monitor (PRGM)

�� Device diagnostics

Figure 17: Driver Architecture – Internal Components

 Function Calls

Se
rv

ic
e

C
al

ls

Application

R
TO

S

PM8620 NSE-20G
PM8621 NSE-8G

Link
Control
Module

OPA Library

R
TO

S
In

te
rfa

ce

Hardware Interface

Application
Callbacks

Se
rv

ic
e

C
al

lb
ac

ksChipset Driver API

Status & Counts

Space/Time Switch
Configuration

Interface/Clock
Configurationl

Module & Chipset
Device Management

Chipset Module
Data Block

Inband Link
Communication Block

Chipset Diagnostics

Fabric Management
Block

NSE device driver SBS device driver

PRGM
Module

Event
Processing

Module

DRV_SBS
DRV_NSE

LIB_OPA

PM8610 SBS
PM8611 SBSLITE

Register Access and
Interrupts

Application
Callbacks

Driver Abstraction Layer (DAL)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-2021248, Issue 1

Chipset Module Data-Block

The Chipset Module Data-Block (CSMDB) is the top-layer data structure created by the
Narrowband Chipset driver. The CSMDB stores context information about the driver module,
such as:

�� Module state

�� Maximum number of devices

�� The NSE software module

�� The SBS software module

The NSE and SBS software modules manage the underlying NSE and SBS device driver. Each
module keeps track of the maximum number of devices allowed, the current count of registered
devices, etc….

Module and Chipset Device Management

The module and chipset device management block performs the following:

�� Module management services, such as initializing the driver and then allocating memory and
other RTOS resources that are needed by the driver

�� Chipset device management services, such as providing basic read/write routines and
initializing a device in a specific configuration, as well as enabling the device’s general
activity

For more information about the module and device states, see the state diagram on page 48. For
typical module and device management flow diagrams, see pages 50 and 51 respectively.

Event Processing

Event processing is closely associated with application callbacks (which is a mechanism
employed to notify the upper layer application when an event occurs). A set of events is defined
with callback ability. The user can choose to enable/disable a particular event and no callback are
issued if that event is disabled. Events mostly originate from the underlying device drivers.

Two modes are supported, namely interrupt-driven or polling. When the driver is in interrupt
mode, registered callbacks are issued to the application. If the driver is in polling mode,
application has to call a function to periodically check the occurrence of events and the issue of
callbacks.

Status and Counts

User calls nbcsStatsGetCounts to retrieve counts for the specified device or group. It is the
responsibility of the user to invoke the count routines often enough to avoid counter rollover or
saturation. It is up to the application code to derive time-based calculations such as errored
seconds.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-2021248, Issue 1

The status routine, nbcsStatsGetStatus, is responsible for retrieving the status information
from underlying devices such as clock monitoring.

Interface/Clock Configuration

The chipset works with either SBI/SBI336 or TeleCombus devices. The function,
nbcsIntfCfgBus, configures the SBS devices in the chipset driver for either bus system. The
SBS devices can be configured to handle 4xSBI bus @ 19.44 MHz or 1xSBI336 @ 77.76 MHz.
In addition, parallel 77.76 MHz SBI bus output on the transmit side can be selected. Doing so
disables all the LVDS serial output. (Note: SBSLITE does not support the 4xSBI mode nor the
parallel bus output mode). Other parameters that can be configured include bus parity, even or
odd.

For TeleCombus, the configuration is similar. User has a choice of either 4x19.44 MHz
TeleCombus or 1 x 77.76 MHz TeleCombus. For additional bus parameters, user can configure
bus parity, J1 byte position, H1 and H2 pointer value, etc… Function nbcsIntfCfgPyld,
configures the payload type of the SBI/TeleCombus once the bus type is defined. For SBI bus,
this function configures what type of traffic the SPE carries. It can be T1, E1 or DS3/E3. For
TeleCombus, this function configures the VT types, VT1.5, VT2, VT3, or VT6 being carried in
the SPE. If the system operates in SBI bus mode, the function, nbcsIntfCfgTrib, further
configures the attributes of the tributaries. For each tributary, user can enable the output on the
bus (applicable only in outgoing but not incoming bus), enable the CAS processing, enable the
justification request, and defines the tributary as a transparent virtual one (TVT).

All the CSUs (clock synthesis units) and DLLs are accessible via nbcsIntfCfgCsu provided by
this logical block. User can reset or put any units in the chipset to low power mode.

The C1 frame pulse delay of a given device/group can be programmed by calling API
nbcsIntfCfgC1FrmDly.

LVDS Serial Link Control

This block provides functions nbcsLkcInsertLcv, nbcsLkcInsertTp,
nbcsLkcForceOfa, nbcsLkcForceOca, and nbcsLkcCenterFifo for forcing line code
violation, inserting test pattern, out-of-frame and character alignment, and centering FIFOs
respectively. In addition, serial links in NSE can be put into low power mode when unused.
Invoking API function nbcsLkcCntl for SBS devices, user can select the active link between the
working and the protection link if the software link control option is enabled. This parameter,
along with J0 byte insertion, and termination mode are all accessible from this block using
nbcsLkcCfg.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-2021248, Issue 1

Space/Time Switch Configuration

This logical block exposes two functions, nbcsStswMapSlot and nbcsStswGetSrcSlot to
write and read the connection maps of the underlying switches, time or space, directly. It is
necessary to access the individual switch when the user has to set up new calls across the fabric.
The sequence is usually to make request for new connections, retrieves all the new settings, and
then configures the switch(es) with the new settings. These functions can also be used to set up
the switching fabric directly, bypassing the OPA all together.

In addition, the driver provides the API nbcsStswSetPage to switch page(s) of a single device
or a group of devices in the system. The API function nbcsStswGetPage retrieves the active
page of a device. By utilizing the in-band link PAGE bits, both API functions can be invoked
even for a remote SBS device (from the switch card side) in a distributed configuration.

The API function nbcsStswTogglePage is designed to perform a system-wide page switching
for all registered NSE/SBS devices. This operation is pointless when not synchronized with the
incoming C1 frame pulse. As a result, this function utilizes the underlying C1 frame pulse
interrupt to coordinate the page switching in the system to guarantee a hitless page switching
operation. The in-band link PAGE bits are used to switch SBS pages remotely; hence, user should
enable the in-band link page switching operation in all the remote SBSs.

API nbcsStswCopyPage copies the connection map contents from active to inactive page
within the same switch or from inactive to inactive page across different device of the same type.

Fabric Management Module

The fabric management module provides services for call management that includes call setup,
teardown, fabric setting retrieval, 1+1, 1:N port protection, UPSR protection and etc. This block
interacts with the OPA library, which is responsible for calculating the new fabric setting for new
connections, and providing 1+1 and 1:N port protection services.

The module accepts call setup requests in standard formats, STS-3/3c (SDH AU-4), STS-1,
T1/E1, VTs, DS3/E3, fractional T1/E1s, and DS0s. For T1/E1 VTs, DS3/E3, STS-3/3c or
fractional rate tributaries, nbcsFmgtMapTrib and nbcsFmgtUnMapTrib are used to setup and
tear down connections. For DS0 connections, nbcsFmgtMapDS0 and nbcsFmgtUnMapDS0 are
used instead. Routing CAS traffic is achieved by the same nbcsFmgtMapDS0 with the CAS flag
set to logic one. User subsequently calls nbcsFmgtUnMapDS0 to tear down CAS DS0 or non-
CAS DS0 connections. The function nbcsFmgtRsvpCasRoute reserves the total number of
virtual tributaries set aside for CAS routing.

Arbitrary SBS wiring is supported for the fabric. User, by calling nbcsFmgtDefWiring,
provides a wiring table describing the underlying physical wiring between all SBS devices and
the NSE core. The wiring has to be properly defined before other operation can be carried out.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-2021248, Issue 1

Calling nbcsFmgtSetProtect sets up 1+1 and 1:N port protection. The parameters for this
function include the type of port protection to set up; and all the ports (working and protection)
involved. Port protection is removed by calling nbcsFmgtClearProtect. Upper layer
application calls nbcsFmgtSwitchProtect to initiate the switching over from working to
protection ports and vice versa. Depending on whether auto setting update is activated, the new
setting will or will not be populated to the (inactive) connection page. In a distributed system
model, user has to retrieve raw device settings by calling nbcsFmgtGetChgMap for distribution
to the proper devices.

In many cases, raw device settings have to be retrieved from the OPA for distributing to the
devices. There are several scenarios that require a change in device setting. The most common
ones are new call connection request, and port protection switchover. The incremental setting
change is required and can be retrieved by nbcsFmgtGetChgMap. A snapshot of the entire
fabric can also be retrieved by nbcsFmgtGetMap.

Central to the page switching operation which is required any time new settings are to be
activated, C1 frame pulse detection is provided by calling nbcsEventDetectC1FP which
enables the underlying C1 frame pulse interrupt. Upper layer application should then listen to the
callback function cbackC1FP to handle the C1 frame pulse reception. The most stringent
requirement is in the case of TeleCombus, where this page swapping operation has to be
completed 27 microseconds after the arrival of the C1 frame pulse. The in-band link PAGE[1:0]
header bits are expected to be used in a distributed system environment.

The fabric can be brought to the initial state (loopback state) by calling nbcsFmgtSetLpbkMode.
This resets the context of the OPA and essentially wipes out all current connections.

In-band Link Communication Module

In-band links are dedicated point-to-point communication links over LVDS. It is useful for
communication between remote SBSs residing in line cards and NSEs that are populated in a
core-switching card. The chipset driver allows the user to send and receive messages via the in-
band links. Functions are available to send/receive in-band link messages, and configure/retrieve
in-band communication parameters such as FIFO thresholds, timeouts, and etc.

Function nbcsIlcCntl enables/disables the in-band link controller associated with the
specified LVDS link. When disabled, the in-band link controller is put in a “bypass” mode, no
messages are written or inserted.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-2021248, Issue 1

The in-band link has a receive FIFO depth of 8 messages. When the number of messages reaches
the capacity, the chipset driver notifies (via callback if enabled) the application the condition
requesting a readout from the FIFO. User can also set the threshold for messages in the FIFO
ranging from 1 to 8 and is notified when the number of messages reaches that threshold. In
addition, a timeout mechanism (with timeout constant 125, 250, 375, or 500 microseconds) in the
FIFO is designed to notify user of any stale messages stored in the FIFO more than the specified
timeout constant. User can call nbcsIlcGetRxNumMsg to query the total number of messages
stored in the FIFO and then calls API nbcsIlcGetRxMsg to retrieve Rx FIFO messages. Each
message is associated with a CRC error bit and a logic high for this status signals a CRC check
failure for that message. For in-band link header bytes, user calls nbcsIlcGetRxHdr to retrieve
all the header bytes USER[2:0], PAGE[1:0], LINK[1:0] and AUX[7:0]. It is noteworthy to point
out that the CSD uses the PAGE[1:0] bits extensively to query and update the connection page of
the remote SBS(s). User should refrain from using the PAGE bits. The rest of the header bytes
can be used freely.

For the message transmission operation, user can retrieve the header bytes being sent by
nbcsIlcGetTxHdr and alter the header bytes to be sent by nbcsIlcSetTxHdr. The Tx FIFO,
similar to the receive one, also has a capacity of 8 messages. User can write multiple messages to
the FIFO for transmission. API nbcsIlcGetTxFifoLvl is available to query the free capacity
of the Tx FIFO for additional messages. User can then call nbcsIlcTxMsg to transmit the
maximum number of messages admissible by the Tx FIFO.

PRGM Diagnostics

Pseudo-random bit sequence (PRBS) generator is provided at STS-1 granularity for all outgoing
LVDS serial links for off-link verification. In addition, a PRBS monitor is provided at STS-1
granularity for all incoming LVDS serial links for off-link verification. This block is only
applicable to SBS devices in the chipset. The nbcsPrgmCfgPyld API is available to configure
the payload type. The nbcsPrgmCfg API is designed to configure the linear feedback shift
register(LFSR), and the invert PRBS sequence mode or sequential mode on a per STS-1 basis and
to enable/disable the PRBS generator and monitor on each STS-1 on the working and protect
links in the SBS.

User can invoke nbcsPrgmResync and nbcsPrgmForceErr for PRBS monitor
resynchronization and bit error insertion.

Chipset Device Diagnostics

The chipset device diagnostics API can be used to isolate/identify problems within a specified
chipset device and its interfaces. The nbcsDiagTestReg and nbcsDiagTestRam API conduct
the register and RAM tests for the chipset driver. User can call nbcsDiagLpbk for device
loopback.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-2021248, Issue 1

3.3 Software States

Figure 18 shows the software state diagram for the Narrowband Chipset driver. State transitions
occur on the successful execution of the corresponding transition functions shown below. State
information helps maintain the integrity of the CSMDB by controlling the set of operations
allowed in each state.

Figure 18: Driver Software States

Idle

Present

Inactive
nbcsActivate

nbcsDeActivate

Start

nbcsAdd nbcsDelete

Ready

nbcsModuleClosenbcsModuleStart

nbcsModuleOpen

nbcsModuleClose

nbcsModuleStop

Start

CHIPSET DEVICE
STATES

MODULE STATES

nbcsReset

nbcsInit

nbcsReset

Active

Module States

The following is a description of the Narrowband Chipset module states. Please see Section 5.1
for a detailed description of the API functions that are used to change the module state. The
module states are:

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-2021248, Issue 1

Start

The chipset driver module has not been initialized. In this state the chipset driver does not hold
any RTOS resources (e.g., memory and timers), has no running tasks, and performs no actions.

Idle

The chipset driver module has been initialized successfully. The Module Initialization Vector
(MIV) has been validated; the CSMDB has been allocated and loaded with current data; the per-
device data structures have been allocated; and the RTOS has responded without error to all the
requests sent to it by the driver.

Ready

This is the normal operating state for the chipset driver module, which means that all RTOS
resources have been allocated and that the chipset driver is ready for underlying devices to be
added. The chipset driver module remains in this state while devices are in operation.

Chipset Group and Device States

The following is a description of the Narrowband Chipset device states. See section 5.1 for a
detailed description of the API functions that are used to change the chipset device state.

Start

The chipset device has not been initialized. In this state the device is unknown to the driver and
performs no actions. There is a separate flow for each device that can be added, and they all start
here.

Present

The chipset device has been successfully added. All devices are detected and properly registered
with essential information recorded in the chipset driver module. In this state, the device performs
no actions.

Inactive

In this state the chipset device is configured; however, all data functions – including interrupts,
status and counts functions – have been de-activated.

Active

This is the normal operating state for the chipset device. In this state, either interrupt servicing or
polling is enabled.

Indeterminate (group state only)

A group is in this state if not all of the devices in the group are in a consistent state. While in this
state, some API functions are still accessible, as described in later sections.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-2021248, Issue 1

3.4 Operation Processing Flows

This section of the manual describes the main processing flows of the Narrowband Chipset driver
components.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. In addition, the diagrams also serve as a guide to the application
programmer by illustrating the sequence in which the application must invoke the driver API.

Module Management

The following diagram illustrates the typical function call sequences that occur when either
initializing or shutting down the Narrowband Chipset driver module.

Figure 19: Module Management Flow Diagram

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores.
All underlying device drivers' devModuleStop will also be invoked.

Performs module level shutdown of the driver. De-allocates all the driver's
memory. All underlying device drivers' devModuleClose will be invoked.

Perform all chipset level functions here (add, init, activate, de-activate,
reset, delete,...)

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers at chipset driver level. It will
also invoke all underlying device drivers' devModuleStart.

Performs module level initialization of the chipset driver. Validates the
Module Initialization Vector (MIV). Allocates memory for the CSMDB and
all its components (i.e. all the memory needed by the chipset driver) and
then initializes the contents of the CSMDB with the validated MIV. All
underlying device drivers' devModuleOpen will also be invoked.

nbcsModuleStart

nbcsModuleOpen

nbcsModuleStop

nbcsModuleClose

END

START

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-2021248, Issue 1

Chipset Device Management

The following figure shows the typical function call sequences that the chipset driver uses to add,
initialize, re-initialize, and delete the Narrowband Chipset device. The Chipset driver components
(devices) can be added or deleted individually or as a group. User can add/delete individual
devices by referring to the device state diagram. For instance, if a particular device has to be
taken out from the ACTIVE state, user can use nbcsReset to bring the device to PRESENT state
and then nbcsDelete to remove the device from the chipset driver. Similarly, a new device can
be added to a system at any time by calling nbcsAdd, and then nbcsInit to bring the new
device to the INACTIVE state.

The normal sequence is to add all chipset devices individually first, and then initialize all the
devices with the corresponding DIV. Then, the device should be activated by calling
nbcsActivate. The same applies to nbcsDeActivate, which moves the chip state from
ACTIVE to INACTIVE. Activating, deactivating, or resetting individual (SBS) devices are
encouraged only when that devices is a new addition or if the device needs to be taken out from
the chipset.

Figure 20: Chipset Device Management Flow Diagram

De-activates all chipset device(s) and removes it from normal operation.
This invokes all underlying device devDeActivate functions which
disables the device interrupts.

Applies a software reset to the chipset device(s) to put it in its default
startup state.

Removes specified or all chipset device(s) from the list of devices being
controlled by the chipset driver. This function de-allocates the device
context information for the device being deleted.

In order to re-initialize the device, reset all the device(s) in the chipset
using nbcsReset and go through the initialization sequence again.

Prepares all the device(s) for normal operation by enabling interrupts and
other global enables. All underlying device devActivate function will be
invoked. The device(s) are now operational and all other API can be
invoked.

Applies a reset to all the underlying device(s) and initializes the device
registers and associated RAMs based on the DIV passed by the user. The
system will be in the loopback mode.

Calling the underlying devAdd function, the chipset driver detects all the
new device(s) in hardware and stores the user's context for all the
device(s). Returns device handle(s) for all the device(s) to the user.

nbcsInit

nbcsAdd

nbcsActivate

nbcsReset

nbcsDeActivate

nbcsReset

nbcsDelete

END

START

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-2021248, Issue 1

Group Management

The group concept allows user to carry out operations on a group of devices conveniently. User
can freely group devices into meaningful groups so that they can be processed as a unit. For
instance, user can instantiate a “core fabric” group that contains all NSE devices in a multi-stage
fabric system.

Groups are defined by the use of the nbcsGroupAdd function call. At the time the group is
defined, and at all times after that, the group state is determined by the states of the constituent
devices. If all devices within a certain group are in the same state, then the group is in that state as
well. If not all devices within a group are in the same state, then the group state is indeterminate.

The user can choose to use only group-based functions to initialize the chipset . If so, the group
management flow diagram is identical to the device management flow diagram shown in Figure
18, with the exception that function nbcsGroupDelete has to be employed to delete a group. As
the various group management functions are called, all devices within the specified group are
transitioned to the appropriate states.

However, devices may be members of multiple groups. Because of this, group states do not
always transition in the same manner as in the device state diagram. In Figure 21, say one group
(A) has been established through the use of nbcsGroupAdd followed by nbcsInit, and a
different, disjoint group (B) of devices has been established through the use of nbcsGroupAdd,
nbcsInit, and nbcsActivate. Now all devices in group A, as well as group A itself, are
considered to be in the INACTIVE state. All devices in group B, as well as group B itself, are
considered to be in the ACTIVE state.

If a new group, say group C, is formed, consisting of some of group A, some of group B, and
some new devices, nbcsGroupAdd can be called to create the group. Group C now has state of
INDETERMINATE; the devices within group C have states of ACTIVE, INACTIVE, or
PRESENT. Note that the USER would not be able to call nbcsInit on group C, as group C is
not in the PRESENT state. Rather, if the USER wants the devices with PRESENT state to
transition into the INACTIVE state, the USER must call nbcsInit on each such device.

On the other hand, say a new group (D) is created, using only the single function
nbcsGroupAdd, out of part of group B and some new ACTIVE devices that were previously
brought into the ACTIVE state with device management functions. This new group is in the
ACTIVE state, since all of its devices are ACTIVE.

New devices can be added to and deleted from an existing group by calling nbcsGroupAdd and
nbcsGroupDelete respectively. The state of a group can be retrieved by API function
nbcsGroupGetState.

Thus, it is most expedient to use the Group Management functions (nbcsGroupAdd,
nbcsGroupDelete, etc.) on non-overlapping groups of devices, in order to initialize the devices
conveniently. Later, other potentially overlapping groupings can be made, to facilitate the
commands sent during normal operation. However, the user is cautioned against using the group
functions to cause state transitions on overlapping groups.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-2021248, Issue 1

Figure 21: Example of overlapping groups

Typical CSD Startup Sequence

After the CSD module has been started and initialized properly and all the devices being added to
the CSD (using module and device management APIs), there are some additional information
regarding the system that needs to be furnished for proper operation.

1) (Defining the physical wiring of SBSs and the NSE core). It is essential to define how all the
SBS (both ingress and egress direction) devices are wired to the NSE core. User calls API
function nbcsFmgtDefWiring to define the wiring topology.

Device in PRESENT state
Device in INACTIVE state
Device in ACTIVE state

Group in INDETERMINATE state

Group in INACTIVE state

Group in ACTIVE state

Group A

Group B

Group C

Group D

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-2021248, Issue 1

2) (Defining the payload types) API function nbcsIntfCfgPyld is used to configure the
payload type of the SBS, for both the ingress and egress sides. The same function is used
regardless of what bus mode the system is set to, SBI336 or TeleCombus. In the case of SBI
bus, further tributaries configuration can be carried out using API nbcsIntfCfgTrib. This
function is not applicable when the system is configured to TeleCombus mode.

3) (Put the system in loopback state). The loopback state is the point of reference for the system,
which then evolves from this point with the addition of connections, etc… All the traffic is
being looped back at this state. User should call the API function nbcsFmgtSetLpbkMode,
which updates the offline page of all the local devices and resets the OPA library to clear all
connections to support the loopback mode. User should then perform a synchronized page
switch to put the settings in effect. Please refer to the subsequent section for more details on
this operation.

4) (Setting up egress bus integrity for SBS/SBSLITE revision B devices only). As soon as the
payload types are defined for all SBS devices, the egress bus integrity can be set up prior to
any call activities. Preserving the bus integrity for each outgoing SPE is essential to the
downstream device. For example, the J1 byte in each SPE has to be set up properly; the V1
byte has to be valid in a T1 or E1 tributary inside the SPE, etc. The function
nbcsFmgtUnMapTrib is used to setup the integrity (as long as the SPE types have been
properly defined). The side effect is all data in the payload is overwritten by zero and the
loopback state will be disturbed. This step is optional.

SBS and NSE devices can be present locally or remotely depending on the system configuration,
In a typical centralized system configuration, all devices are local and are under the control of a
microprocessor that also runs the CSD. In a distributed system configuration, SBS and NSE
devices that make up the switching fabric may be scattered across line, core or standalone
processor cards and are under the control of multiple microprocessors. The CSD can be
configured to run in all the cards with any combination of SBS/NSE devices present locally to the
card.

In a typical centralized configuration, NSE/SBS devices are present and the OPA is expected to
perform the routing; hence, the following fields in the MIV sbsDrvPresent, nseDrvPresent,
and opaLibUse should all be set to 1. In a typical line card, it is not expected to contain any
physical NSE devices nor will it run the OPA routing; hence, the following fields in the MIV
sbsDrvPresent, nseDrvPresent, and opaLibUse should be set to 1, 0, and 0 respectively.
Likewise, in a typical core card configuration, the fields sbsDrvPresent, and nseDrvPresent,
should be set to 0 and 1 respectively. The field opaLibUse can be either 0 or 1 depending on
whether the OPA routing is run locally or elsewhere. In a typical standalone system that is
intended to host the CSD with the OPA, sbsDrvPresent, nseDrvPresent, and opaLibUse
should then be set to 0, 0 and 1 respectively since the SBS and NSE device drivers are absent.
There should only be one CSD module in the system with the field opaLibUse set to 1.

SBS devices that are not physically attached to the CSD-distributed-core or CSD-standalone do
have to be added even in the distributed core or standalone CSD. This creates a logical proxy of
the actual remote SBS on the side of the distributed-core/standalone CSD. However, note that the
NSE devices do not have to be added on the remote CSD side.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-2021248, Issue 1

It is trivial in the case of a centralized configuration for the initialization sequence. In the case of
a distributed model, further clarification is needed. Defining the physical wiring is only needed in
the CSD with the OPA installed, i.e., in a distributed core CSD or the standalone CSD. This step
essentially provides the CSD/OPA the necessary information of the actual physical wiring. For
step (2), the payload type configuration has to be called in the CSD-remote, the CSD-distributed-
core and the CSD-standalone.

The following is an example of the API sequences required for 2 SBSs and 1 NSE. Two
examples, centralized and distributed, are shown.

(A) Centralized

1) nbcsModuleOpen()
2) nbcsModuleStart()
3) nbcsAdd(sbs1)
4) nbcsAdd(sbs2)
5) nbcsAdd(nse)
6) nbcsFmgtDefWiring()
7) nbcsIntfCfgPyld()
8) nbcsIntfCfgTrib()if in SBI mode
9) nbcsFmgtSetLpbkMode()
10) nbcsFmgtUnMapTrib() opt

(B) Distributed

Distributed-remote#1 Distributed-remote#2 Distributed-core

1) nbcsModuleOpen() 1) nbcsModuleOpen() 1) nbcsModuleOpen()
2) nbcsModuleStart() 2) nbcsModuleStart() 2) nbcsModuleStart()
3) nbcsAdd(sbs1) 3) nbcsAdd(sbs2) 3) nbcsAdd(nse)
4) nbcsAdd(sbs1)opt 4) nbcsAdd(sbs1)opt 4) nbcsAdd(sbs1)
5) nbcsAdd(sbs2)opt 5) nbcsAdd(sbs2)opt 5) nbcsAdd(sbs2)
6) nbcsFmgtDefWiring()opt6) nbcsFmgtDefWiring()opt6) nbcsFmgtDefWiring()
7) nbcsIntfCfgPyld() 7) nbcsIntfCfgPyld() 7) nbcsIntfCfgPyld()
8) nbcsIntfCfgTrib()opt 8) nbcsIntfCfgTrib()opt 8) nbcsIntfCfgTrib()opt
9) nbcsFmgtSetLpbkMode() 9) nbcsFmgtSetLpbkMode() 9) nbcsFmgtSetLpbkMode()
 10) nbcsFmgtUnMapTrib()

Connection Setup and Teardown

Regardless of what the system configuration is, this section lists out the sequence of events that
has to happen for a coordinated page switch for the fabric: The next section then goes into
greater details on how this sequence of operation is handled in different configurations.

1) Call the fabric management API to request call connections

2) Retrieve all the changed SBS and/or NSE devices settings to support the new connection

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-2021248, Issue 1

3) Write new settings to inactive pages for all affected SBS and/or NSE devices

4) Determine the pending active pages of all the devices.

5) Switch the active page number of all the affected SBS and NSE devices (if any) by toggling
the pages of all the devices. This operation has to be synchronized with the C1 frame pulse.

6) Update (synchronize) the settings between the active and inactive page in all SBS and/or NSE
devices. This step is required only if the page setting automatic update feature (this is the
field pageAutoSync configurable via the MIV) for the system is off; otherwise, the settings
between the active and inactive pages are synchronized automatically.

7) User can later call the unmapping function in the fabric management API to remove the
connection. Then, follow the same logic as if it is a call setup, i.e., repeat step (2) to (6) after a
call removal. Settings may be changed after a call disconnect.

Centralized Configuration

In the centralized configuration, the CSD has a large amount of autonomy to perform the page
switching. Setting up calls across the fabric requires invocation of a handful of APIs.

1) User calls nbcsFmgtMapTrib/nbcsFmgtMapDS0 to request new call connections.

2) Populates all the incremental settings of both NSE and SBS devices to the hardware by
calling nbcsFmgtGetChgMap.

3) Invoke nbcsStswTogglePage to toggle all the connection pages in the chipset
synchronously with the C1 frame pulse.

4) (if applicable) Keep the new settings by calling nbcsStswCopyPage to synchronize the
settings between the active and inactive pages of all the devices.

5) User can call nbcsFmgtUnMapTrib/nbcsFmgtUnMapDS0 to remove the connection if
necessary.

6) (if applicable) Keep the new settings by calling nbcsStswCopyPage to synchronize the
settings between the active and inactive pages of all the devices.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-2021248, Issue 1

Distributed Configuration

Figure 22: Chipset Driver Call Setup Flow Diagram – Distributed Model

Switch Card Application

CSD-core

NSE DriverSBS Driver OPA
Lib

(1)(2)

Line/Service Card App

CSD-line

Link
Layer

Link
Layer

(3)

LVDS

(3)

(4)
(5)

(5)

(6)

The following lists out the steps to take for setting up new connections.

1) On the switch card side, user calls nbcsFmgtMapTrib/nbcsFmgtMapDS0 to request new
call connections.

2) Retrieves the incremental settings of all remote SBS devices from the CSD by calling
nbcsFmgtGetChgMap. This function also populates new settings to the local NSE device(s).

3) Distribute the settings to remote SBSs by ILC (via a link layer protocol) or other means such
as Ethernet.

4) The remote SBS application receives the new settings and calls nbcsStswMapSlot to
update the settings for all SBSs.

5) The remote SBS application then sends acknowledgement back to NSE side. With
acknowledgement from all remote SBSs, the switch card application is assured of all SBS
settings being transmitted correctly and proceeds with performing a synchronized page
switch. (Note: the link layer including any of the acknowledgement protocol is beyond the
scope of the CSD.)

6) Invoke nbcsStswTogglePage to toggle all the connection pages in the chipset
synchronously with the C1 frame pulse.

7) (if applicable) Synchronize all the settings between the active and inactive pages of all the
devices by calling API nbcsStswCopyPage.

8) User can call nbcsFmgtUnMapTrib/nbcsFmgtUnMapDS0 to remove the connection if
necessary.

9) Follow the sequence as if it is a call setup, i.e., step (2) to (7)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-2021248, Issue 1

It is imperative to point out that the CSD uses the in-band link controller to access and change
connection page numbers for remote SBSs from the NSE side. In other words, API
nbcsStswTogglePage, nbcsStswGetPage, and nbcsStswSetPage are operational only
(hence the aforementioned sequence for call management) if the field pageSwapCntl
configurable from MIV is set to be controlled by the PAGE header bits in the in-band link
controller. If the system configuration uses other means to synchronize page switch for the entire
fabric such as an external hardware line, user is advised to call API nbcsEventDetectC1FP to
enable the C1 frame pulse detection and embeds the necessary logic (such as toggling this
hardware line in our example) in the callback function cbackNbcsC1FP to orchestrate the
switch.

1+1 Port Protection in Distributed System

Here is the sequence for setting up the 1+1 port protection and triggering a switch over. Note that
the protection port payload types has to be identical to that of the working port. This also applies
to the case of 1:N protection. The payload types of the protection port has to be identical to that of
the working port:

1. User calls nbcsFmgtSetProtect to specify what protection, 1+1 or 1:N to setup, and
supplies it with the working and protection port(s).

2. Define the payload types for both the working and protect port to be identical.

3. When a switch over is deemed necessary (determined by some upper layer signaling
protocol), user can call nbcsFmgtSwitchProtect to initiate a switchover.

4. Upon receiving a success from the chipset driver, the application should then call
nbcsFmgtGetChgMap to retrieve new settings. The rest is similar to the call/setup and
teardown case in previous section.

Adding New Line/Service Card

In the event when a line/service card needs be added, it can be achieved without affecting the rest
of the cards and traffic flow.

1) Call nbcsAdd and then nbcsInit with a valid DIV

2) Call nbcsFmgtDefWiring to define the new wiring topology.

3) Call nbcsIntfCfgPyld and then nbcsIntfCfgTrib if necessary to configure the payload
type and the tributaries.

4) (optional) Call nbcsActivate to bring the new device to ACTIVATE. The new card is now
ready to source or sink traffic. This is to bring the new device to the same state as the other
devices so that their device states are synchronized.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-2021248, Issue 1

Replacing Working Line/Service Card

In the event when a line/service card needs be replaced, it can be taken out without affecting the
rest of the cards and traffic flow.

1. First removes all connections to the SBS to be removed

2. Call nbcsReset and then nbcsDelete to remove the SBS from the fabric.

3. Add a SBS device in the new line card using the sequence described in previous section.

4. Assuming the old SBS is 1+1 protected by another SBS that has been active since the
working SBS is taken out of service, call nbcsStswCopyPage to synchronize the setting
between the protected SBS and the new SBS.

5. Establish the 1+1 protection between the new SBS and the protection SBS by calling
nbcsFmgtSetProtect and perform a switchover by calling nbcsFmgtSwitchProtect
to restore traffic flow in the new working SBS.

3.5 Event Processing

The Narrowband Chipset driver supplies all the callback functions for the underlying device
drivers. When an underlying event occurs and is detected by the hardware, an interrupt is
generated and serviced by the corresponding device driver which invokes a callback to the upper
layer application, in this case, the narrowband chipset driver. The CSD then processes the
callbacks and forwards them to the application code for events that are enabled.

The following is an overview of the interrupt service model used in the device drivers to service
device interrupts. Please refer to the NSE and SBS device driver user manual documents for more
details in interrupt processing. Basically, the device driver services the device interrupts using an
Interrupt-Service Routine (ISR) that traps interrupts. In the ISR, the device driver reads the
master interrupt status registers to find out what the interrupt cause(s) is and sends the necessary
information to the deferred processing routines (DPR) that actually process the interrupt
conditions and clears them. This architecture enables the ISR to execute quickly and then exit.
Most of the time-consuming processing of the interrupt conditions is deferred to the DPR by
queuing the necessary interrupt-context information to the DPR task. The DPR function runs in
the context of a separate task within the RTOS. The DPR then processes the interrupt
information and takes appropriate action based on the specific interrupt condition detected. As the
nature of this processing can differ from system to system, DPR calls different indication
callbacks for different interrupt conditions.

The CSD receives these callbacks from the underlying device drivers, processes them, sorts them
according to their categories and then issues callbacks to the upper application layers. Application
has the option to enable and disable any events. After initialization, the CSD by default enables
all events and reports them to the application code unless they are turned off by the application.
Some events are recommended to be on at all times under normal circumstances such as in-band
link events. They are by default, turned on by the CSD.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-2021248, Issue 1

Events that are reported to the application via callbacks are as follows: C1 frame pulse received,
in-band link data available, in-band link header bits changed, interface events such as parity error,
LVDS link events such as out-of-frame alignment and FIFO error, space/time switch events such
as page changed, and PRBS generator and monitor events from SBS devices.

Figure 23 illustrates the interrupt service model used in the Narrowband Chipset driver design.
Users can customize these callbacks to suit their system. Please see page 160 for example
implementations of the callback functions.

Figure 23: NSE/SBS Chipset Driver Event Processing Model – Interrupt-Mode

sbsISR

sysSbsISRHandler Interrupt
Context

Information

Applica
tion

nseISR

sysNseISRHandler

Chipset Driver

SBS Device Driver

ILC Rx
Interrupt
Context

Information
sbsIlcRxTa

skFn

sysSbsIlcRxTask
ILC Rx

Indication
Callbacks

sbsDPR

sysSbsDPRTask Indication
Callbacks

nseDPR

Non Time
Critical

Interrupt
Context

Information

sysNseDPRTask Indication
Callbacks

NSE Device Driver
TimeCritical

Interrupt
Context

Information
nseTcTask

Fn

sysNseTcRxTask
TimeCritical
Indication
Callbacks

cbackIntf

cbackNseIntf

cbackSbsIntf

cbackNseSsw

cbackSbsTsw

cbackSbsPmgc
cbackPrgm

cbackSbsWplc

cbackNsePort cbackLkc

cbackNseIlcRx

cbackSbsIlcRx

cbackStsw

cbackIlcRx
Data

cbackIlc
Head

cbackC1FP

Calling nbcsPoll

Instead of employing an interrupt service model for the underlying devices, the user can use a
polling service model in the Narrowband Chipset driver to process the device’s event.

Figure 24 illustrates the polling service model used in the Narrowband Chipset driver design.

The mode, polling or interrupt, is selected via the MIV at the module initialization. In polling
mode, the application is responsible for calling nbcsPoll often enough to service any pending
error or alarm conditions. When nbcsPoll is called, the underlying polling functions of the NSE
and SBS device driver are called internally.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-2021248, Issue 1

The respective device ISR (interrupt service routine) functions read from the master
interrupt-status register of the SBS and NSE. If at least one valid event is found then the
corresponding ISR invokes the its DPR (deferred processing routine) directly. The event
eventually is reported via the registered callback functions to the application.

It is imperative to point out that some time critical API will not function properly when the driver
is set up in polling mode. For instance, the nbcsStswTogglePage will not operate correctly
since it relies on switching pages of all registered devices in a timely fashion by monitoring the
received C1 frame pulse. The same applies to API nbcsEventDetectC1FP.

Figure 24: NSE/SBS Chipset Driver Event Processing Model – Polling Mode

sbsISR

nbcsPoll
Interrupt
Context

Information

Applica
tion

nseISR

Chipset Driver

SBS Device Driver

ILC Rx
Interrupt
Context

Information
sbsIlcRxTask

Fn

ILC Rx
Indication
Callbacks

sbsDPR

Indication
Callbacks

nseDPR

Non Time
Critical

Interrupt
Context

Information

Indication
Callbacks

NSE Device Driver

TimeCritical
Interrupt
Context

Information
nseTcTaskFn

TimeCritical
Indication
Callbacks

cbackIntf

cbackNseIntf

cbackSbsIntf

cbackNseSsw

cbackSbsTsw

cbackSbsPmgc
cbackPrgm

cbackSbsWplc

cbackNsePort cbackLkc

cbackNseIlcRx

cbackSbsIlcRx

cbackStsw

cbackIlcRx
Data

cbackIlc
Head

cbackC1FP

3.6 CSD API Availability

The availability of a CSD API depends largely on whether a device is registered as a local or
remote device. In general, API that requires the actual physical device to perform the task returns
an error code if the device is not present locally. The exception is all module/device/group
management APIs. The fabric management APIs are also available regardless of the device status
if the OPA is present locally.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-2021248, Issue 1

4 DATA STRUCTURES
This section of the manual describes the elements of the driver that configure and control its
behavior. Included here are the constants, variables, and structures that the Narrowband Chipset
device driver uses to store initialization, configuration, and status information. For more
information on our naming convention, please see Appendix A (page 178).

4.1 Constants

The following constants are used throughout the driver code:

�� <Narrowband Chipset ERROR CODES>: contains error codes returned by the API
functions and used in the global error number field of the Chipset Module Data Block
(CSMDB) and Chipset Device Data Block (CSDDB). For a complete list of error codes, see
Appendix B (page 178).

�� NBCS_MAX_SBS and NBCS_MAX_NSE: define the maximum number of SBS and NSE
devices that can be supported by the driver. This constant must not be changed without a
thorough analysis of the consequences to the driver code.

�� NBCS_MAX_SBS_INIT_PROFS and NBCS_MAX_NSE_INIT_PROFS: define the maximum
number of profiles for SBS and NSE devices that can be supported by the driver.

�� NBCS_MAX_GROUP: define the maximum number of groups that can be supported by the
driver.

�� NBCS_MOD_START, NBCS_MOD_IDLE, and NBCS_MOD_READY: are the three possible module
states (stored in the CSMDB as stateModule).

�� NBCS_START, NBCS_PRESENT, NBCS_ACTIVE, and NBCS_INACTIVE: are the four possible
device states (stored in the CSDDB as stateDevice).

�� eNBCS_TCBTRIB_TYPE: NBCS_TCBVT_VT15, NBCS_TCBVT_VT2, NBCS_TCBVT_VT3
NBCS_TCBVT_VT6, NBCS_TCB_DS3E3 and NBCS_TCB_STST3C: The first four are the
four possible virtual tributary types VT1.5, VT2, VT3, and VT6 in a virtual group. For SDH,
select VT1.5 for VC-11, VT2 for VC-12, and VT6 for VC-2. NBCS_TCB_DS3E3 is to specify
the payload type as DS3 or E3. The last one is for specifying payload type to be STS-3c or
STS-3 in SONET or STM-1 in SDH format.

�� eNBCS_SBITRIB_TYPE: NBCS_T1_PYLD, NBCS_E1_PYLD , NBCS_DS3_E3_PYLD,
NBCS_FRAC_RT_PYLD: are the four possible tributary types for T1, E1 DS3/E3 and fractional
rate.

�� eNBCS_BUSTYPE: NBCS_BUS_SBI, NBCS_BUS_TCB denote the SBI bus or TeleCombus
mode for the system.

�� eNBCS_IO_BUSMODE: NBCS_IO_BUS_QUAD, or NBCS_IO_BUS_SINGLE: denote the two
possible bus modes namely quad bus (4 x 19.44 MHz) or single bus (1 x 77.76 MHz) in
either SBI or TeleCombus mode.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-2021248, Issue 1

�� eNBCS_PORTPROTECT: NBCS_PORTPROTECT_NONE, NBCS_PORTPROTECT_1PLUS1,
NBCS_PORTPROTECT_1FORN and NBCS_PORTPROTECT_UPSR for 1:1, and 1:N port
protection and UPSR protection. Note that NBCS_PORTPROTECT_NONE is not for the user. It
is reserved for the internal use of the driver.

�� eNBCS_MULTIFRM_MODE: NBCS_MF_4 and NBCS_MF_48 for multi-frame consists of 4
frames and 48 frames respectively.

�� eNBCS_ACCESSMODE_STSW: NBCS_STSW_UNICAST, NBCS_STSW_TIME_INPORT,
NBCS_STSW_TIME_OUTPORT, NBCS_STSW_INPORT, NBCS_STSW_OUTPORT and
NBCS_STSW_MAP for various mapping mode in space/time switch configuration

�� eNBCS_ILC_FIFO_TIMEOUT: NBCS_ILC_FIFO_125US, NBCS_ILC_FIFO_250US,
NBCS_ILC_FIFO_375US and NBCS_ILC_FIFO_500US for selecting the FIFO timeout
constant in the ILC RxFIFO.

�� eNBCS_LPBK: NBCS_O2ILPBK, NBCS_T82R8LPBK, and NBCS_T2RLPBK for SBS
loopback

�� eNBCS_DEVTYPE: NBCS_NSE20G, NBCS_NSE8G, NBCS_SBS, NBCS_SBSLITE and
NBCS_SBSNSE_GROUP for device/group type identification.

�� eNBCS_SWHMODE: NBCS_SWH_BYTE and NBCS_SWH_COLUMN for selecting the fabric
switching mode, byte or column.

�� eNBCS_WPLINK_CNTL: NBCS_LINK_CNTL_SW and NBCS_LINK_CNTL_HW for
controlling the working and protect link control, hardware or software, in all the SBS devices.

�� eNBCS_CONMAP_CNTL: NBCS_MAP_CNTL_SW, NBCS_MAP_CNTL_HW and
NBCS_MAP_CNTL_ILC for selecting the connection map control via software, hardware pin,
or ILC in all the SBS devices.

�� eNBCS_FABRIC_TYPE: NBCS_FABRIC_STD, NBCS_FABRIC_DOUBLE_SBS, and
NBCS_FABRIC_DOUBLE_SBSNSE for selecting the type of the underlying NSE/SBS fabric.

�� eNBCS_FABRIC_SETTING: NBCS_SWITCHOVER_SETTING, and NBCS_CALL_SETTING
for selecting the type of settings to retrieve.

�� eNBCS_CALLTYPE: NBCS_CALL_MCAST, NBCS_CALL_UPSRDROP for selecting the type
of calls to be set up/torn down.

�� eNBCS_TMODE: NBCS_TMODE_MST, NBCS_TMODE_HPT and NBCS_TMODE_LPT for
selecting different path termination mode, namely MST, HPT and LPT.

�� eNBCS_CHKPT_TYPE: NBCS_CHKPT_OPA, and NBCS_CHKPT_CSD for distinguishing
different type of checkpoints. This type is for internal use of the driver.

4.2 Structures Passed by the Application

These structures are defined for use by the application and are passed as arguments to functions
within the driver. These structures are described below.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-2021248, Issue 1

Module and Device Management

Chipset Module Initialization Vector: MIV

This structure contains module-level initialization parameters for the chipset driver. The user
passes this structure as an input parameter in the nbcsModuleOpen function call.

�� The variables maxNseDevs, maxSbsDevs, maxSbsInitProfs, maxNseInitProfs,
and maxGroups define the maximum number of NSE and SBS devices that the chipset
driver, the maximum number of initialization profiles for both devices and the maximum
number of groups the chipset driver permits in the session. The numbers are used to calculate
the amount of memory allocated for the chipset driver.

�� cbackC1FP, cbackIlcRxData , cbackIlcHead, cbackIntf, cbackLkc,
cbackStsw, and cbackPrgm are used to pass the addresses of application functions that
are used by the chipset driver to inform the application code of pending events. If these fields
are set to NULL, the application will not be notified of the events.

Table 5: Narrowband Chipset Module Initialization Vector: sNBCS_MIV

Field Name Field Type Field Description

perrModule INT4 * (pointer to) errModule (see
description in the CSMDB)

maxNseDevs UINT2 Maximum number of physical/logical
NSE devices supported during this
session

maxSbsDevs UINT2 Maximum number of physical/logical
SBS devices supported during this
session

maxGroups UINT2 Maximum number of groups supported
during this session

maxSbsInitProfs UINT2 Maximum number of SBS initialization
profiles

maxNseInitProfs UINT2 Maximum number of NSE initialization
profiles

sbsDrvPresent UINT1 Indicates whether the SBS device driver
is present locally. 0 = absent, 1 =
present

nseDrvPresent UINT1 Indicates whether the NSE device driver
is present locally. 0 = absent, 1 =
present

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

nopaLibUse UINT1 Indicates whether the OPA library usage
is required. 0 = not required, 1 =
required

sysBusType eNBCS_BUSTYPE System bus type
NBCS_BUS_SBI: SBI bus-based
NBCS_BUS_TCB: TeleCombus-based

swhMode eNBCS_SWHMODE Fabric switching mode:
NBCS_SWH_BYTE for byte switching
mode
NBCS_SWH_COLUMN for column
switching mode

casMuxMode UINT1 This field has dual meaning depending
upon the bus and switching mode.

a) CAS processing mode when in SBI
byte mode. Note that OPA is the only
scheduler allowed when CAS traffic is
present
0 = no CAS traffic present
1 = T1 CAS traffic present
2 or above = E1 CAS traffic present
This field is ignored when in SBI
column mode

b) Multiplexer control signal selection
when in TeleCombus/SBI mode with
doubled SBS or doubled SBS/NSE
fabric. In general, OTAIS can be used
for both HPT and MST modes, while
OPL must be used for LPT mode.
0 = OPL signal
non-zero = OTAIS signal
This field is ignored if standard fabric is
selected.

nseCoreType eNBCS_DEVTYPE Type of NSE device(s) that make up the
space-switching core. Valid entries are
NBCS_NSE20G or NBCS_NSE8G.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

pageAutoSync UINT1 Automatic active page to inactive
connection page synchronization. When
this field is a logic one, the settings are
copied from the active to inactive page
after a page switch in all SBS and NSE
devices in the system.

wpLinkCntl eNBCS_WPLINK_CNTL Source of control for the working and
protection LVDS link in all SBSs:

NBCS_LINK_CNTL_SW: software
controls whether working or protection
link is active

NBCS_LINK_CNTL_HW: a hardware
pin controls whether working or
protection link is active

pageAutoUpdate UINT1 Automatic connection setting update for
all local devices: CSD automatically
updates the offline connection map of
devices under its control after a call
request when this field is a logic one.

pageSwapCntl eNBCS_CONMAP_CNTL Source of control for the connection
page switching in all SBSs:

NBCS_MAP_CNTL_SW: software
controls the page switching

NBCS_MAP_CNTL_HW: hardware
pin controls the page switching

NBCS_MAP_CNTL_ILC: the PAGE
bits in ILC controls the page switching.
This option is required for API
nbcsStswTogglePage to work
properly.

coreDepth UINT2 The depth of the NSE switch core

coreNumStage UINT2 The number of stages of the NSE switch
core

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

fabType eNBCS_FABRIC_TYPE Type of switching fabric
NBCS_FABRIC_STD: standard
NSE/SBS fabric
NBCS_FABRIC_DOUBLE_SBS:
double SBS fabric. SBS devices are
doubled up but NSE device(s) are not. .
NBCS_FABRIC_DOUBLE_NSESBS:
double SBS and NSE fabric. Both SBS
and NSE devices are doubled up in the
fabric.

mCastScheduler UINT1 Call scheduler type: 0 = unicast
scheduler (OPA), non-zero = multicast
scheduler (LOPA)

pageAutoUpdate UINT1 Automatic connection setting update for
all local devices: CSD automatically
updates the offline connection map of
devices under its control after a call
request when this field is a logic one.

pageAutoSync UINT1 Automatic active page to inactive
connection page synchronization. When
this field is a logic one, the settings are
copied from the active to inactive page
after a page switch in all SBS and NSE
devices in the system.

pageSwapCntl eNBCS_CONMAP_CNTL Source of control for the connection
page switching in all SBSs:

NBCS_MAP_CNTL_SW: software
controls the page switching

NBCS_MAP_CNTL_HW: hardware
pin controls the page switching

NBCS_MAP_CNTL_ILC: the PAGE
bits in ILC controls the page switching.
This option is required for API
nbcsStswTogglePage to work
properly.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

wpLinkCntl eNBCS_WPLINK_CNTL Source of control for the working and
protection LVDS link in all SBSs:

NBCS_LINK_CNTL_SW: software
controls whether working or protection
link is active

NBCS_LINK_CNTL_HW: a hardware
pin controls whether working or
protection link is active

pollMode UINT1 Polling mode flag: 0 = disabled
(interrupt mode), 1 = enabled

cbackC1FP NBCS_CBACK_TC Callback function for C1 frame pulse
reception

cbackIlcRxData NBCS_CBACK_TC Callback function for in-band link Rx
data

cbackIlcHead NBCS_CBACK Callback function for in-band link
header bits change

cbackIntf NBCS_CBACK Callback function for Interface/clock
block events

cbackLkc NBCS_CBACK Callback function for LVDS link
controller block events

cbackStsw NBCS_CBACK Callback function for Space/time
Configuration block events

cbackPrgm NBCS_CBACK Callback function for PRGM block
events

Device Initialization Vector: DIV

The following structure contains chipset device initialization parameters. The DIV has two kinds:
NSE and SBS. Depending on the device, the user passes either the SBS or the NSE DIV structure
as an input parameter in the nbcsInit function call to initialize a Narrowband Chipset device.
The following is a description of the fields in those two DIV structures:

�� valid is the parameter indicating the validity of the structure and the type of DIV. It should
be assigned to the part number of the device, NBCS_SBS_PARTNUM,
NBCS_SBS_LITE_PARTNUM, NBCS_NSE20G_PARTNUM or NBCS_NSE8G_PARTNUM.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-2021248, Issue 1

�� intfBusCfg is the structure that contains the interface bus configuration. It consists of
mainly bus mode configuration.

�� lkcCfg[]is the LVDS link controller configuration block.

�� ilcCfg is the In-band link controller configuration block.

Table 6: Narrowband Chipset SBS Device Initialization Vector: sNBCS_DIV_SBS

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid.
This value should be assigned to
constant NBCS_SBS_PARTNUM for
SBS and NBCS_SBS_LITE_PARTNUM
for SBSLITE

intfBusCfg sNBCS_CFG_INTF_BUS Interface bus configuration block
structure

ilcCfg sNBCS_CFG_ILC In-band link controller configuration
block structure

lkcCfg
[NBCS_SBS_NUM_LINKS]

sNBCS_CFG_LKC LVDS link controller configuration
block structure

Table 7: Narrowband Chipset NSE Device Initialization Vector: sNBCS_DIV_NSE

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid.
This value should be assigned to
constant NBCS_NSE20G_PARTNUM for
NSE-20G and
NBCS_NSE8G_PARTNUM for NSE-8G

ilcCfg sNBCS_CFG_ILC In-band link controller configuration
block structure

lkcCfg
[NBCS_NSE_MAX_LINKS]

sNBCS_CFG_LKC LVDS link controller configuration
block structure

Group Initialization Vector: GIV

The following structure contains chipset group initialization parameters. The following is a
description of the fields in the GIV structures:

�� perDevDiv is the parameter indicating whether all devices of same type are initialized to the
same DIV/Initialization Profile or an array of DIV/Initialization Profiles.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-2021248, Issue 1

�� useInitProf is the parameter indicating whether initialization profiles or DIVs are used in
the structure.

�� pSbsDiv is an array of SBS DIVs

�� pNseDiv is an array of NSE DIVs

�� pSbsInitProf is an array of SBS initialization profiles

�� pNseDiv is an array of NSE initialization profiles

Table 8: Narrowband Chipset Group Initialization Vector: sNBCS_GIV

Field Name Field Type Field Description

perDevDiv UINT1 If non-zero, each device is initialized
with its own type of DIV. If FALSE,
all devices of a given type are
initialized with the same DIV.

useInitProf UINT1 If non-zero, the initialization profile is
used.

pSbsDiv sNBCS_DIV_SBS* (array of) SBS DIVs; if perDevDiv
is a logic one, these DIVs are used to
initialized each SBS device;
otherwise, pSbsDiv[0] is used for
all SBS devices. If this is NULL,
initialization profiles,
pSbsInitProf, are used instead.

pNseDiv sNBCS_DIV_NSE* (array of) NSE DIVs; if perDevDiv
is a logic one, these DIVs are used to
initialized each NSE device;
otherwise, pNseDiv[0] is used for
all NSE devices. If this is NULL,
initialization profiles,
pNseInitProf, are used instead.

pSbsInitProf UINT2 * (array of) SBS initialization profiles;
if perDevDiv is a logic one and
pSbsDiv is NULL, these profiles are
used to initialize the SBS devices;
otherwise, pSbsInitProf[0] is
used for all SBS devices.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

pNseInitProf UINT2 * (array of) NSE initialization profiles;
if perDevDiv is a logic one and
pNseDiv is NULL, these profiles are
used to initialize the NSE devices;
otherwise, pNseInitProf[0] is
used for all NSE devices.

Device Information Block: DEVINFO

The following structure contains chipset device information block. The following is a description
of the fields in the structures:

�� devType is the device type

�� pBaseAddr is the base address of the device.

�� devNum1 is the first device number assigned by the user. For SBS device, this is just the SBS
user number. For NSE device, this is the device number and this should follow the following
calculation: (stageNum * MAX_DEPTH) + depthNum where stageNum denotes the stage
number, depthNum denotes the depth number of the device, and MAX_DEPTH denotes the
depth of the space stage. Both stageNum and depthNum starts from zero. For instance,
devNum1 should be zero if the fabric is 1-stage.

�� devNum2 is the second device number assigned by the user. It is not used for SBS device.
For NSE device, this indicates whether the NSE device is a secondary device in a doubled
NSE/SBS fabric configuration.

�� devNum3 is the third device number assigned by the user. It is reserved for future use.

�� altMuxVal is the multiplexer control value. This is only applicable to doubled SBS or
doubled SBS/NSE fabric configurations. If this field is zero, the default control value is
selected by the CSD (the control value depending upon the field casMuxMode in MIV).
However, user can override this value by supplying a non-zero value for this field. This value
should not be arbitrary and should match the underlying hardware.

�� isLocal indicates whether this device is present locally under the control of the same
microprocessor that also runs the CSD. If a device is local, the CSD will invoke any
underlying device driver API, if necessary, for a particular operation; otherwise, CSD treats
the device as a logical one, or remote, and no API calls will be made to the underlying device
driver. The sbsDrvPresent and nseDrvPresent fields in MIV take precedence over this
field. In other words, setting the field isLocal to one if the underlying driver(s) is/are absent
will be ignored by the CSD which will treat the device logical in that situation.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-2021248, Issue 1

Table 9: Narrowband Chipset Device Information Block: sNBCS_DEVINFO

Field Name Field Type Field Description

devType eNBCS_DEVTYPE Device type: one of the following:
NBCS_NSE20G, NBCS_NSE8G,
NBCS_SBS, or NBCS_SBSLITE

pBaseAddr void* Base address of the device

devNum1 UINT1 First device number. For SBS devices,
it is the SBS number. For NSE, it is
the device number and should equal
to (stageNum * MAX_DEPTH) +
depthNum.

devNum2 UINT1 Second device number. Not used in
SBS devices. For NSE, it indicates if
the device is primary or secondary in
a doubled NSE/SBS fabric
configuration.

devNum3 UINT1 Third device number. Reserved for
future use.

altMuxVal UINT4 Alternate multiplexer control value

isLocal UINT1 Flag indicating whether the device is
under the control of the
microprocessor that also runs the
CSD. 0 = local, 1 = remote.

Event Servicing

SBS Event Processing Enable/Disable Mask (MASK_EVT_SBS)

This structure is used to pass/retrieve the event processing mask settings for the SBS device in a
Narrowband Chipset. This structure is used in the nbcsEventSetMask, nbcsEventGetMask
and nbcsEventClearMask function calls.

Table 10: Narrowband Chipset Event Mask for SBS Device: sNBCS_MASK_EVT_SBS

Field Name Field Type Field Description

intf sNBCS_MASK_EVT_INTF Event mask for Interface/Clock
block

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

tsw
[NBCS_SBS_NUM_TSW]

sNBCS_MASK_EVT_STSW Event mask for time switch
configuration block

lkc
[NBCS_SBS_NUM_LINKS]

sNBCS_MASK_EVT_LKC Event mask for LVDS link control
block

ilc
[NBCS_SBS_NUM_LINKS]

sNBCS_MASK_EVT_ILC Event mask for in-band link
controller block

prgm
[NBCS_SBS_NUM_LINKS]

sNBCS_MASK_EVT_PRGM Event mask for PRGM block

NSE Event Processing Enable/Disable Mask (MASK_EVT_NSE)

This structure is used to pass/retrieve the event processing mask settings for the NSE device in a
Narrowband Chipset. This structure is used in the nbcsEventSetMask, nbcsEventGetMask
and nbcsEventClearMask function calls.

Table 11: Narrowband Chipset Event Mask for NSE Device: sNBCS_MASK_EVT_NSE

Field Name Field Type Field Description

intf sNBCS_MASK_EVT_INTF Event mask for Interface/Clock
block. All events from this block are
report via cbackIntf with the
exception of C1 frame pulse events
which are reported via cbackC1FP

ssw sNBCS_MASK_EVT_STSW Event mask for space switch
configuration block. All events from
this block are report via cbackStsw

lkc
[NBCS_NSE_MAX_LINKS]

sNBCS_MASK_EVT_LKC Event mask for LVDS link control
block. All events from this block are
report via cbackLkc

ilc
[NBCS_NSE_MAX_LINKS]

sNBCS_MASK_EVT_ILC Event mask for in-band link
controller block. All events from this
block are report via either
cbackIlcRxData or
cbackIlcHead

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-2021248, Issue 1

Interface/Clock Block Event Mask (MASK_EVT_INTF)

Table 12: Narrowband Chipset Event Mask for Interface/Clock Block:
sNBCS_MASK_EVT_INTF

Field Name Field Type Field Description

refDllError UINT1 reference DLL error event (SBS device only):
0 = disable, 1 = enable

sysDllError UINT1 system DLL error event (SBS device only): 0 =
disable, 1 = enable

csuLock UINT1 CSU lock event: 0 = disable, 1 = enable

rxBusParityErr UINT1 Receive bus parity error: 0 = disable, 1 =
enable

outCollision
[NBCS_QUAD_BUS]

UINT1 Collision on outgoing SBI bus (SBS device
only): 0 = disable, 1 = enable

inBusParityErr
[NBCS_QUAD_BUS]

UINT1 Incoming bus parity error (SBS device only): 0
= disable, 1 = enable

Space/Time Switch Configuration Block Event Mask (MASK_EVT_STSW)

Table 13: Narrowband Chipset Event Mask for Space/Time Configuration Block:
sNBCS_MASK_EVT_STSW

Field Name Field Type Field Description

pageSwap UINT1 Change in connection page swap status event:
0 = disable, 1 = enable

pageUpdate UINT1 Change in the page update status event: 0 =
disable, 1 = enable

LVDS Link Control Event Mask (MASK_EVT_LKC)

Table 14: Narrowband Chipset Event Mask for LVDS Link Control Block:
sNBCS_MASK_EVT_LKC

Field Name Field Type Field Description

txFifoErr UINT1 Tx FIFO error event: 0 = disable, 1 = enable

rxFifoErr UINT1 Rx FIFO error event: 0 = disable, 1 = enable

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

oca UINT1 Out-of-character alignment event: 0 = disable,
1 = enable

ofa UINT1 Out-of-frame alignment event: 0 = disable, 1 =
enable

lcv UINT1 Line code violation event: 0 = disable, 1 =
enable

In-band Link Controller Block Event Mask (MASK_EVT_ILC)

Table 15: Narrowband Chipset Event Mask for In-band Link Controller Block:
sNBCS_MASK_EVT_ILC

Field Name Field Type Field Description

fifoOverflow UINT1 Rx FIFO overflow event: 0 = disable, 1 =
enable. This event is reported via the
cbackIlcRxData callback function. Note:
Disabling the event adversely hampers the
ability of the driver to detect data arrival and
should normally be left enabled

fifoThresh UINT1 Rx FIFO Threshold crossed event: 0 = disable,
1 = enable. This event is reported via the
cbackIlcRxData callback function. Note:
Disabling the event adversely hampers the
ability of the driver to detect data arrival and
should normally be left enabled

fifoTimeout UINT1 Rx FIFO data timeout event (detection of stale
data in FIFO): 0 = disable, 1 = enable. This
event is reported via the cbackIlcRxData
callback function. Note: Disabling the event
adversely hampers the ability of the driver to
detect data arrival and should normally be left
enabled

user0bitChg UINT1 USER[0] header bit change event: 0 = disable,
1 = enable. This event is reported via the
cbackIlcHead callback function.

linkbitsChg UINT1 LINK[1:0] bits change event: 0 = disable, 1 =
enable. This event is reported via the
cbackIlcHead callback function.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

pg0bitChg UINT1 PAGE[0] bit change event: 0 = disable, 1 =
enable. This event is reported via the
cbackIlcHead callback function.

pg1bitChg UINT1 PAGE[1] bit change event: 0 = disable, 1 =
enable. This event is reported via the
cbackIlcHead callback function.

PRGM Block Event Mask (MASK_EVT_PRGM)

Table 16: Narrowband Chipset Event Mask for PRGM Block: sNBCS_MASK_EVT_PRGM

Field Name Field Type Field Description

prbsByteErr
[NBCS_NUM_STS1PATH]

UINT1 PRBS byte error event for each of the STS-1
slice: 0 = disable, 1 = enable

prbsSync
[NBCS_NUM_STS1PATH]

UINT1 PRBS synchronization event for each of the
STS-1 slice: 0 = disable, 1 = enable

Status and Counts Structures

Status (STATUS)

This structure is used to retrieve a snapshot of the status information not processed by interrupts
such as clock monitoring. This structure is used in the nbcsStatsGetStatus function calls

Table 17: Narrowband Chipset Status Block: sNBCS_STATUS

Field Name Field Type Field Description

handle sNBCS_HNDL Device handle

intf sNBCS_STATUS_INTF Status for the Interface/Clock
Configuration block

stsw
[NBCS_SBS_NUM_TSW]

sNBCS_STATUS_STSW Status for the Space/Time
Configuration block: stsw[0] is
status for incoming time switch for
SBS and space switch for NSE.
stsw[1] is status for outgoing time
switch for SBS and not used for NSE
devices.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

lkc
[NBCS_NSE_MAX_LINKS]

sNBCS_STATUS_LKC Status for the LVDS link control
block: lkc[0..1] are the statuses for
the working and protection link in
SBS. For NSE, lkc[] are the status
for all the links. 12 in NSE-8G case
and 32 in NSE-32G

prgm
[NBCS_SBS_NUM_LINKS]

sNBCS_STATUS_PRGM Status for the PRGM blocks in SBS
devices. prgm[0] and prgm[1] are
the status of the working and
protection PRGM block respectively.

Interface/Clock Configuration Block Status (STATUS_INTF)

Table 18: Narrowband Chipset Status for Interface/Clock Configuration Block:
sNBCS_STATUS_INTF

Field Name Field Type Field Description

csu1Lockv UINT1 CSU#1 lock status: 0 = unlocked, 1 =
locked

csu2Lockv UINT1 CSU#2 lock status: 0 = unlocked, 1 =
locked (NSE device only)

sysDll sNBCS_STATUS_DLL System DLL status block (SBS only)

refDll sNBCS_STATUS_DLL Reference DLL status block (SBS only)

sRefClka UINT1 Reference clock signal: 0 = inactive, 1 =
active

sysClka UINT1 System clock signal: 0 = inactive, 1 = active

rc1fpa UINT1 receive bus C1 frame pulse signal: 0 =
inactive, 1 = active (NSE only)

rxBus sNBCS_STATUS_SIGBUS receive bus signal status block (SBS only)

inBus
[NBCS_QUAD_BUS]

sNBCS_STATUS_SIGBUS incoming quad bus signal status block (SBS
only)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-2021248, Issue 1

DLL Sub-Block Status (STATUS_DLL)

Table 19: Narrowband Chipset Status for DLL Sub-Block: sNBCS_STATUS_DLL

Field Name Field Type Field Description

run UINT1 DLL lock status: 0 = unlocked, 1 = locked

error UINT1 DLL delay line error: 0 = OK, 1 = error

Bus Signal Status (STATUS_SIGBUS)

Table 20: Narrowband Chipset Status for Bus Signal: sNBCS_STATUS_SIGBUS

Field Name Field Type Field Description

dataa UINT1 RDATAA or IDATAA bus signal: 0 =
inactive, 1 = active

pla UINT1 RPLA or IPLA bus signal: 0 = inactive, 1 =
active

v5a UINT1 RV5A or IV5A bus signal: 0 = inactive, 1 =
active

tpla UINT1 RTPLA or ITPLA bus signal: 0 = inactive, 1
= active

c1fpa UINT1 C1 frame pulse signal: 0 = inactive, 1 =
active

Space/Time Switch Configuration Block Status (STATUS_STSW)

Table 21: Narrowband Chipset Status for Space/Time Switch Configuration Block:
sNBCS_STATUS_STSW

Field Name Field Type Field Description

pgSwap UINT1 connection page swap status: 0 = not
pending, 1 = pending

pgUpdate UINT1 connection page update status: 0 =
complete, 1 = in progress

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-2021248, Issue 1

LVDS Link Controller Block Status (STATUS_LKC)

Table 22: Narrowband Chipset Status for LVDS Link Controller Block: sNBCS_STATUS_LKC

Field Name Field Type Field Description

oca UINT1 out-of-character alignment status: 0 =
aligned, 1 = mis-aligned

ofa UINT1 out-of-frame alignment status: 0 = aligned,
1 = mis-aligned

PRGM Block Status (STATUS_PRGM)

Table 23: Narrowband Chipset Status for PRGM Block: sNBCS_STATUS_PRGM

Field Name Field Type Field Description

sync
[NBCS_NUM_STS1PATH]

UINT1 byte sync status array for all STS-1 paths: 0
= sync, 1 = not sync

Device Counts (CNTR)

This structure is used to retrieve a snapshot of the various counts accumulated by the Narrowband
Chipset device. This structure is used in the nbcsStatsGetCounts function.

Table 24: Narrowband Chipset Device Counts Block: sNBCS_CNTR

Field Name Field Type Field Description

handle sNBCS_HNDL Device handle

lcvCtr
[NBCS_NSE_MAX_LINKS]

UINT2 Line code violation counter for the links.
lcvCtr[0] and lcvCtr[1]are the
counters for working and protection link
respectively in SBS. For NSE devices, this
array stores count for 12 and 32 links in
NSE-8G and NSE-32G respectively.

prbsErrCtr
[NBCS_SBS_NUM_LINKS]
[NBCS_NUM_STS1PATH]

UINT2 PRBS byte error counter for the working
and protection links and all 12 STS-1 paths.
(SBS device only)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-2021248, Issue 1

In-band Link Controller

In-band Link Message Header (HEADER_ILC)

Table 25: Narrowband Chipset In-band Link Message Header: sNBCS_HEADER_ILC

Field Name Field Type Field Description

userBits UINT1 USER[2:0] header bits

pageBits UINT1 PAGE[1:0] header bits

linkBits UINT1 LINK[1:0] header bits

auxBits UINT1 AUX[7:0] header bits

In-band Link Message Descriptor (MSG_DESC_ILC)

Table 26: Narrowband Chipset In-band Link Message Descriptor: sNBCS_MSG_DESC_ILC

Field Name Field Type Field Description

pBuf UINT1* Pointer to the data buffer

crcErr UINT1 CRC error flag. 0 = normal, 1 = error

In-band Link Rx Buffer Descriptor (RXBUF_DESC_ILC)

Table 27: Narrowband Chipset In-band Link Message Descriptor:
sNBCS_RXBUF_DESC_ILC

Field Name Field Type Field Description

linkDesc UINT1 Link Descriptor: For SBS, 0 = working Tx,
1 = working Rx, 2 = protect Tx, 3 = protect
For NSE, it is the physical port number. 0-
31 for NSE20G and 0-11 for NSE8G

numMsgs UINT1 Number of messages received

pMsgDesc sNBCS_MSG_DESC_ILC* Pointer to the received data buffer

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-2021248, Issue 1

In-band Link Tx Buffer Descriptor (TXBUF_DESC_ILC)

Table 28: Narrowband Chipset In-band Link Tx Buffer Descriptor: sNBCS_TXBUF_ILC

Field Name Field Type Field Description

linkDesc UINT1 Link descriptor: For SBS, 0 = working Tx, 1 =
working Rx, 2 = protect Tx, 3 = protect For
NSE, it is the physical port number. 0-31 for
NSE20G and 0-11 for NSE8G

pBuf UINT1* Pointer to the transmit data buffer

bufSz UINT2 Data buffer size

In-band Link Configuration Structure (CFG_ILC)

Table 29: Narrowband Chipset In-band Link Configuration: sNBCS_CFG_ILC

Field Name Field Type Field Description

fifoThresh UINT1 Hardware Rx FIFO threshold level: 0 – 7

fifoTimeout eNBCS_ILC_FIFO_TIMEOUT Hardware Rx FIFO timeout:
NBCS_ILC_FIFO_125US : 125us
NBCS_ILC_FIFO_250US : 250us
NBCS_ILC_FIFO_375US : 375 us
NBCS_ILC_FIFO_500US : 500 us

LVDS Link Controller

LVDS Link Configuration Structure (CFG_LKC)

Table 30: Narrowband Chipset LVDS Link Configuration: sNBCS_CFG_LKC

Field Name Field Type Field Description

rxInv UINT1 Active polarity control (NSE links
only): 0 = normal, 1 =
complemented

tmode
[NBCS_NUM_STS1PATH]

eNBCS_TMODE Termination mode:
NBCS_TMODE_MST,
NBCS_TMODE_HPT and
NBCS_TMODE_LPT

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

swMode eNBCS_LKC_SWITCHMODE (This field is reserved for CSD use
only. User does not have to set this
and any value will be ignored) Link
switch mode. This is to keep track
of what frame boundary the port
should set to. For DS0 CAS traffic,
it should be a 48-mulitframe
boundary.

Space/Time Switch Configuration

Map Setting Structure (CONMAP_STSW)

Table 31: Narrowband Chipset Space/Time Switch Map Setting: sNBCS_CONMAP_STSW

Field Name Field Type Field Description

devHndl sNBCS_HNDL device handle

devId UINT1 device Identification

devType eNBCS_DEVTYPE device type

devNum1 UINT2 device number #1 supplied by user at
the time when the device is added

devNum2 UINT2 device number #2 supplied by user at
the time when the device is added.
This field is zero if the device is SBS
or SBSLITE. For NSE device, this
denotes whether the device is a
primary or secondary device (only
applicable when in doubled SBS or
doubled SBS/NSE fabric)

devNum3 UINT2 device number #3 supplied by user at
the time when the device is added

accMode eNBCS_ACCESSMODE_STSW access mode

numSetting UINT4 number of settings

pBuf void* pointer to data buffer

pBuf2 void* pointer to data buffer 2

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

pBuf3 void* pointer to data buffer3

Pseudo Random Bit Sequence Generator/Monitor Configuration

PRGM Configuration Structure (CFG_PRGM)

Table 32: Narrowband Chipset PRGM Configuration: sNBCS_CFG_PRGM

Field Name Field Type Field Description

seqPrbs UINT1 Pattern control: 0 = prbs, 1 = sequential

invPrbs UINT1 Inversion control: 0 = disable, 1 = enable

lfsr UINT4 Linear feedback shift register seed value

amode UINT1 Autonomous mode: 0 = disable, 1 = enable

PRGM Payload Configuration Structure (CFG_PRGM_PYLD)

Table 33: Narrowband Chipset PRGM Payload Configuration: sNBCS_CFG_PRGM_PYLD

Field Name Field Type Field Description

sts12c UINT1 STS-12c mode: 0 = disable, 1 = enable

sts3c
[NBCS_NUM_STS3]

UINT1 STS-3c mode: 0 = disable, 1 = enable

Interface/Clock Configuration

CSU/DLL Configuration Structure (CFG_INTF_CSU)

Table 34: Narrowband Chipset CSU/DLL Configuration: sNBCS_CFG_INTF_CSU

Field Name Field Type Field Description

csuReset UINT1 CSU soft reset: 0 = reset, 1 = normal

csuMode UINT1 CSU operating mode: 0 = normal, 1 =
low power

csu2Reset UINT1 CSU#2 soft reset: 0 = reset, 1 = normal
(NSE device only)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

csu2Mode UINT1 CSU#2 operating mode: 0 = normal, 1 =
low power (NSE device only)

sysDllIgnorePhase UINT1 System DLL phase track: 0 = track, 1 =
ignore

refDllIgnorePhase UINT1 Reference DLL phase track: 0 = track, 1
= ignore

Interface Bus Configuration Structure (CFG_INTF_BUS)

Table 35: Narrowband Chipset Interface Bus Configuration: sNBCS_CFG_INTF_BUS

Field Name Field Type Field Description

busMode sNBCS_CFG_BUSMODE Bus mode configuration structure

inBusCfgParam

sNBCS_CFG_BUSPARAM Incoming bus configuration parameter
structure

outBusCfgParam

sNBCS_CFG_BUSPARAM Outgoing bus configuration parameter
structure

txBusCfgParam

sNBCS_CFG_BUSPARAM Transmit serial bus configuration
parameter structure

rxBusCfgParam

sNBCS_CFG_BUSPARAM Receive serial bus configuration
parameter structure

Interface Bus Mode Configuration Structure (CFG_BUSMODE)

Table 36: Narrowband Chipset Interface Bus Mode Configuration: sNBCS_CFG_BUSMODE

Field Name Field Type Field Description

io eNBCS_IO_BUSMODE Bus mode:
NBCS_IO_BUS_QUAD = 4 x 19.44 MHz bus,
NBCS_IO_BUS_SINGLE = 1 x 77.76 MHz bus
NOTE: NBCS_IO_BUS_QUAD is not
supported in SBSLITE devices

bridge UINT1 Bridge mode: 0 = serial LVDS in SBS enabled,
1 = serial LVDS disabled and parallel bus I/O is
enabled. This field is ignored in SBSLITE
devices.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

multiFrm eNBCS_MULTIFRM_MODE Multi-frame mode: NBCS_MF_4 = 4 frames in
multi-frame, NBCS_MF_48 = 48 frames in
multi-frame

phyDevice UINT1 SBI physical/link layer device mode: 0 = link
layer device, 1 = physical layer device

Interface SBI/TeleCombus Configuration Parameter Structure (CFG_BUSPARAM)

Table 37: Narrowband Chipset Interface SBI/TeleCombus Configuration Parameter:
sNBCS_CFG_BUSPARAM

Field Name Field
Type

Field Description

oddParity
[NBCS_QUAD_BUS]

UINT1 Bus parity selection: 0 = even, 1 = odd.
Note: The second, third, and fourth elements in the array are
only applicable in the case of quad incoming and outgoing
bus configuration

incPl
[NBCS_QUAD_BUS]

UINT1 PL signal parity inclusion: 0 = no, 1 = yes
Note: The second, third, and fourth elements in the array are
only applicable in the case of quad incoming and outgoing
bus configuration (For TeleCombus only)

incC1fp
[NBCS_QUAD_BUS]

UINT1 C1FP signal parity inclusion: 0 = no, 1 = yes
Note: The second, third, and fourth elements in the array are
only applicable in the case of quad incoming and outgoing
bus configuration (For TeleCombus only)

j1LockPos UINT1 J1 byte position lock: 0 = lock at offset 522 (byte after C1),
1 = lock at offset 0 (For TeleCombus only)

j1Cfg UINT2 J1 byte identification inclusion. j1Cfg[12:0] is a 12-bit
bitmask for the 12 STS-1 signals that controls whether the
J1 byte position is pulsed high in the bus signal C1FP:
0 = does not pulse high, 1 = pulse high (For TeleCombus
only)

v1Cfg UINT2 V1 byte identification inclusion. v1Cfg[12:0] is a 12-bit
mask for the 12 STS-1 signals that controls whether the V1
byte position is pulsed high in the bus signal C1FP:
0 = does not pulse high, 1 = pulse high (For TeleCombus
only)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-2021248, Issue 1

Field Name Field
Type

Field Description

h1h2Ena UINT1 H1 and H2 values output enable: 0 = disable, 1 = enable
(For TeleCombus only)

h1h2PtrSel UINT2 Alternate H1-H2 pointer selection. h1h2PtrSel[12:0] is a
12-bit bitmask for the 12 STS-1 signals that controls
whether the H1/2 or the alternate H1/2 value is the output:
0 = H1-H2 value, 1 = alternate H1-H2 value (For
TeleCombus only)

h1PtrVal UINT1 H1 value to be output when the field h1h2Ena is logic high.
This field is applicable only for transmit and outgoing
TeleCombus (For TeleCombus only)

h2PtrVal UINT1 H2 value to be output when the field h1h2Ena is logic high.
This field is applicable only for transmit and outgoing
TeleCombus (For TeleCombus only)

altH1Val UINT1 Alternate H1 value to be output when the field h1h2Ena is
logic high. This field is applicable only for transmit and
outgoing TeleCombus (For TeleCombus only)

altH2Val UINT1 Alternate H2 value to be output when the field h1h2Ena is
logic high. This field is applicable only for transmit and
outgoing TeleCombus (For TeleCombus only)

TeleCombus Payload Configuration Structure (CFG_PYLD_TCB)

Table 38: Narrowband Chipset Fabric Management TeleCombus Payload Configuration:
sNBCS_CFG_PYLD_TCB

Field Name Field Type Field Description

vtgpPyld
[NBCS_NUM_STS3+1]
[NBCS_NUM_STS1+1]
[NBCS_NUM_VTGROUP+1]

eNBCS_TCBTRIB_TYPE Payload type for the VT group:
NBCS_TCBVT_VT15 = VT1.5,
NBCS_TCBVT_VT2 = VT2,
NBCS_TCBVT_VT3 = VT3,
NBCS_TCBVT_VT6 = VT6

sdhAu4Frm
[NBCS_NUM_STM1+1]

UINT1 SDH AU-4 frame indicator:
A logic one indicates the STM-1
frame is AU-4 structured; otherwise
set to logic zero for SDH AU-3
structured frame or SONET

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-2021248, Issue 1

SBI Bus Payload Configuration Structure (CFG_PYLD_SBI)

Table 39: Narrowband Chipset Fabric Management SBI Bus Payload Configuration:
sNBCS_CFG_PYLD_SBI

Field Name Field Type Field Description

spe
[NBCS_MAX_SBI+1]
[NBCS_MAX_SBI_SPE+1]

eSBS_SBITRIB_TYPE Payload type for the SPE:
NBCS_T1_PYLD: T1 or TVT1.5
NBCS_E1_PYLD: E1 or TVT2
NBCS_DS3_E3_PYLD: DS3 or E3
NBCS_FRAC_RT_PYLD: fractional
rate

SBI Bus Virtual Tributary Configuration Structure (CFG_TRIB_SBI)

Table 40: Narrowband Chipset Fabric Management SBI Virtual Tributaries Configuration
Structure: sNBCS_CFG_TRIB_SBI

Field Name Field Type Field Description

oe UINT1 Tributary output enable: 0 = disable,1 =
enable

casEna UINT1 CAS processing enable: 0 = disable, 1 =
enable

justReqEna UINT1 Justification request enable: 0 = disable,
1 = enable

tvtEna UINT1 Transparent VT enable: 0 = disable, 1 =
enable

Fabric Management Module

SBI/TeleCombus Time Slot Structure (SLOT)

Table 41: Narrowband Chipset Fabric Management Timeslot Structure: sNBCS_SLOT

Field Name Field Type Field Description

handle sNBCS_HNDL SBS device handle

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

sbi sNBCS_TRIB_SBI SBI bus tributary structure. This field is
a union member of the following field,
tcb. The union name is bus. In other
words, the following syntax in C is used
to assess this member: “bus.sbi”

tcb sNBCS_TRIB_TCB TeleCombus tributary structure. This
field is a union member of the above
field, sbi. The union name is bus. In
other words, the following syntax in C
is used to assess this member:
“bus.tcb”

ts UINT2 Timeslot number

TeleCombus Virtual Tributary Structure (TRIB_TCB)

Table 42: Narrowband Chipset Fabric Management TeleCombus Virtual Tributaries Structure:
sNBCS_TRIB_TCB

Field Name Field Type Field Description

sts3Num UINT1 STS-3 number: 1-4

sts1Num UINT1 STS-1 number: 1-3. A zero selects the
entire STS-3/3c indicated by sts3Num.

vtgp UINT1 Virtual tributary group number: 1-7; A
zero selects the entire STS-1 indicated
by (sts3Num,sts1Num)

trib UINT1 Tributary number,
VT1.5/VC11: 1-4,
VT2/VC12: 1-3,
VT3: 1-2,
VT6/VC2: n/a.

SBI Bus Virtual Tributary Structure (TRIB_SBI)

Table 43: Narrowband Chipset Fabric Management SBI Bus Virtual Tributaries Structure:
sNBCS_TRIB_SBI

Field Name Field Type Field Description

sbiNum UINT1 SBI bus number: 1-4

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

speNum UINT1 SPE number: 1-3

trib UINT1 Tributary number,
T1/TVT1.5/TU11: 1-28,
E1/TVT2/TU12: 1-21,
DS3/E3: n/a

Fabric Edge Wiring Structure (EDGE_WIRING)

Table 44: Narrowband Chipset Fabric Management Edge Wiring: sNBCS_EDGE_WIRING

Field Name Field Type Field Description

nsePhyPortNum UINT2 NSE device physical port number

sbsNum UINT2 SBS user number

Device Diagnostics Structures (DIAG_TEST)

Register Test Structure

This structure contains the parameters required by the driver to perform a register test on a
Narrowband Chipset device. The user passes this structure as an input parameter in the
nbcsDiagTestReg function call.

Table 45: Narrowband Chipset RAM Test Structure: sNBCS_DIAG_TEST_REG

Field Name Field Type Field Description

type UINT1 type of register test:
0x01 = test the full range of registers
0x02 = read/write test
0x04 = walking ones test

offset UINT2 register offset

bitmask UINT4 read/write bitmask

value UINT4 value to write and read back

RAM Test Structure

This structure contains the parameters required by the driver to perform a RAM test on a
Narrowband Chipset device. The user passes this structure as an input parameter in the
nbcsDiagTestRam function call.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-2021248, Issue 1

Table 46: Narrowband Chipset RAM Test Structure: sNBCS_DIAG_TEST_RAM

Field Name Field Type Field Description

type UINT1 type of RAM test:
0x01 = full-range test
0x02 = read/write test
0x04 = walking ones test
0x08 = aliasing test

ramType UINT1 type of RAM (n/a to NSE):
0x00 = time switch RAM test in incoming dir
0x01 = time switch RAM test in outgoing dir

startOffset UINT2 starting RAM offset

endOffset UINT2 ending RAM offset

pValue void* pointer to (array of) value to write and read
back. For SBS, this should point to a UINT2
value. For NSE, this should point to an array of
UINT1 with 32 or 12 elements for NSE-20G
and NSE-8G respectively.

4.3 Structures in the Driver’s Allocated Memory

These structures are defined and used by the driver and are part of the context memory allocated
when the driver is opened. These structures are the Chipset Module Data Block (CSMDB) and
the Chipset Device Data Block (CSDDB).

Chipset Module Data Block: CSMDB

The CSMDB is the top-level structure for the module. It contains configuration data about the
Module level code and pointers to configuration data about the device level codes.

�� errModule indicates specific error codes returned by API functions that are not passed
directly to the application. Most of the module API functions return a specific error code
directly. When the returned code is NBCS_FAILURE, this indicates that the top-level function
was not able to carry the specified error code back to the application. Under those
circumstances, the proper error code is recorded in this element. The element is the first in the
structure so that the user can cast the CSMDB pointer into an INT4 pointer and retrieve the
local error (this eliminates the need to include the CSMDB template into the application
code).

�� valid indicates that this structure has been properly initialized and can be read by the user.

�� stateDevice contains the current state of the device and could be set to: NBCS_START,
NBCS_PRESENT, NBCS_ACTIVE or NBCS_INACTIVE.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-2021248, Issue 1

�� stateModule contains the current state of the module and could be set to:
NBCS_MOD_START, NBCS_MOD_IDLE or NBCS_MOD_READY.

�� usrCtxt is a value that can be used by the application to identify the device during the
execution of the callback functions. It is passed to the chipset driver when nbcsAdd is called
and returned to the user in callback functions.

Table 47: Narrowband Chipset Module Data Block: sNBCS_CSMDB

Field Name Field Type Field Description

errModule INT4 Global error Indicator for module calls

valid UINT2 Indicates that this structure has been
initialized

stateModule eNBCS_MOD_STATE Module state; can be one of the following
NBCS_MOD_START, NBCS_MOD_IDLE or
NBCS_MOD_READY

stateChipset eNBCS_DEV_STATE Chipset state; can be one of the following:
NBCS_START, NBCS_PRESENT,
NBCS_INACTIVE, or NBCS_ACTIVE

totalMemSz UINT4 Total size of memory allocated by the
chipset driver

chkPtType eNBCS_CHKPT_TYPE Checkpoint type

chkPtState UINT2 The state of the checkpointing operation

pollMode UINT1 Polling mode flag: 0 = disabled (interrupt
mode), 1 = enabled

cbackC1FP NBCS_CBACK_TC Callback function for C1 frame pulse
reception

cbackIlcRxData NBCS_CBACK_TC Callback function for in-band link Rx data

cbackIlcHead NBCS_CBACK Callback function for in-band link header
bits change

cbackIntf NBCS_CBACK Callback function for Interface/clock block
events

cbackLkc NBCS_CBACK Callback function for LVDS link controller
block events

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

cbackStsw NBCS_CBACK Callback function for Space/time
Configuration block events

cbackPrgm NBCS_CBACK Callback function for PRGM block events

fabType eNBCS_FABRIC_TYPE System Fabric Type:
NBCS_FABRIC_STD: standard NSE/SBS
fabric
NBCS_FABRIC_DOUBLE_SBS: double
SBS fabric. SBS devices are doubled up
but NSE device(s) are not. .
NBCS_FABRIC_DOUBLE_NSESBS:
double SBS and NSE fabric. Both SBS and
NSE devices are doubled up in the fabric.

sysBusType eNBCS_BUSTYPE Bus Type: NBCS_BUS_SBI for SBI Bus or
NBCS_BUS_TCB for TeleCombus
applications

swhMode eNBCS_SWHMODE Switching mode (n/a in TeleCombus
mode): NBCS_SWH_BYTE or
NBCS_SWH_COLUMN.

casMuxMode UINT1 CAS processing mode. This field is high
when the CSD is in DS0 CAS switching
mode. In TeleCombus mode, this indicates
which bus signal, OPL, or OTAIS is used
as external MUX control signal

pageSwapCntl eNBCS_CONMAP_CNTL Source of control for the connection page
switching in all SBSs:
NBCS_MAP_CNTL_SW: software
controls the page switching
NBCS_MAP_CNTL_HW: hardware pin
controls the page switching
NBCS_MAP_CNTL_ILC: the PAGE bits
in ILC controls the page switching

wpLinkCntl eNBCS_WPLINK_CNTL Source of control for the working and
protection LVDS link in all SBSs:
NBCS_LINK_CNTL_SW: software
controls whether working or protection
link is active
NBCS_LINK_CNTL_HW: a hardware pin
controls whether working or protection
link is active

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

pageAutoSync UINT1 Automatic active page to inactive
connection page synchronization. When
this field is logic one, the settings are
copied from the active to inactive page
after a page switch in all SBS and NSE
devices in the system.

coreDepth UINT2 The depth of the NSE switching core

coreNumStage UINT2 The number of stages of the NSE
switching core

numPortNse UINT2 number of physical ports for the NSE that
makes up the switching core. It should be
32 or 12 for NSE-20G and NSE-8G
devices respectively

pageAutoUpdate UINT1 NSE/SBS devices connection setting
automatic update: 0 = CSD does not
automatically update the map settings of
the local devices; 1 = CSD automatically
updates the map settings after a call request

nseDrv sNBCS_DRV_NSE NSE device driver database structure

sbsDrv sNBCS_DRV_SBS SBS device driver database structure

opaLib sNBCS_LIB_OPA OPA library database structure

maxGroups UINT2 Maximum number of groups supported
during this session

maxSbsDevs UINT2 Maximum number of SBS devices in this
session

maxNseDevs UINT2 Maximum number of NSE devices in this
session

numGroups UINT2 Number of groups currently defined

pGdb sNBCS_GDB * (array of) Group Data Block (GDB) in
context memory

maxSbsInitProfs UINT2 Maximum number of SBS initialization
profiles supported

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

maxNseInitProfs UINT2 Maximum number of NSE initialization
profiles supported

pSbsInitProfs sNBCS_DIV_SBS * (array of) SBS initialization profiles

pNseInitProfs sNBCS_DIV_NSE * (array of) NSE initialization profiles

nseInitProfOffset UINT2 Initialization profile offset for the NSE
devices

inToggling UINT1 Page Toggling. This flag is logic one if the
toggle page operation is in progress

Group Data Block: GDB

The GDB is the top-level structure for each group. It contains configuration data describing the
devices in the group.

�� type: used to identify the group type. This has to be the first element in the structure
because this field is used by the CSD to resolve the group type.

�� errGroup: Most of the module API functions return a specific error code directly. When the
returned code is NBCS_FAILURE, this indicates that the top-level function was not able to
carry the specified error code back to the application. Under those circumstances, the proper
error code is recorded in this element.

�� valid indicates that this structure has been properly initialized and can be read by the user.

�� numSbs indicates the total number of SBS devices in the group.

�� numNse indicates the total number of NSE devices in the group.

�� ppSbs is the array of SBS chipset device data block, which holds information pertaining the
SBS device in the group.

�� ppNse is the array of NSE chipset device data block, which holds information pertaining the
NSE device in the group.

Table 48: Narrowband Chipset Group Data Block: sNBCS_GDB

Field Name Field Type Field Description

type eNBCS_DEVTYPE Group type

valid UINT2 Indicates that this structure has been initialized

errGroup INT4* Global error Indicator for module calls

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

numSbs UINT2 Number of SBS devices in the group

numNse UINT2 Number of NSE devices in the group

ppSbs sNBCS_CSDDB_SBS ** (array of) SBS CSDDB

ppNse sNBCS_CSDDB_NSE ** (array of) NSE CSDDB

Device Driver Database Block: DRV_SBS, DRV_NSE

Table 49: Narrowband Chipset Device Driver Database Block: sNBCS_DRV_SBS,
sNBCS_DRV_NSE

Field Name Field Type Field Description

pModErr INT4* Pointer to the global error Indicator for module
calls

maxDevs UINT2 The maximum number of devices supported

numDevs UINT2 The current number of devices registered

phyDevsPresent UINT1 Indicates whether the physical device driver is
present locally

dev void* For SBS devices, it is an array of
sNBCS_CSDDB_SBS.
For NSE devices, it is an array of
sNBCS_CSDDB_NSE.

OPA Library Database Block: LIB_OPA

Table 50: Narrowband Chipset OPA Library Database Block: sNBCS_LIB_OPA

Field Name Field Type Field Description

edgeTblOffset UINT2 Offset of the edge wiring
table

coreTblOffset UINT2 Offset of the core wiring
table

opaUse UINT1 Indicates if OPA routing is
executed locally

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

hFabric void* Handle of the fabric used in
OPA library

nseLogic2CsddbLut sNBCS_HNDL* Lookup table for converting
NSE logical number to
CSDDB

igrsEdgeWireTbl sNBCS_HNDL* Lookup table for converting
SBS logical number to
CSDDB on ingress side

egrsEdgeWireTbl sNBCS_HNDL* Lookup table for converting
SBS logical number to
CSDDB on egress side

stdPhyWiring UINT1 A logic one indicates the
underlying wiring topology
is “PMC-standard”
compliant

devSettingHdr
[NBCS_MAX_SETTING_HEADER]

sNBCS_DEV_SETTINGS Internal buffer for storing
setting headers retrieved
from OPA

numDevSetting UINT2 Number of device settings

devSettingIdx UINT2 index for the device setting

isPrevSecDevSetting UINT1 A logic one indicates that the
setting just retrieved is for
the secondary device in a
doubled fabric configuration

prevSettingReq eNBCS_FABRIC_SETTING Previous setting request.
This field keeps track of the
setting type from previous
operation.

defSpeType UINT1 SPE payload type (This field
is applicable only when
using SBS rev A devices)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-2021248, Issue 1

Device Settings Header: DEV_SETTINGS

Table 51: Narrowband Chipset Device Setting Header: sNBCS_DEV_SETTINGS

Field Name Field Type Field Description

settingType INT1 setting type

devDirPort INT1 device direction, ingress or egress

devId UINT2 device ID

devSubId UINT2 device sub ID

numSettings UINT2 number of settings

pbuf1 void * pointer to buffer 1

pbuf2 void * pointer to buffer 2

pbuf3 void * pointer to buffer 3

SBS Chipset Device Data Block: CSDDB_SBS

Table 52: Narrowband Chipset SBS Device Data Block: sNBCS_CSDDB_SBS

Field Name Field Type Field Description

type eNBCS_DEVTYPE Device type
Note: This has to be the first element
in the structure because the CSD uses
this to resolve the actual type of the
device.

valid UINT2 Indicates that this structure has been
initialized

pDevErr INT4* Pointer to the global device error
module

hndl sNBCS_HNDL Handle of the device. Used when
calling underlying device drivers API

usrContext sNBCS_USR_CTXT Stores the user’s context for the
device. It is passed as an input
parameter when the driver invokes an
application callback

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

baseAddr void * Base address of the device

isLocal UINT1 A logic one indicates the SBS device
is local.

state eNBCS_DEV_STATE Device state

devIdParm sNBCS_DEV_ID_PARM Device ID parameters. A structure
that holds information including
device numbers and handle of the
device

numGroups UINT2 Total number of groups this device
belongs to

userNum UINT2 The user number of the SBS
(specified by user when the device is
added)

logicNum INT4 This is the logical SBS number
recognized by OPA

secNse UINT2 This is logic one if this SBS is
connected to the secondary NSE in a
doubled SBS/NSE fabric
configuration

igrsNseLogicNum UINT2 Logical number of the NSE the
ingress side (of this SBS) is
connected to

igrsNsePhyPortNum UINT1 Physical port number of the NSE
(indicated by nseIgrsLogicalNum)
the ingress side (of this SBS) is
connected to

egrsNseLogicNum UINT2 Logical number of the NSE the egress
side (of this SBS) is connected to

egrsNsePhyPortNum UINT1 Physical port number of the NSE
(indicated by nseIgrsLogicNum)
the egress side (of this SBS) is
connected to

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

portProtected UINT2 Port protection indicator: This field is
non-zero if the SBS is involved in
some form of port protection
(1+1/1:N). Furthermore, this field
keeps track of number of working
SBS this SBS is protecting if the SBS
is a protect one in the 1:N protection

protectId INT4 protection ID used in OPA library

sbsLink sNBCS_CSDDB_SBS* CSDDB pointer to the other SBS in a
1+1 protection

protectMode eNBCS_PORTPROTECT This field indicates what port
protection mode the SBS is engaged
in.

busCfg sNBCS_CFG_INTF_BUS Bus configuration information

sbiPyld sNBCS_CFG_PYLD_SBI SBI Bus payload type

tcbPyld sNBCS_CFG_PYLD_TCB TeleCombus payload type

sbiTribCfg
[NBCS_NUM_STS3+1]
[NBCS_NUM_STS1+1]
[NBCS_MAX_T1_TRIB+1]

sNBCS_CFG_TRIB_SBI SBI Tributaries configuration

egrsSpeIntegrity
[NBCS_NUM_STS3+1]
[NBCS_NUM_STS1+1]

UINT1 Egress SPE integrity. This is non-zero
if the integrity is present

egrsTribIntegrity
[NBCS_NUM_STS3+1]
[NBCS_NUM_STS1+1]
[NBCS_MAX_T1_TRIB+1]

UINT1 Egress tributary integrity. This is non-
zero if the integrity is present

igrsPendingPage UINT1 page number of the pending active
page in the ingress direction

egrsPendingPage UINT1 page number of the pending active
page in the egress direction

egrsMuxCtlVal UINT4 Multiplexer control value (in the case
of doubled SBS or doubled SBS/NSE
fabrics) used by the CSD for this SBS
device.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-2021248, Issue 1

NSE Chipset Device Data Block: CSDDB_NSE

Table 53: Narrowband Chipset NSE Device Data Block: sNBCS_CSDDB_NSE

Field Name Field Type Field Description

type eNBCS_DEVTYPE Device type
Note: This has to be the first element in
the structure because the CSD uses this to
resolve the actual type of the device.

valid UINT2 Indicates that this structure has been
initialized

pDevErr INT4* Pointer to the global device error module

hndl sNBCS_HNDL Handle of the device. Used when calling
underlying device drivers API

usrContext sNBCS_USR_CTXT Stores the user’s context for the device. It
is passed as an input parameter when the
driver invokes an application callback

baseAddr void * Base address of the device

isLocal UINT1 This field indicates whether the NSE
device is local. 0 = remote, 1 = local

state eNBCS_DEV_STATE Device state

devIdParm sNBCS_DEV_ID_PA
RM

Device ID parameters. A structure that
holds information including device
numbers and handle of the device

numGroups UINT2 Total number of groups this device
belongs to

mapAutoUpdate UINT1 Flag for connection map automatic update

secNse UINT2 This field is logic high if the NSE device
is the secondary NSE in a doubled
SBS/NSE fabric configuration

logicalNum UINT2 Logical number of the NSE

igrsPhyPortLut
[NBCS_NSE_MAX_LINKS]

UINT1 Lookup table to convert logical port
number to physical (ingress) port number
of the NSE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

egrsPhyPortLut
[NBCS_NSE_MAX_LINKS]

UINT1 Lookup table to convert logical port
number to physical (egress) port number
of the NSE

pendingPage UINT1 Number of the pending active page

pendingIgrsSbsPg UINT4 All 32 pending page number of the
ingress SBS attached to this NSE

pendingEgrsSbsPg UINT4 All 32 pending page number of the egress
SBS attached to this NSE

devCfg sNBCS_DIV_NSE Copy of the current NSE device setting

Device Identification Parameter Block: DEV_ID_PARM

The following structure contains chipset device information block. The following is a description
of the fields in the structures:

Table 54: Narrowband Chipset Device Information Block: sNBCS_DEV_ID_PARM

Field Name Field Type Field Description

devHandle void* Device handle assigned by the
SBS/NSE device driver.

devNum1 UINT1 First device number assigned by the
user. It is supplied by the user when
the device is added via the structure
sNBCS_DEVINFO.

devNum2 UINT1 Second device number assigned by
the user. It is supplied by the user
when the device is added via the
structure sNBCS_DEVINFO.

devNum3 UINT1 Third device number assigned by the
user. It is supplied by the user when
the device is added via the structure
sNBCS_DEVINFO.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-2021248, Issue 1

Generic Device/Group Handle: HANDLE

Table 55: Narrowband Chipset Generic Device/Group Handle: uNBCS_HANDLE

Field Name Field Type Field Description

devCsddb sNBCS_HNDL device handle

nseCsddb sNBCS_CSDDB_NSE* NSE CSDDB

sbsCsddb sNBCS_CSDDB_SBS* SBS CSDDB

grpGdb sNBCS_GDB* Group GDB

4.4 Structures Passed through RTOS Buffers

Deferred Processing Vector: DPV

This structure is used in two ways. First, it is used to determine the size of buffer required by the
RTOS for use in the driver. Second, it defines the format of the data that is assembled by the
chipset driver and sent to the application code. It is the application’s responsibility to create one
pool of DPV buffers when the driver calls the user-supplied sysNbcsBufferStart function.

Note: the application code is responsible for returning this buffer to the RTOS buffer pool.
sysNbcsDPVBufferRtn can be used to return a buffer to either pool.

The DPR reports events to the application using user-defined callbacks. The DPR uses each
callback to report a functionally related group of events.

Table 56: Narrowband Chipset Deferred Processing Vector: sNBCS_DPV

Field Name Field Type Field Description

event NBCS_EVENT Bitmap indicating event(s) being reported.

info UINT4 Event related information

4.5 Global Variables

Although most of the variables within the driver are not meant to be used by the application code,
there is one global variable that can be of great use to the application code.

This variable is called nbcsMdb and acts as a global pointer to the Chipset Module Data Block
(CSMDB). The content of this global variable should be considered read-only by the application.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-2021248, Issue 1

�� errModule: This structure element is used to store an error code that specifies the reason for
an API function’s failure. The field is only valid for functions that do not return an error code
or when a value of NBCS_FAILURE is returned.

�� stateModule: This structure element is used to store the module state (Figure 18).

�� stateChipset: This structure element denotes the state of the chipset driver (Figure 18).

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-2021248, Issue 1

5 APPLICATION PROGRAMMING INTERFACE
This section of the manual provides a detailed description of each function that is a member of
the Narrowband Chipset driver Application Programming Interface (API). API functions typically
execute in the context of an application task.

It is important to note that these functions are not re-entrant. This means that two application
tasks cannot invoke the same API at the same time. However the driver protects its data structures
from concurrent accesses by the application.

5.1 Module, Device and Group Management

Module management can be accomplished through the use of a set of API functions that are used
by the Application to open, start, stop and close the driver module. These functions take care of
initializing the driver, allocating memory and requesting all RTOS resources needed by the driver.
They are also used to change the module state. For more information on the module states see the
state diagram on page 48. For a typical module management flow diagram see page 50.

Group management consists of a set of API functions that are used by the Application to define
various groups of devices. The use of this grouping is optional; if future API calls are to be made
at the “group” level of abstraction, however, the groups must be defined using the functions in
this section. A group is considered to be in the same state as its constituent members, if all the
members are in the same state. A group is considered to be in an indeterminate state if its
constituent devices are not all in the same state.

Device management is performed by the use of a set of API functions to control the devices.
These functions take care of initializing a device in a specific configuration, and enabling the
device general activity. They are also used to change the software state for that device. For more
information on the device states see the state diagram on page 48. For a typical device
management flow diagram see page 51.

Some management function can act on either a single device or on a group. These functions
distinguish whether the operation is intended for a device or group by examining the handle given
by the user. For instance, nbcsActivate can operate on an individual device or a group.

Note that if group management functions are used, device management functions performed on
devices within groups should be used carefully, as the use of these functions will often cause the
group state to become NBCS_INDETERMINATE.

For more information on the module and device states see the state diagram on page 48. For
typical module and device management flow diagrams see pages 50 and 51 respectively.

Opening the Driver Module: nbcsModuleOpen

This function performs module level initialization of the chipset device driver. This involves
allocating all of the memory needed by the driver and initializing the internal structures.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsModuleOpen(sNBCS_MIV *pMiv)

Inputs pMiv : (pointer to) Module Initialization Vector

Outputs Places the address of errorModule into the MIV passed by the
application

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_MIV
 NBCS_ERR_MEM_ALLOC

Valid States NBCS_MOD_START

Side Effects Changes the MODULE state to NBCS_MOD_IDLE

Closing the Driver Module: nbcsModuleClose

This function performs module level shutdown of the driver. This involves deleting all devices
being controlled by the driver (by calling nbcsDelete for each device) and de-allocating all the
memory allocated by the driver.

Prototype INT4 nbcsModuleClose(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects Changes the MODULE state to NBCS_MOD_START

Starting the Driver Module: nbcsModuleStart

This function connects the RTOS resources to the chipset driver. This involves allocating
semaphores and timers, and initializing buffers. Upon successful return from this function, the
driver is ready to add devices.

Prototype INT4 nbcsModuleStart(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
F il NBCS ERR INVALID MODULE STATE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-2021248, Issue 1

Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INT_INSTALL
 NBCS_ERR_BUF_START

Valid States NBCS_MOD_IDLE

Side Effects Changes the MODULE state to NBCS_MOD_READY

Stopping the Driver Module: nbcsModuleStop

This function disconnects the RTOS resources from the chipset driver. This involves de-allocating
semaphores and timers, and freeing-up buffers. If there are any registered devices, nbcsDelete
is called for each.

Prototype INT4 nbcsModuleStop(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE

Valid States NBCS_MOD_READY

Side Effects Changes the MODULE state to NBCS_MOD_IDLE

Adding a Device: nbcsAdd

This function verifies the presence of a new device in the hardware and then returns a handle
back to the user. The device handle is passed as a parameter of most of the device API functions.
It is used by the driver to identify the device on which the operation is to be performed.

Prototype sNBCS_HNDL nbcsAdd(sNBCS_DEVINFO* pDevInfo,
sNBCS_USR_CTXT usrCtxt, INT4 **pperrDevice)

Inputs pDevInfo : pointer to the information structure of
 the device to be added
usrCtxt : user context for this device
pperrDevice : (pointer to) an area of memory

Outputs ERROR code written to the CSMDB on failure
 NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEVS_FULL
 NBCS_ERR_DEV_ALREADY_ADDED
 NBCS_ERR_INVALID_DEV

pperrDevice : (pointer to) errDevice (inside the

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-2021248, Issue 1

 CSDDB)

Returns Success = Device Handle (to be used as an argument to most of
the Narrowband Chipset APIs)
Failure = NULL (pointer)

Valid States NBCS_MOD_READY

Side Effects Changes the DEVICE state to NBCS_PRESENT

Defining a Group or Adding Devices to a Group: nbcsGroupAdd

This function handles the following: (a) define a new group and add new device(s) to it; (b)
define a new group and add existing device(s) to it; (c) add new devices to an existing group; or
(d) add existing devices to an existing group. The group handle is passed as a parameter of most
of the API functions operating in the group context. It is used by the driver to identify the group
on which the operation is to be performed.

In case (a), content of pGroupHndl should be NULL, pDevInfo should be pointed to an array
of element numDev with device information data structures. The handle of the new group will be
stored in the location pointed to by pGroupHndl. The handles of all the new devices added will
also be stored in the location pointed to by pDevHandle.

In case (b), content of pGroupHndl should be NULL, pDevInfo and pperrDevice should
be NULL, and pDevHandle should be pointed to an array of device handles with numDev
elements in it.

In case (c), pGroupHndl should be pointed to a valid group handle, and pDevInfo should be
pointed to an array of element numDev with device information data structures. The handles of all
the new devices added will also be stored in the location pointed to by pDevHandle.

In case (d), pGroupHndl should be pointed to a valid group handle, and pDevHandle should be
pointed to an array of device handles with numDev elements in it.

In all cases, it is user’s responsibility to make sure that the buffer is large enough to store returned
values from the function.

Prototype INT4 nbcsGroupAdd(sNBCS_HNDL* pGroupHandle,
sNBCS_DEVINFO* pDevInfo, sNBCS_USR_CTXT* pUsrCtxt,
INT4 **pperrDevice, sNBCS_HNDL *pDevHandle, UINT2
numDev)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-2021248, Issue 1

Inputs pGroupHandle : pointer to the group handle
pDevInfo : pointer to numDev-element array of
 structures describing the devices, and how
 to locate them
pUsrCtxt : numDev-element array of user context
 structures; one for each device being added
 (optional; may be NULL pointer)
pperrDevice : (pointer to) an area of memory
pDevHandles : (pointer to) an area of memory
numDev : number of devices to be added to group

Outputs ERROR code written to the CSMDB on failure
pGroupHndl : pointer to the group handle
pperrDevice : (pointer to) errDevice (inside the GDB)
pDevHandles : (pointer to) array containing the device handles
 of the devices in the group

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_GROUPS_FULL
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEV_ALREADY_ADDED
 NBCS_ERR_ADDING_DEVICE_IN_GROUP
 NBCS_ERR_INVALID_GROUP

Valid States NBCS_MOD_READY

Side Effects Changes the GROUP state to NBCS_PRESENT, if the group devices
haven’t already been added.

Deleting a Group or Devices from a Group: nbcsGroupDelete

This function deletes an existing group or member devices from the group. When deleting an
entire group with parameter purge equal to logic one and if the group member does not belong to
other groups, that device will also be unregistered from the CSDDB. If the device belongs to
some other group, the state of that device will be unchanged. If purge is FALSE, the device will
not be deleted from the CSDDB. For group deletion, set pDevHndl to NULL. numDev is ignored
if it is a group deletion.

Prototype INT4 nbcsGroupDelete(sNBCS_HNDL groupHandle, UINT1
purge, sNBCS_HNDL* pDevHandle, UINT2 numDev)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-2021248, Issue 1

Inputs groupHandle : group handle (from nbcsGroupAdd)
purge : if logic one, the member device will also be
 deleted if it does not belong to any other
 groups
pDevHandle : pointer to array of device handles of devices
 to be deleted from the existing group; It
 should be NULL if this is a group deletion.
numDev : number of devices to be deleted from group;
 ignored if it is a group deletion.

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_DELETING_DEVICE_IN_GROUP
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_GROUP

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects See above for possible impact on the state of the device

Getting the state of a Group: nbcsGroupGetState

This function retrieves the state of a given group.

Prototype INT4 nbcsGroupGetState(sNBCS_HNDL groupHandle,
eNBCS_DEV_STATE *pState)

Inputs groupHandle : group handle (from nbcsGroupAdd)
pState : pointer to the group state

Outputs pState : pointer to the group state

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_GROUP

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects None

Deleting a Device: nbcsDelete

This function removes the specified device from the list of devices being controlled by the
Narrowband Chipset driver. Deleting a device involves clearing the Chipset Device Data Block
(CSDDB) for that device and then releasing its associated device handle.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsDelete(sNBCS_HNDL handle)

Inputs handle : device handle (from nbcsAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Changes the DEVICE state to NBCS_START

Initializing a Device: nbcsInit

This function initializes the CSDDB associated with that device during nbcsAdd; it also applies a
soft reset to the device and configures it according to the DIV passed by the Application. If the
DIV is passed as a NULL, all the register bits are to be left in their default state (after a soft
reset). sNBCS_DIV is a void* pointer and will accept DIV. The device handle (SBS or NSE)
should be consistent with the actual type of device initialization vector (DIV) passed to this
function. A profile number of zero indicates that all the register bits are to be left in their default
state. Note that the profile number is ignored UNLESS the passed DIV is NULL.

In addition, this function also operates in the context of a group. It accepts a group initialization
vector (GIV) if the handle passed is that of a valid group. The parameter, profileNum, is
ignored in this case. If the GIV is passed as a NULL, all the register bits in the devices are left in
their default state. Note: It is inadvisable to apply this function to a group which has some
members already initialized (unless user wants to re-initialize those members). Instead, users
should call this function for those devices (with proper DIV or profile number) on an individual
basis.

Prototype INT4 nbcsInit(sNBCS_HNDL handle, sNBCS_DIV
*pDiv, UINT2 profileNum)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)
pDiv : (pointer to) Device or Group
 Initialization Vector
profileNum : device initialization profile number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_PROFILE_NUM
 NBCS_ERR_INVALID_DIV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-2021248, Issue 1

Valid States NBCS_PRESENT

Side Effects Changes the DEVICE state to NBCS_INACTIVE

Resetting a Device: nbcsReset

This function applies a software reset to the Narrowband Chipset device or group. Also resets all
the CSDDB contents (except for the user context). This function is typically called before re-
initializing the device (via nbcsInit). The function acts on either a single device (NSE/SBS) or
a group by examining the handle type.

Prototype INT4 nbcsReset(sNBCS_HNDL handle)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Changes the DEVICE state to NBCS_PRESENT

Activating a Device: nbcsActivate

This function restores the state of the specified device/group in the chipset after a de-activate.
Hardware interrupts can be re-enabled. The function acts on either a single device (NSE/SBS) or
a group by examining the handle type.

Prototype INT4 nbcsActivate(sNBCS_HNDL handle)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_GROUP_STATE

Valid States NBCS_INACTIVE

Side Effects Changes the DEVICE state to NBCS_ACTIVE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-2021248, Issue 1

De-Activating a Device: nbcsDeActivate

This function de-activates the specified device/group in the chipset from operation. Interrupts are
masked and all the devices are put into a quiet state via enable bits. The function acts on either a
single device (NSE/SBS) or a group by examining the handle type.

Prototype INT4 nbcsDeActivate(sNBCS_HNDL handle)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_GROUP_STATE
 NBCS_ERR_INVALID_DEVICE_STATE

Valid States NBCS_ACTIVE

Side Effects Changes the DEVICE state to NBCS_INACTIVE

Adding an Initialization Profile: nbcsAddInitProfile

Creates an initialization profile that is stored by the chipset driver. A device can be initialized by
passing the initialization profile number to nbcsInit. The device type and the initialization
vector type have to be consistent.

Prototype INT4 nbcsAddInitProfile(eNBCS_DEVTYPE type,
sNBCS_DIV *pProfile, UINT2 *pProfileNum)

Inputs type : device type
pProfile : (pointer to) initialization profile being
 added
pProfileNum : (pointer to) profile number to be
 assigned by the driver

Outputs pProfileNum : profile number assigned by the driver

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_PROFILE
 NBCS_ERR_PROFILES_FULL

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-2021248, Issue 1

Getting an Initialization Profile: nbcsGetInitProfile

Gets the content of an initialization profile given its profile number. It is the user’s responsibility
to have a large enough buffer for the appropriate DIV.

Prototype INT4 nbcsGetInitProfile(UINT2 profileNum,
sNBCS_DIV *pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_PROFILE_NUM

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects None

Deleting an Initialization Profile: nbcsDeleteInitProfile

Deletes an initialization profile given its profile number.

Prototype INT4 nbcsDeleteInitProfile(UINT2 profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_PROFILE_NUM

Valid States NBCS_MOD_IDLE, NBCS_MOD_READY

Side Effects None

Reading from Device Registers: nbcsRead

This function is used to read a register of a specific Narrowband Chipset device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then reads the contents of this address location from the device. Note
that a failure to read returns a zero and that any error indication is written to the associated
CSDDB.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-2021248, Issue 1

Prototype UINT4 nbcsRead(sNBCS_HNDL handle, UINT2 regNum)

Inputs handle : device handle (from nbcsAdd)
regNum : register number

Outputs ERROR code written to the CSMDB
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_REG
 NBCS_ERR_DEV_ABSENT

Returns Success = value read
Failure = 0

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Can affect registers that change after a read operation

Writing to Device Registers: nbcsWrite

This function is used to write to a register of a specific Narrowband Chipset device by providing
the register number. This function derives the actual address location based on the device handle
and register number inputs. It then writes the contents of this address location to the device. Note
that a failure to write returns a zero and that any error indication is written to the CSDDB.

Prototype UINT4 nbcsWrite(sNBCS_HNDL handle, UINT2
regNum, UINT4 value)

Inputs handle : device handle (from nbcsAdd)
regNum : register number
value : value to be written

Outputs ERROR code written to the CSMDB
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_REG
 NBCS_ERR_DEV_ABSENT

Returns Success = value written
Failure = 0

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Can change the configuration of the device

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-2021248, Issue 1

Reading from a block of Device Registers: nbcsReadBlock

This function is used to read a register block of a specific Narrowband Chipset device by
providing the starting register number and the size to read. This function derives the actual start
address location based on the device handle and starting register number inputs. It then reads the
contents of this data block from the device. Note that a failure to read returns a zero and that any
error indication is written to the CSDDB. It is the user’s responsibility to allocate enough memory
for the block read.

Prototype UINT4 nbcsReadBlock(sNBCS_HNDL handle, UINT2
startRegNum, UINT2 size, UINT4 *pblock)

Inputs handle : device handle (from nbcsAdd)
startRegNum : starting register number
size : size of the block to read
pblock : (pointer to) the block to read

Outputs ERROR code written to the CSMDB
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_REG
pblock : (pointer to) the block read

Returns Success = Last register value read
Failure = 0

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Can affect registers that change after a read operation

Writing to a Block of Device Registers: nbcsWriteBlock

This function is used to write to a register block of a specific Narrowband Chipset device by
providing the starting register number and the block size. This function derives the actual starting
address location based on the device handle and starting register number inputs. It then writes the
contents of this data block to the actual device. A bit from the passed block is only modified in the
device’s registers if the corresponding bit is set in the passed mask. Note that any error indication
is written to the CSDDB.

Prototype UINT4 nbcsWriteBlock(sNBCS_HNDL handle, UINT2
startRegNum, UINT2 size, UINT4 *pblock, UINT4
*pmask)

Inputs handle : device handle (from nbcsAdd)
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID: PMC-2021248, Issue 1

Outputs ERROR code written to the CSMDB
 NBCS_ERR_INVALID_DEV
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_REG

Returns Success = Last register value written
Failure = 0

Valid States NBCS_PRESENT, NBCS_ACTIVE, NBCS_INACTIVE

Side Effects Can change the configuration of the Device

5.2 Interface/Clock Configuration

This block provides functions to configure the bus interface of the chipset and controls the
CSU/DLLs operation.

Configuring Bus Interface: nbcsIntfCfgBus

SBS devices in the chipset can either operate in SBI or TeleCombus mode. There are bus-related
parameters to configure in either of the bus modes. This function configures the bus mode and
various other aspects of the bus operating mode. In addition, the current state of the configuration
can be read back using this function. (Note: Interface configuration parameters belong to the SBS
devices only. NSE device operation does not change whether the chipset system is in SBI or
TeleCombus mode).

This function accepts group handle and configures the group of SBS with the same bus
configuration parameter given by pBusCfg in “set” mode. However, the function does not work
with a group handle in “get” mode. It is user’s responsibility to make sure the buffer is large
enough to hold the parameters returned for all members.

Prototype INT4 nbcsIntfCfgBus(sNBCS_HNDL handle,
sNBCS_CFG_INTF_BUS *pBusCfg, UINT1 accMode)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
pBusCfg : pointer to the bus interface
 configuration block
accMode : 0 = get, 1 = set

Outputs pBusCfg : pointer to the bus interface
 configuration block when accMode
 equals 0

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID: PMC-2021248, Issue 1

 NBCS_ERR_GROUPS_MIXED_DEV
 NBCS_ERR_INVALID_GROUP_STATE
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_MODE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Configuring Bus Payload Type: nbcsIntfCfgPyld

This function configures payload type once the bus type is defined. For SBI bus, each SPE can be
configured to carry various kind of traffic such as T1, E1, fractional T1, and DS3. For
TeleCombus, virtual tributaries are identified as VT1.5, VT2, VT3, and VT6 or the entire SPE is
defined to carry DS3/E3 traffic. Payload symmetry is assumed in the incoming and outgoing
direction of a SBS port.

This function accepts group handle and configures the group of SBS with the same payload type
given by pPyldCfg in “set” mode. However, the function does not work with a group handle in
“get” mode. It is user’s responsibility to make sure the buffer is large enough to hold the
parameters returned for all members.

The pPyldCfg is a void* type to allow various types of payload configuration structures for
different bus types, SBI or TeleCombus. In the case of SBI bus configuration, pPyldCfg should
be a pointer of type sNBCS_CFG_PYLD_SBI typecasted as a void* pointer; for TeleCombus
mode, it should be of type sNBCS_CFG_PYLD_TCB typecasted as a void* pointer.

Prototype INT4 nbcsIntfCfgPyld(sNBCS_HNDL handle,
sNBCS_CFG_PYLD *pPyldCfg, UINT1 accMode)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
pPyldCfg : pointer to the bus payload
 configuration block
accMode : 0 = get, 1 = set

Outputs pPyldCfg : pointer to the bus payload
 configuration block when accMode
 equals 0

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_GROUPS_MIXED_DEV
 NBCS_ERR_INVALID_GROUP_STATE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-2021248, Issue 1

Side Effects None

Configuring SBI Bus Tributaries: nbcsIntfCfgTrib

This function configures the tributaries of the SBI bus. Attributes are bus output enable
(applicable for outgoing bus only), CAS processing enable, justification request enable, and
transparent virtual tributaries. This function cannot be used when the SBS device is configured
for TeleCombus mode. Payload symmetry is assumed in the incoming and outgoing direction of a
SBS port. If DS0 CAS processing is specified at initialization (by the field casMuxMode in MIV),
then user relinquishes the control of all the CAS enable bits in the incoming direction of the SBS
(ICASM) to the CSD and this function can no longer be used to access these CAS enable bit on a
per tributary basis. Note that the outgoing direction is still under user’s control even with CAS
option selected at initialization. The CSD enables or disables the necessary number of CAS-
enabled tributaries internally to carry CAS DS0 traffic. The number of dedicated CAS routes is
specified by the API nbcsFmgtRsvpCasRoute. With the casMuxMode off, the CAS bits are
enabled/disabled symmetrically in both the incoming and outgoing direction in the SBS.

This function accepts a group handle and configures the group of SBS with the same tributary
configuration given by pTribCfg.

Prototype INT4 nbcsIntfCfgTrib(sNBCS_HNDL handle,
sNBCS_TRIB_SBI *pTrib, sNBCS_CFG_TRIB_SBI
*pTribCfg)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
pTrib : pointer to the virtual tributary
pTribCfg : pointer to the tributary
 configuration block

Outputs pTribCfg : pointer to the tributary payload
 configuration block when accMode
 equals 0

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_BUS_TYPE
 NBCS_ERR_INVALID_TRIB
 NBCS_ERR_GROUPS_MIXED_DEV
 NBCS_ERR_INVALID_GROUP_STATE
 NBCS_ERR_POLL_TIMEOUT
 NBCS_FAILURE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-2021248, Issue 1

Configuring the CSU/DLL: nbcsIntfCfgCsu

There is one CSU, one system DLL, one reference DLL in SBS devices and two CSUs in NSE
devices. This function controls the operation of the CSUs in the chipset. The CSU can either be in
low-power or normal mode, or can be reset. The DLL can be set up to ignore phase difference.

This function accepts a group handle and acts on the group of SBS using the information given by
pCntl.

Prototype INT4 nbcsIntfCfgCsu(sNBCS_HNDL handle,
sNBCS_CFG_INTF_CSU* pCntl)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
pCntl : pointer to the CSU/DLL configuration
 block

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_GROUP_STATE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Configuring the C1 Frame Pulse Delay: nbcsIntfCfgC1FrmDly

This function configures the C1 frame pulse delay of the given device/group. The delay is a 14 bit
unsigned integer from 0 to 16383 in system clock cycles.

Prototype INT4 nbcsIntfCfgC1FrmDly(sNBCS_HNDL handle,
UINT2 dly)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
dly : C1 frame pulse delay value

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID: PMC-2021248, Issue 1

 NBCS_ERR_INVALID_GROUP_STATE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.3 LVDS Serial Link Control

The following functions control various aspects of the LVDS serial link operation in both SBS
and NSE. In both NSE and SBS serial links, user can insert line code violation, force out-of-
frame and out-of-character conditions, and center FIFOs. In addition, function is available to
select the active link between the working and protection ones in SBS. The same function, when
acting on NSE, controls the state of the link, which can be put in normal or standby mode or can
be reset.

Inserting line code violation: nbcsLkcInsertLcv

This function is used to enable or disable insertion of line code violations in the LVDS links (32
for NSE-20G and 12 in the case of NSE-8G) and in the working or protection LVDS links in SBS
devices. If parameter, linkDesc, is assigned to ffh, all links in the device will be operated on.

This function also accepts group handle and acts on all members in the group. If the group
contains mixed devices, the only valid entry for linkDesc is ffh, which applies to all working
and protect links in a SBS and to all ports in a NSE device.

Prototype INT4 nbcsLkcInsertLcv(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 ena)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS devices: 0 = working link 1 =
 protection link; FFh = all links
 For NSE: it is the port number ranges
 from 0-11; for NSE-8G and from 0-31
 for NSE- 20G.. FFh = all ports
ena : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-2021248, Issue 1

Side Effects None

Centering transmit FIFO: nbcsLkcCenterFifo

This function is used to center the transmit FIFO in the LVDS links (32 for NSE-20G and 12 in
the case of NSE-8G) and in the working or protection LVDS links in SBS devices. If parameter,
linkDesc, is assigned to FFh, all links in the device will be operated on.

This function also accepts group handle and acts on all members in the group. If the group
contains mixed devices, the only valid entry for linkDesc is ffh, which applies to all working
and protect links in a SBS and to all ports in a NSE device.

Prototype INT4 nbcsLkcCenterFifo(sNBCS_HNDL handle, UINT1
linkDesc)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; FFh = all links; For
 NSE devices: this is the port number
 ranges from 0-11; for NSE-8G and
 from 0-31 for NSE-20G. FFh = all
 ports.

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Forcing out-of-character alignment: nbcsLkcForceOca

This function is used to force out-of-character alignment in the LVDS links (32 for NSE-20G and
12 in the case of NSE-8G) and in the working or protection LVDS links in SBS devices. If
parameter, linkDesc, is assigned to FFh, all links in the device will be operated on.

This function accepts group handle and acts on all members in the group. If the group contains
mixed devices, the only valid entry for linkDesc is ffh, which applies to all working and protect
links in a SBS and to all ports in a NSE device.

Prototype INT4 nbcsLkcForceOca(sNBCS_HNDL handle, UINT1
linkDesc)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-2021248, Issue 1

linkDesc)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; FFh = all links; For
 NSE devices: this is the port number
 ranges from 0-11; for NSE-8G and
 from 0-31 for NSE-20G. FFh indicates
 all ports

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Forcing out-of-frame alignment: nbcsLkcForceOfa

This function is used to force out-of-frame alignment in the LVDS links (32 for NSE-20G and 12
in the case of NSE-8G) and in the working or protection LVDS links in SBS devices. If
parameter, linkDesc, is assigned to FFh, all links in the device will be operated on.

This function also accepts group handle and acts on all members in the group. If the group
contains mixed devices, the only valid entry for linkDesc is ffh, which applies to all working
and protect links in a SBS and to all ports in a NSE device.

Prototype INT4 nbcsLkcForceOfa(sNBCS_HNDL handle, UINT1
linkDesc)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; FFh = all links; For
 NSE devices: this is the port number
 ranges from 0-11; for NSE-8G and
 from 0-31 for NSE-20G. FFh indicates
 all ports.

Outputs None

Returns Success = NBCS_SUCCESS
F il NBCS ERR INVALID DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-2021248, Issue 1

Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Controlling LVDS link operation mode: nbcsLkcCntl

This function allows user to control the current operation mode of a specified link in the SBS and
NSE devices. In NSE devices, a link is by default in standby mode. The user can reset the link
(which puts the link in normal mode after reset) or put it in a standby (low power) mode.
Resetting or putting the link in normal mode brings the link out of standby mode. The valid
range parameter linkDesc is 0-31 for NSE-20G and 0-11 in the case of NSE-8G. In SBS
devices, this function enables/disables the selected LVDS links. If the receive direction is
selected, it also controls whether the working or the protection LVDS link is the active link. This
active link selection is, however, only functional when the software control option is enabled
which is specified in the MIV during chipset initialization. In addition, the following parameters,
path termination mode, ILC FIFO threshold level and FIFO timeout constant, supplied by the user
during initialization via DIV will be restored when the link is selected to bring out from low-
power state. This is due to the fact that these parameters cannot be updated at the hardware level
when the link is in low-power state.

This function also accepts group handle and acts on all members in the group. If the group
contains mixed devices, the only valid entry for linkDesc is ffh, which applies to all working
and protect links in a SBS and to all ports in a NSE device.

When SBS device is involved in this function, the combination of dir equals 1 or 2, linkDesc
equals 0xff and opMode equals 2 is disallowed because the working and the protect link of the
SBS(s) cannot be active simultaneously. In addition, setting opMode to 2 for either the working or
protect link is only effective when the link is controlled by software (as indicated by the field,
wpLinkCntl, in MIV).

It is strongly encouraged to turn off any unused links in the system with this function.

Prototype INT4 nbcsLkcCntl(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 dir, UINT1 opMode)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; For NSE devices, link
 number ranges from 0-11 for NSE-8G
 and from 0-31 for NSE-20G. A ffh
 indicates all ports.
dir : 0 = transmit 1 = receive, 2 = both

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID: PMC-2021248, Issue 1

 transmit and receive.
opMode : For SBS: 0 = disabled, 1 = enabled
 without selecting as active link on
 receive side, 2 = enabled and selects
 the link as active on receive side.
 For NSE: operating mode: 0 =
 standby, 1 = normal, 2 = reset

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Configuring LVDS link parameters: nbcsLkcCfg

This function allows user to configure the parameters for a specified link in the SBS and NSE
devices. Parameters applicable to both the NSE and SBS are: J0 byte insertion, and path
termination mode.

This function also accepts group handle and acts on all members in the group. If the group
contains mixed devices, the only valid entry for linkDesc is ffh, which applies to all working
and protect links in a SBS and to all ports in a NSE device.

Prototype INT4 nbcsLkcCfg(sNBCS_HNDL handle, UINT1
linkDesc, sNBCS_CFG_LKC *pCfg)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; FFh = all links. For
 NSE devices, link number ranges from
 0-11 for NSE-8G and from 0-31 for
 NSE-20G. A ffh indicates all ports.
pCfg : pointer to the configuration structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-2021248, Issue 1

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Inserting Test Pattern in LVDS link: nbcsLkcInsertTp

This function enables/disables the insertion of test patterns into the LVDS links. It also accepts a
group handle and acts on all members in the group. If parameter, linkDesc, is assigned to FFh,
all links in the device will be operated on. If the group contains mixed devices, the only valid
entry for linkDesc is ffh, which applies to all working and protect links in a SBS and to all ports
in a NSE device.

Prototype INT4 nbcsLkcInsertTp(sNBCS_HNDL handle, UINT1
linkDesc, UINT2 tp, UINT1 ena)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
linkDesc : For SBS: 0 = working link, 1 =
 protection link; FFh = all link. For
 NSE devices, link number ranges from
 0-11 for NSE-8G and from 0-31 for
 NSE-20G. A ffh indicates all ports.
tp : test pattern tp[0..9], a 10-bit number
ena : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.4 Space/Time Switch Configuration

This logical block provides functions to access the switch setting in the chipset fabric. There are
Two types of switches present in the fabric, namely time and space switching provided by SBS
and NSE devices respectively.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-2021248, Issue 1

Mapping the time slot: nbcsStswMapSlot

Establish connections in the space or time switch by writing settings directly to the offline
connection page into the hardware device. This mapping function can operate in multiple modes,
namely unicast (NBCS_STSW_UNICAST), map (NBCS_STSW_MAP), inport
(NBCS_STSW_INPORT), outport (NBCS_STSW_OUTPORT), time_inport
(NBCS_STSW_TIME_INPORT) and time_outport (NBCS_STSW_TIME_OUTPORT) as
controlled by the parameter mode. The first two modes apply to both the SBS and NSE devices
while the latter four modes are applicable to NSE devices only.

For space switches (in NSE devices) operating in unicast mode, the connection between the first
element pointed to by pInport is mapped to the first element indicated by pOutport for the
time instance indicated by the first element in pTimeSlot. Such operation repeats numSlots
times for all the pairs. It is designed to set up multiple unicast connections in the switch.

For space switches (in NSE devices) operating in map mode which is to update the entire
connection map, pInport is expected to have 1080n or 9720n elements in TeleCombus/SBI
column mode and SBI DS0/CAS modes, respectively, where n the number of ports in the device.
The order in the array (pointed to by pInport) should be as follows: inport0[0]…inport0[M]
inport1[0]…inport1[M]…inportN[0]…inportN[M] where M = frame size - 1 and is 1079 in
TeleCombus/SBI column or 9719 in SBI DS0/CAS mode and N = total number of ports - 1, i.e.,
11 for NSE-8G or 31 for NSE-20G. The parameters pInSlot, pOutSlot, pOutport and
numSlots are all ignored in this mode.

Specific to the NSE devices, the time_inport (NBCS_STSW_TIME_INPORT) mode allows user
to configure all the outports (pOutport[]) for all timeslots with a fixed inport. In other words, all
the outports for all timeslots source data from the fixed inport (pInport[0]). pInSlot,
pOutSlot, and numSlots are ignored in this mode. The total number of timeslots is expected to
be either 1080 (in TeleCombus/SBI column modes) or 9720 (in SBI DS0/CAS modes). The inport
(NBCS_STSW_INPORT) mode operates in a similar fashion. The difference is that the parameter
numSlots is specified by the user to indicate the exact number of timeslots to be mapped.

For time_outport (NBCS_STSW_TIME_OUTPORT) mode, it is very similar to the time_inport
mode except that a fixed outport (pOutport[0]) is given and the mapping is between the
elements in the pInport array in all timeslots. pInSlot, pOutSlot, and numSlots are ignored
in this mode. Similar to the time_outport mode, the outport mode (NBCS_STSW_OUTPORT)
requires the user to provide numSlots, which specifies the total number of timeslots to be
mapped.

For time switches (in SBS devices) operating in unicast mode, the user supplies an array of
incoming bytes/columns and an array of the corresponding outgoing bytes/columns. One to one
mapping is assumed for the pInSlot array and the pOutSlot array i.e. pInSlot[0] mapped to
pOutSlot[0], pInSlot[1] mapped to pOutSlot[1] and so on.

For time switches (in SBS devices) operating in map mode, the user supplies the pInSlot array
with 1080 and 9720 elements in column and byte switching mode respectively. The pOutSlot
array is ignored.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsStswMapSlot(sNBCS_HNDL handle, UINT1
swDesc, eNBCS_ACCESSMODE_STSW mode, UINT2
*pInSlot, UINT1 *pInport, UINT2 *pOutSlot,
UINT1 *pOutport, UINT4 numSlots)

Inputs handle : device handle (from nbcsAdd)
swDesc : switch identifier for SBS: 0 = transmit,
 1 = receive. Ignored for NSE type
mode : access mode
pInSlot : pointer to in time slot(s)
pInport : pointer to in space port(s)
pOutSlot : pointer to out time slot(s)
pOutport : pointer to out space port(s)
numSlots : number of slots presented

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Getting the source slot: nbcsStswGetSrcSlot

This function returns the source space/time slot(s) map to the destination space/time slot(s) from
the offline connection page directly from the hardware device. It operates in either of the two
modes, unicast or map mode controlled by the parameter mode.

For space switch (found in NSE devices) operating in unicast mode, the inport mapped to the
given outport in time instance (first element pointed to by pInSlot) will be returned in buffer
pointed to by pInport. The total number retrieved is indicated by the parameter numSlots. In
map mode, the entire connection map is returned to the buffer supplied by the user via pInport.
The order in the array is as follows: inport0[0]…inport0[N-1] inport1[0]…inport1[N-
1]…inportM[0]…inportM[N-1] where M = frame size - 1 and is 1079 in TeleCombus/SBI
column or 9719 in SBI DS0/CAS mode and N = total number of ports, i.e., 12 for NSE-8G or 32
for NSE-20G. The only two valid access modes are NBCS_STSW_UNICAST and
NBCS_STSW_MAP.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID: PMC-2021248, Issue 1

For time switch (found in SBS devices) operating in unicast mode, the source timeslots are
retrieved by pInSlot for the destination timeslot(s) given by array pOutSlot. The total number
is indicated by parameter numSlots. In map mode, all source timeslots will be retrieved by
pInSlot, pOutSlot, and numSlots are ignored. User is responsible for supplying a large
enough buffer for the data. The size should be 1080 or 9720 depending on what switching mode,
byte or column it is set to. The only two valid access modes are NBCS_STSW_UNICAST and
NBCS_STSW_MAP.

Note that this function requires dynamically allocated memory of size N * sizeof(UINT2) when
retrieving source slot information in SBS map mode where N is 9720 and 1080 in byte and
column mode respectively.

Prototype INT4 nbcsStswGetSrcSlot(sNBCS_HNDL handle,
UINT1 swDesc, eNBCS_ACCESSMODE_STSW mode, UINT2
*pInSlot, UINT1 *pInport, UINT2 *pOutSlot,
UINT1 *pOutport, UINT4 numSlots)

Inputs handle : device handle (from nbcsAdd)
swDesc : switch identifier for SBS: 0 = transmit,
 1 = receive. Ignored for NSE type
mode : access mode
pInSlot : pointer to in time slot(s)
pInport : pointer to in space port(s)
pOutSlot : pointer to out time slot(s)
pOutport : pointer to out space port(s)
numSlots : number of slots presented

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_MEM_ALLOC
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Copying connection page: nbcsStswCopyPage

This function copies connection page settings from one to another. The copying can be from
active to inactive page within the same switch in the device, or can be from inactive to inactive
page across different devices of the same type. Note that copying within the same switch can
easily be achieved if auto page copy is enabled and this function will not be necessary.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID: PMC-2021248, Issue 1

Note that this function requires dynamically allocated memory of size N * numNsePorts *
sizeof(UINT1) when copying page from one NSE to a different one. N is 9720 or 1080 in byte
and column mode respectively. numNsePorts is 12 or 32 for NSE-8G or NSE-20G device
respectively.

Prototype INT4 nbcsStswCopyPage(sNBCS_HNDL srcHandle,
UINT1 srcSwDesc, sNBCS_HNDL dstHandle, UINT1
dstSwDesc)

Inputs srcHandle : device handle (from nbcsAdd);
srcSwDesc : source switch descriptor. For SBS
 devices, 0 = transmit switch, 1 =
 receive switch. Ignored in NSE
dstHandle : device handle (from nbcsAdd) of the
 destination. Ignored in group mode.
dstSwDesc : destination switch descriptor. For SBS
 devices, 0 = transmit switch, 1 =
 receive switch. Ignored in NSE and in
 group mode

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_MEM_ALLOC
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Getting active connection page number: nbcsStswGetPage

This function retrieves the active connection page of the switch for the specified device. In the
case of group, the buffer (pPageNum) has to be large enough to hold the active page number . In
the case of a distributed system configuration, the page information of the remote SBS is obtained
from the in-band link header byte PAGE[1:0]. The in-band link controller on the remote SBS has
to be enabled for this API to function correctly.

Prototype INT4 nbcsStswGetPage(sNBCS_HNDL handle, UINT1
swDesc, UINT1 *pPageNum)

Inputs handle : device handle (from nbcsAdd);
swDesc : switch descriptor. For SBS devices,
 0 = transmit switch, 1 = receive
 switch; For NSE devices, this is
 ignored

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130
Document ID: PMC-2021248, Issue 1

pPageNum : pointer to (array of) the active page
 number

Outputs pPageNum : pointer to (array of) the active page
 number

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_POLL_TIMEOUT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Toggling the connection page: nbcsStswTogglePage

This function toggles the connection page(s) of the system. The handle should be that of a NSE
device. It queries the current active page of all the (registered) devices in the system and
promotes the inactive page(s) of each devices. The page toggling is synchronized with the C1
frame pulse (received by the specified NSE) in the system. In the case of a distributed system
configuration, this function relies on the PAGE[1:0] bits in the in-band link to control the page
switching in remote SBSs. As a result, all the remote SBSs have to be configured to listen to the
PAGE bits in the in-band link header for a page switch; otherwise, this function will not operate
correctly. A callback function, cbackC1FP, (if registered) is issued and can be treated as a
notification of this function.

Prototype INT4 nbcsStswTogglePage(sNBCS_HNDL handle)

Inputs handle : NSE device handle (from nbcsAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID: PMC-2021248, Issue 1

Setting active connection page number: nbcsStswSetPage

This function sets the active connection page of the switch for the specified device/group. The
operation is asynchronous. In conjunction with the API nbcsEventDetectC1FP, user can set
the page synchronously with the C1 frame pulse. This function can be invoked in callback
function such as cbackC1FP.

Prototype INT4 nbcsStswSetPage(sNBCS_HNDL handle, UINT1
swDesc, UINT1 pageNum)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd);
swDesc : switch descriptor. For SBS devices,
 0 = transmit switch, 1 = receive, ffh =
 both transmit and receive switch, This
 field is ignored in NSE.
pageNum : active page number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.5 In-band Communication Link

In-band link communication control. Services provided include receiving and sending data/header
bytes across the link, controlling the operation mode of the links

Controlling in-band link controller: nbcsIlcCntl

This function enables/disables the in-band link controller of the specified link in the chipset. It
also operates on groups.

Prototype INT4 nbcsIlcCntl(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 dir, UINT1 enable)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID: PMC-2021248, Issue 1

linkDesc : link descriptor:
 For SBS, 0 = working link, 1 = protect
 link, ffh = both working and protect
 links.
 For NSE-20G, port number: 0 – 31
 For NSE-8G, port number: 0 –11. ffh
 indicates all ports.
dir : direction: 0 = transmit, 1 = receive,
 ffh = both transmit and receive
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Retrieving the received header bytes: nbcsIlcGetRxHdr

This function retrieves the received header bytes, LINK, PAGE, USER, and AUX from the in-
band link controller. In the case of retrieving header information from an NSE ILC, user can
either specify the transmitting SBS device using rxHandle, or by specifying the receiving port
number by linkDesc with txHandle equals to NULL. When SBS device is receiving,
txHandle is ignored and linkDesc is used to distinguish the working and protect link in the
device.

Prototype INT4 nbcsIlcGetRxHdr (sNBCS_HNDL rxHandle,
sNBCS_HNDL txHandle, UINT1 linkDesc,
sNBCS_HEADER_ILC *pHdr)

Inputs rxHandle : device handle (from nbcsAdd) of the
 receiving device
txHandle : device handle (from nbcsAdd) of the
 transmitting device
linkDesc : link descriptor: For SBS, 0 =
 working receive, 1 = protect receive;
 For NSE-20G, port number from 0 –
 31 and 0-11 for NSE-8G.
pHdr : pointer to the header byte structure

Outputs pHdr : pointer to the header byte structure

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Retrieving the received messages: nbcsIlcGetRxMsg

This function retrieves one or more ILC messages from the Rx FIFO of one or more links for a
device (SBS or NSE) in the chipset. (A maximum of 8 messages per port can be retrieved each
time this function is called.)

pRxBufDesc points to an array of numDesc buffer descriptors, one for each link from which a
message is to be retrieved. Using the field, linkDesc, each buffer descriptor indicates the link
(linkDesc in SBS, indicates whether it is working receive, or protect receive; in NSE-20G, it is
the port number from 0 to 31; and in NSE-8G, it is the port number from 0-11) from which to
read, the maximum number of messages to read (numMsgs), and has a pointer to numMsgs
message descriptors (pmsgDesc). (If numMsgs is set to 0, this port will be ignored.)

Each message descriptor contains the location in which the message is to be stored (pmsg), and
the status of the CRC for that message (crc) (returned by the driver).

This function reads up to numMsgs messages from each link for which a buffer descriptor exists.
The number of messages actually received is returned to the user in the numMsgs field of the
buffer descriptor. (Setting numMsgs to 8 will always read all available messages in the Rx FIFO.)

Alternatively, user can supply the function an array of handles, via pTxHandle, of all the remote
SBS devices (size of the array is indicated by numDesc) that are transmitting to the specified
NSE device. This supersedes the linkDesc field inside the array of pRxBufDesc. All the
transmitting SBS devices have to be physically attached to the NSE device or an error message
will return if at least one of the SBS devices is not. If a SBS device is receiving rather than a
NSE, pTxHandle is ignored in this case.

The parameter pyldSz controls the number of bytes to be read in one message. The maximum
payload size in a message is 32 bytes. This function only attempts to read the number of bytes
specified in pyldSz. This gives the user the ability to avoid reading extra bytes in a message if
the payload is known to be fewer than 32 bytes.

This function does not operate in the context of a group.

Prototype INT4 nbcsIlcGetRxMsg (sNBCS_HNDL rxHandle,
sNBCS_HNDL* pTxHandle, sNBCS_RXBUF_DESC_ILC

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID: PMC-2021248, Issue 1

*pRxBufDesc, UINT1 numDesc, UINT1 pyldSz)

Inputs rxHandle : device handle (from nbcsAdd) of the
 device receiving messages
txHandle : (pointer to) array of device handle(s)
 (from nbcsAdd) of the SBS device(s)
 transmitting messages to the NSE
pRxBufDesc : (pointer to) buffer descriptors (this
 must point to numDesc descriptors)
pyldSz : payload size (from 1 to 32 bytes)
numDesc : number of descriptors

Outputs pRxBufDesc : pointer to buffer descriptor structures
 which include the received messages
 and their corresponding CRC status

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Getting the number of received messages: nbcsIlcGetRxNumMsg

This function queries the total number of messages currently stored in the Rx FIFO for the
specified link. For NSE devices, user can either specify the handle(s) of the transmitting SBS
device via pTxHandle which is a pointer to an array of SBS devices (the number of SBS devices
is indicated by linkDesc) or the port number via linkDesc. If txHandle is non-NULL,
linkDesc will be used to indicate the total number of ports to retrieve. The SBS device has to be
physically attached to this NSE device or an error message will be returned.

User can also retrieve the received message level for a specified port by supplying a NULL
pTxhandle and a valid linkDesc (0-11/31 for NSE8/20G), or all ports in an NSE device if
linkDesc equals to NBCS_ALL_LINKS. Number of messages in Rx FIFO from port 1 to 12/32
ports for NSE-8/20G will be returned. The same applies to SBS devices. If NBCS_ALL_LINKS
is provided in linkDesc, RxFIFO level for both the working and protect link will be returned.
User will have to ensure that pTxHandle is NULL and the buffer is large enough to hold the
returned values in those cases when number of ports is greater than one.

Prototype INT4 nbcsIlcGetRxNumMsg (sNBCS_HNDL rxHandle,
sNBCS_HNDL* pTxHandle, UINT1 linkDesc, UINT1
*pNumRxMsg)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID: PMC-2021248, Issue 1

Inputs rxHandle : device handle (from nbcsAdd) of the
 receiving device
pTxHandle : (pointer to)device handle(s) (from
 nbcsAdd) of the transmitting
 device(s)
linkDesc : link descriptor when pTxHandle is
 NULL: For SBS, 0 = working receive,
 1 = protect receive; 0xff = both links.
 For NSE-20G, port number from 0 –
 31 and 0-11 for NSE-8G. A 0xff
 indicates all ports. When pTxHandle
 is non-NULL, this indicates the total
 number of ports to retrieve.
pNumMsg : pointer to the buffer that holds the
 number of messages stored in FIFO

Outputs pNumMsg : pointer to the buffer that holds the
 number of messages stored in FIFO

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Sending in-band link messages: nbcsIlcTxMsg

This function is used to initiate the transmission of one or more in-band messages on one or more
links for a given device (SBS or NSE) in the chipset. User can send arbitrary number of messages
in one request as specified by numDesc. This function can also initiate transmission on multiple
links.

pTxBufDesc points to an array of descriptors, one for each port on which messages are to be
transmitted. The field, linkDesc, in this structure indicates the link (for SBS, 0 – working
transmit, 1- protect transmit; for NSE, the link descriptor is the port number) on which to
transmit, the size of this buffer (bufSz), and has a pointer to the buffer to be transmitted (pBuf).
On return, the bufSz field contains the number of bytes transmitted on that link.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID: PMC-2021248, Issue 1

Alternatively, user can supply the function an array of handles, via pRxHandle, of all the remote
SBS devices for the transmission if the transmitting device is a NSE. This supersedes the
linkDesc field inside the array of pTxBufDesc. All the recipient SBS devices have to be
physically attached to the NSE device or an error message will return if at least one of the SBS
devices is not. If the transmission is originated from a SBS device, pRxHandle is ignored.

The length of each message is fixed at 32 bytes. The parameter pyldSz controls the number of
user bytes that are written in each message. The maximum payload size a message can carry is 32
bytes. If pyldSz is less than 32 bytes, the hardware automatically pads the unfilled bytes in the
message to 32. (Note that these remaining (32 – pyldSz) bytes are uninitialized. Also note
that this function is more efficient if pyldSz and pbuf are multiples of 4.) This function is a
blocking function and will not return until the buffer is emptied or an error condition is detected.

This function does not operate in the context of a group.

Prototype INT4 nbcsIlcTxMsg (sNBCS_HNDL txHandle,
sNBCS_HNDL* pRxHandle, sNBCS_TXBUF_DESC_ILC*
pTxBufDesc, UINT1 numDesc, UINT1 pyldSz)

Inputs txHandle : device handle (from nbcsAdd) of the
 transmitting device
pRxHandle : (pointer to) device handle(s) (from
 nbcsAdd) of the receiving device(s)
pTxBufDesc : pointer to Tx buffer descriptor(s)
numDesc : number of buffer descriptor(s)
pyldSz : payload size (from 1 to 32 bytes)

Outputs pTxBufDesc : pointer to Tx buffer descriptor(s)
 which contains actual number of bytes
 sent in each link

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID: PMC-2021248, Issue 1

Querying Free Space in ILC Tx FIFO: nbcsIlcGetTxFifoLvl

This function is to check the current capacity of the Tx FIFO for the given device and link. This
allows the user to find out how many more messages can be written to FIFO for transmission.
When the NSE is the transmitting device, the handle of the remote SBS can be given (via
rxHandle) instead of parameter linkDesc. This allows user to easily check the Tx FIFO level
to the intended SBS. The parameter rxHandle is ignored when SBS is the transmitting device
and linkDesc is used to distinguish between the working or the protect link.

Prototype INT4 nbcsIlcGetTxFifoLvl (sNBCS_HNDL txHandle,
sNBCS_HNDL rxHandle, UINT1 linkDesc, UINT1*
pNumMsg)

Inputs txHandle : device handle (from nbcsAdd) of the
 transmitting device
rxHandle : device handle (from nbcsAdd) of the
 receiving device
linkDesc : link descriptor: For SBS, 0 = working
 transmit, 1 = protect transmit;
 For NSE-20G, port number from 0 –
 31 and 0-11 for NSE-8G. Ignored if
 txHandle is NSE device and
 rxHandle is non-NULL
pNumMsg : pointer to free FIFO capacity

Outputs pNumMsg : pointer to free FIFO capacity

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID: PMC-2021248, Issue 1

Setting Tx Message Header: nbcsIlcSetTxHdr

This function sets the ILC header bytes, USER[2:0], PAGE[1:0], LINK[1:0], and AUX[7:0]
going out to the receiving ILC on the remote device. txHandle must be a valid handle for a NSE
or SBS device. If a (transmitting) NSE device is given, the user can either specify the handle of
the receiving device rxHandle, or the raw physical port number, as given by linkDesc, it is
going to be transmitting on. In this case, the rxHandle should be NULL. This parameter should
also be assigned NULL if the transmission from the NSE is to another NSE device (in the case of
a multi-stage fabric). pLinkBits, pPageBits, pUserBits, and pAuxBits are pointer to
buffers that hold the desirable values to be transmitted. A NULL for any of pointers indicates
current value is to be retained. The valid range for linkDesc should be from 0-31 and 0-11 for
NSE20G and NSE8G respectively. When transmitting the header bits from a NSE device, the
PAGE[1:0] and USER[2:0] bits can be transmitted across all links to all the remote SBS devices.
When such synchronization is required, linkDesc should be assigned to the constant
NBCS_ALL_LINKS (0xff) and pointer pPageBits and/or pUserBits should be pointed to
buffers containing 32 or 12 (depending on whether it is NSE20G or NSE8G) bytes of
PAGE/USER bits.

When a SBS device is transmitting as indicated by txHandle, the rxHandle is ignored. Similar to
the case of NSE, a NULL should be assigned to the header bit pointers if that header bit is to
remain unchanged in the transmission. linkDesc is used to distinguish the working or protect
link to be used for transmission. NBCS_ALL_LINKS (0xff) can also be used to send the same
header bits through both the working and protect links.

Prototype INT4 nbcsIlcSetTxHdr(sNBCS_HNDL txHandle,
sNBCS_HNDL rxHandle, UINT1 linkDesc, UINT1
*pLinkBits, UINT1 *pPageBits, UINT1 *pUserBits,
UINT1 *pAuxBits)

Inputs txHandle : device handle of the transmitting
 device (from nbcsAdd)
rxHandle : device handle of the receiving device
 (from nbcsAdd)
linkDesc : link descriptor: For SBS, 0 = working
 transmit, 1 = protect transmit; 0xff =
 both working and protect, For NSE-
 20G, port number from 0-31 and 0-11
 for NSE-8G. 0xff = synchronized
 PAGE and/or USER bits change across
 all links
pLinkBits : pointer to the LINK[1:0] header bits
pPageBits : pointer to the PAGE[1:0] header bits
pUserBits : pointer to the USER[2:0] header bits
pAuxBits : pointer to the AUX[7:0] header bits

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID: PMC-2021248, Issue 1

 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_ILC_INVALID_OP
 NBCS_ERR_POLL_TIMEOUT
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.6 PRBS Generator and Monitor

This section describes the functions used to control/configure the PRBS (pseudo-random bit
sequence) generator and monitor for the working and protection links of the SBS in the chipset.
These functions include configuring the payload, traffic pattern for each STS-1s, controlling the
error insertion for each STS-1s and the resynchronization of data received on a per STS-1 basis.
All the functions are applicable only to SBS in the chipset. An error code will be returned if
attempts are made to invoke these functions on NSE or on groups with members other than SBSs.

Configuring payload for the PRGM: nbcsPrgmCfgPyld

This function configures the payload type of the PRBS generator and monitor. The traffic payload
can be one of the following: 12 STS-1s, 4 STS-3c, combination of STS-1s and STS-3cs or a
single STS-12c stream. A group handle is not allowed in this function.

Prototype INT4 nbcsPrgmCfgPyld(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 genMon, sNBCS_CFG_PRGM_PYLD
*pPyldCfg, UINT1 accMode)

Inputs handle : device handle (from nbcsAdd)
linkDesc : 0 = working link; 1 = protection link
genMon : 0 = generator; 1 = monitor
pPyldCfg : structure containing the payload
 configuration
accMode : access control: 0 = get, 1 = set

Outputs pPyldCfg : structure containing the payload
 configuration when accMode = 0

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID: PMC-2021248, Issue 1

Side Effects None

Configuring the PRGM: nbcsPrgmCfg

This function configures and controls the PRGM on each STS-1 on the working and protect links
in the SBS. It enables/disables the PRGM and configures the linear feedback shift
register(LFSR), and the invert PRBS sequence mode or sequential mode on a per STS-1 basis. A
group handle is not allowed in this function.

Prototype INT4 nbcsPrgmCfg(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 genMon, UINT1 sts1Path,
sNBCS_CFG_PRGM *pCfg, UINT1 accMode)

Inputs handle : device handle (from nbcsAdd)
linkDesc : 0 = working link; 1 = protection link
genMon : 0 = generator; 1 = monitor
sts1Path : STS-1 path, valid range: 0 – 11
pCfg : structure containing the PRGM
 configuration
accMode : access control: 0 = disable PRGM 1 =
 enable without configuring, 2 =
 configure first, then enable, 3 =
 retrieve configuration

Outputs pCfg : structure containing the PRGM
 configuration when accMode = 3

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Forcing a bit error in the PRGM: nbcsPrgmForceErr

This function forces a bit error in the PRBS sequence on the specified STS-1 data stream on the
working or protect link in the SBS. One bit error is inserted each time the function is invoked. A
group handle is not allowed in this function.

Prototype INT4 nbcsPrgmForceErr(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 sts1Path)

Inputs handle : device handle (from nbcsAdd)
linkDesc : 0 = working link; 1 = protection link

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID: PMC-2021248, Issue 1

sts1Path : STS-1 path, valid range: 0 – 11

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Resynchronizing in the PRGM: nbcsPrgmResync

This function resynchronizes the PRBS monitor on a specified STS-1 on the working or protect
link in the SBS to the incoming data stream. A group handle is not allowed in this function.

Prototype INT4 nbcsPrgmResync(sNBCS_HNDL handle, UINT1
linkDesc, UINT1 sts1Path)

Inputs handle : device handle (from nbcsAdd)
linkDesc : 0 = working link; 1 = protection link
sts1Path : STS-1 path, valid range: 0 – 11

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.7 Narrowband Switching Service Module

Core driver functionality for routing calls, and setting up port protections. The following services
are provided.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID: PMC-2021248, Issue 1

Mapping virtual tributaries: nbcsFmgtMapTrib

This function maps one or multiple virtual tributaries (largest payload type is STS-1 SPE or TU-
3) from the source SBS to the destination SBS. It is designed to work in column mode of both the
SBI bus and the TeleCombus mode. The actual hardware connection map setting will not be
changed by this function call.

Unicast or multicast (callType = NBCS_CALL_MCAST) is supported from one single source
tributary. In the case of multicast, multiple destination tributaries are given in the pdstTrib
array. The number of destination tributaries is given by numSlot.

It also operates in the context of UPSR operation. To perform a protected drop from a UPSR, the
user requires to supply two entries in psrcSlot that define the first and the second SBS and in
the UPSR and the timeslots that the traffic is dropping from. The callType must be defined to be
NBCS_CALL_UPSRDROP in this case. In the case of an unprotected drop, only one entry is
required (in psrcSlot) to specify the UPSR SBS traffic is dropping from. The callType is
NBCS_CALL_MCAST for this operation. In either case, multiple destination points may be
specified by pdstSlot and the total is indicated by numSlot.

For multicast connections, it is extremely important not to have duplicate destination slots given
in the list pdstSlot.

Prototype INT4 nbcsFmgtMapTrib(sNBCS_SLOT* psrcSlot,
sNBCS_SLOT* pdstSlot, UINT2 numSlot,
eNBCS_CALLTYPE callType)

Inputs psrcSlot : pointer to (array of) the structure of
 the source tributary
pdstSlot : pointer to (array of) the structure of
 the destination tributaries
numSlot : number of destination tributaries
callType : call type

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_TRIB
 NBCS_ERR_INVALID_PYLD
 NBCS_ERR_OPA_CONNECT
 NBCS_ERR_OPA_SCHEDULE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID: PMC-2021248, Issue 1

Unmapping virtual tributary: nbcsFmgtUnMapTrib

This function unmaps one or more virtual tributaries (largest payload type is STS-1 SPE or TU-3)
from the source SBS to the destination SBS. It is designed to work in both the TeleCombus and
the SBI bus (column and byte) modes. The total number of tributaries to be unmapped is
indicated by numSlot. The unmapping can also be achieved simply by furnishing the destination
slot alone. In this case, user can set psrcSlot to NULL and the destination slot will be
disconnected regardless of what the source slot is. Doing so will also set up the egress bus
integrity of the tributaries (for rev B SBS devices only).

Prototype INT4 nbcsFmgtUnMapTrib(sNBCS_SLOT* psrcSlot,
sNBCS_SLOT* pdstSlot, UINT2 numSlot)

Inputs psrcSlot : pointer to (array of) the structure of
 the source tributary
pdstSlot : pointer to (array of) the structure of
 the destination tributaries
numSlot : number of destination tributaries

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_TRIB
 NBCS_ERR_INVALID_PYLD
 NBCS_ERR_OPA_CONNECT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Setting chipset to loopback state: nbcsFmgtSetLpbkMode

This function sets the switching fabric to the loopback mode. Records of all existing connections
are wiped out. In the centralized model, all SBS and NSE hardware setting are to be changed to
support the system loopback mode. In the distributed model, device(s) present in the local
microprocessor space are updated. It can be viewed as a reset to the entire switching fabric that
puts the system into the known initial state. User should invoke this when a “clean slate” for
connection is desirable. The function updates the offline connection page of all local devices and
user will have to then perform asynchronous page switch upon a successful invocation.

Prototype INT4 nbcsFmgtSetLpbkMode(void)

Inputs None

Outputs None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_STSW_ACCESS
 NBCS_FAILURE

Valid States NBCS_INACTIVE, NBCS_ACTIVE, NBCS_PRESENT

Side Effects None

Retrieving Current Connection Map: nbcsFmgtGetMap

This function retrieves the current device setting from the OPA. The structure conMapHdr serves
both as the input and output between user and the CSD. In this structure, devHndl is an input
field that allows the user to fill in a valid device handle (returned from
nbcsAdd/nbcsGroupAdd) to specify the device to retrieve from. Another input field is devId
that has a different definition for SBS and NSE devices. For SBS device, this field indicates the
direction, 0 = ingress and 1 = egress; for NSE device, this denotes the port number, 0-11 or 31 for
NSE-8G and NSE-20G respectively. If the port number is ffh, settings for all ports will be
retrieved. Lastly, the field pBuf is a pointer to the buffer for holding the actual settings. The data
format in the buffer varies depending on the device type.

Upon a successful retrieval, the CSD fills in the accMode indicating what access mode user
should use to populate the settings to the device (via nbcsStswMapSlot), and numSetting
indicating the total number of settings returned. For SBS device, this should be either 9720 or
1080 for byte or column mode operation. For NSE device, this should be either 9720 or 1080 for
the two modes on a per port basis. If ffh is specified, this will be one of the four possibilities:
9720/1080 x 32/12 depending on the mode and the NSE type.

The actual settings are copied to the buffer pointed to by pBuf, as indicated by the user. For SBS,
the order is as follows: inSlot[0],…,inSlot[M-1] where M = 9720 or 1080 for byte and column
mode respectively. For NSE device and single port, the order is as follows: inport[0],…,inport[M-
1] where M = 9720 or 1080 for byte and column mode respectively. For NSE device in all port
mode, the order is inport0[0]…inport0[M] inport1[0]…inport1[M]…inportN[0]…inportN[M]
where M = 9719 or 1079 in column or byte mode and N = total number of ports – 1, i.e., 11 or 31
for NSE-8G and NSE-20G respectively.

Table 57 summarizes the definition of all the fields in the header structure for different devices

Table 57: Narrowband Chipset Connection Map Header Definition – Entire Map

Fields I/O SBS NSE

devHndl input device handle device handle

devId input 0 = ingress, or 1 =
egress

port number: 0-11/31 for NSE-8/20G
or ffh for all ports

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID: PMC-2021248, Issue 1

devType output NBCS_SBS or
NBCS_SBSLITE

NBCS_NSE20G or NBCS_NSE8G

devNum1 output user number of the
device

user number of the device

devNum2 output reserved denotes whether the device is a
primary device or secondary one in
the case of doubled SBS or doubled
SBS/NSE fabric. It is always zero in
standard fabric.

devNum3 output user number 3 of the
device

user number 3 of the device

accMode output NBCS_STSW_MAP NBCS_STSW_TIME_OUTPORT or
NBCS_STSW_MAP

numSetting output number of settings,
one of the following:
9720 or 1080

number of settings, one of the
following:
9720, 1080, 9720 x 12, 9720 x 32,
1080 x 12, or 1080 x 32

pBuf input starting location of
buffer. Size of this
buffer should be large
enough to hold the
returned data. It is the
numSetting
multiples by the size
of a UINT2 integer.

starting location of buffer. Size of
this buffer should be large enough to
hold the returned data. It is the
numSetting multiples by the size
of a UINT1 integer.

pBuf2 n/a n/a n/a

pBuf3 n/a n/a n/a

Prototype INT4 nbcsFmgtGetMap(sNBCS_CONMAP_STSW*
conMapHdr)

Inputs conMapHdr : pointer to the connection map header

Outputs conMapHdr : pointer to the connection map header

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID: PMC-2021248, Issue 1

 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_FAILURE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Retrieving Changed Setting of the Connection Map: nbcsFmgtGetChgMap

This function allows user to retrieve the changed (or delta) connection setting of the device(s) as a
result of new call connection setup, and protection switchover activities. The user should call this
function repeatedly until no further settings are returned (indicated by the numSetting field in
the structure, a zero denotes there is no more settings). It is imperative to retrieve all changed
settings of a particular type (e.g., call connection settings) once it has started until its completion
(this condition is denoted by the field numSetting = 0) before other types (such as protection
switchover settings) can be retrieved to preserve data integrity. The function returns an error code
if an attempt is made to retrieve settings of different type prior to completely retrieving changed
settings of another type. It is, however, not necessary to retrieve changed settings immediately
after every single operation (such as a call setup request). User can delay the retrieval until after
several operations (such as multiple call requests) as long as no retrieval has been started.

The structure conMapHdr serves both as the input and output between user and the CSD. The
only input parameters in the structure are pBuf, pBuf2, and pBuf3, which indicate the
beginning of the three buffers for the device settings. The rest of the fields in the structure are
filled in by the CSD as output parameters. These include devHndl for the device handle, devId
for further device identification (ingress or egress for SBS device, and port number for NSE
device), devType for the type for device, accMode for used in API nbcsStswMapSlot
indicating what access mode to use, pBuf, pBuf2, pBuf3 are pointers to buffers. Table 58 gives a
summary of the definition of all fields in the structure.

If the corresponding fields, sbsAutoUpdate, and/or nseAutoUpdate (specified by MIV) are
set, the changed settings are written to the standby (offline) pages of the devices and the settings
will not be copied to the user-specified buffers (pBuf, pBuf2 and pBuf3). Otherwise, the
settings are copied to their respective buffers without being written to the standby pages of the
devices.

Table 58: Narrowband Chipset Connection Map Header Definition – Changed Map

Fields I/O SBS NSE

devHndl output device handle device handle

devId output 0 = ingress, 1 = egress port number: 0-11/31 for NSE-8/20G

devType output NBCS_SBS or
NBCS_SBSLITE

NBCS_NSE20G or NBCS_NSE8G

devNum1 output user number of the device user number of the device

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID: PMC-2021248, Issue 1

Fields I/O SBS NSE

devNum2 output reserved denotes whether the device is a
primary device or secondary one in
the case of doubled SBS or doubled
SBS/NSE fabric. It is always zero in
standard fabric.

devNum3 output user number 3 of the
device

user number 3 of the device

accMode output NBCS_STSW_MAP or
NBCS_STSW_UNICAST

NBCS_STSW_TIME_OUTPORT,
NBCS_STSW_TIME_INPORT,
NBCS_STSW_INPORT,
NBCS_STSW_OUTPORT, or
NBCS_STSW_UNICAST

numSetting output number of settings:
NBCS_STSW_MAP:
either 9720 or 1080
NBCS_STSW_UNICAST:
ranges from 0-9720/1080

number of settings
NBCS_STSW_MAP:
NBCS_STSW_TIME_INPORT:
NBCS_STSW_TIME_OUTPORT :
either 9720 or 1080
NBCS_STSW_UNICAST
NBCS_STSW_INPORT
NBCS_STSW_OUTPORT: ranges
from 0-9720/1080

pBuf input
output

Input: user defines the
starting location of buffer
Output:
NBCS_STSW_MAP:
NBCS_STSW_UNICAST:
pointer to inSlot[] array

Input: user defines the starting
location of buffer
Output:
NBCS_STSW_TIME_INPORT :
NBCS_STSW_INPORT
pointer to inPort[0]
NBCS_STSW_TIME_OUTPORT:
NBCS_STSW_OUTPORT
NBCS_STSW_UNICAST:
pointer to inPort[] array

pBuf2 input/
output

Input: user defines the
starting location of buffer
Output:
NBCS_STSW_MAP: n/a
NBCS_STSW_UNICAST:
pointer to outSlot[] array

Input: user defines the starting
location of buffer
Output:
NBCS_STSW_TIME_OUTPORT:
NBCS_STSW_OUTPORT:
pointer to outPort[0]
NBCS_STSW_TIME_INPORT:
NBCS_STSW_INPORT:
NBCS_STSW_UNICAST:
pointer to outPort[] array

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 148
Document ID: PMC-2021248, Issue 1

Fields I/O SBS NSE

pBuf3 input
output

n/a Input: user defines the starting
location of buffer
Output:
NBCS_STSW_TIME_INPORT
NBCS_STSW_TIME_OUTPORT
:n/a
NBCS_STSW_UNICAST
NBCS_STSW_INPORT
NBCS_STSW_OUTPORT:
pointer to outSlot[] array

Prototype INT4 nbcsFmgtGetChgMap(sNBCS_CONMAP_STSW*
conMapHdr, eNBCS_FABRIC_SETTING settingType)

Inputs conMapHdr : pointer to number of device affected
settingType : one of the following types of setting to
 be retrieved:
 NBCS_SWITCHOVER_SETTING,
 or NBCS_CALL_SETTING

Outputs conMap : pointer to number of device affected

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_FAILURE

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Defining the Physical Wiring of the Fabric: nbcsFmgtDefWiring

This function defines how the SBS devices are connected to the NSE(s) core. The user supplies
wiring tables that describes how the wiring connection between all the SBS devices and the
NSE(s) (edge wiring). The wiring information for the ingress and egress ports of the primary
SBSs and then for the secondary SBSs are specified in the four arrays, pIgrsPriWireTbl,
pEgrsPriWireTbl, pIgrsSecWireTbl, and pEgrsSecWireTbl respectively. The
secondary wiring information is only required if it is a doubled SBS or a double SBS/NSE fabric.
In a standard fabric, the secondary SBS wiring tables are ignored.

The table is used to construct an internal look-up table for translating logical SBS numbers to
SBS CSDDBs.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 149
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsFmgtDefWiring(
sNBCS_EDGE_WIRING *pIgrsPriWireTbl,
sNBCS_EDGE_WIRING *pEgrsPriWireTbl,
sNBCS_EDGE_WIRING *pIgrsSecWireTbl,
sNBCS_EDGE_WIRING *pEgrsSecWireTbl, UINT2
numEntries)

Inputs pIgrsPriWireTbl : pointer to the connection table
 between primary SBSs and NSE core
 in the ingress direction
pEgrsPriWireTbl : pointer to the connection table
 between primary SBSs and NSE core
 in the egress direction
pIgrsSecWireTbl : pointer to the connection table
 between secondary SBSs and the NSE
 core in the ingress direction
pEgrsSecWireTbl : pointer to the connection table
 between secondary SBSs and the NSE
 core in the egress direction
numEntries : number of entries in the table

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_WIRING

Valid States NBCS_INACTIVE, NBCS_PRESENT, NBCS_ACTIVE

Side Effects None

Mapping DS0 in SBI bus mode: nbcsFmgtMapDS0

This function maps DS0(s) (with or without CAS) from the source tributary of the SBS to the
destination tributaries of the SBS. It is only applicable when the chipset is in SBI bus mode and
byte switching mode. The actual hardware connection map setting will not be changed by this
function call.

For multicast connections, it is extremely important not to have duplicate destination slots given
in the list pdstSlot.

The field, cas, specifies whether the CAS-enabled routes are used for the DS0 scheduling. Care
should be taken when DS0 switching in a CAS-enabled E1 tributary is involved. The normal
range for the timeslots is from 1 to 30. DS0#0 is also accepted. However, since it does not contain
any CAS information, the cas bit should not be set if DS0#0 is to be switched. Instead, the non-
CAS scheduler should be employed for the timeslot.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 150
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsFmgtMapDS0(sNBCS_SLOT* psrcSlot,
sNBCS_SLOT* pdstSlot, UINT2 numSlot, UINT1 cas)

Inputs psrcSlot : pointer to (array of) the structure of
 the source tributary/timeslots
pdstSlot : pointer to (array of) the structure of
 the destination tributaries/timeslots
numSlot : number of connections
cas : 0 = do not use CAS scheduler, 1
 = use CAS scheduler

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_INVALID_TRIB
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_OPA_CONNECT
NBCS_ERR_OPA_SCHEDULE
 NBCS_ERR_OPA_DISCONNECT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Unmapping DS0 in SBI bus mode: nbcsFmgtUnMapDS0

This function unmaps DS0(s) from the source tributary of the SBS to the destination tributary of
the SBS. It is only applicable when the chipset is in SBI bus mode and byte switching mode. The
unmapping can also be achieved simply by furnishing the destination slot alone. In this case, user
can set psrcSlot to NULL and the destination slot will be disconnected regardless of what the
source slot is. Doing so will also overwrite the DS0 location with 0h (for rev B SBS devices
only).

Prototype INT4 nbcsFmgtUnMapDS0(sNBCS_SLOT* psrcSlot,
sNBCS_SLOT* pdstSlot, UINT2 numSlot)

Inputs psrcSlot : pointer to (array of) the structure of
 the source tributary/timeslot
pdstSlot : pointer to (array of) the structure of
 the destination tributaries/timeslots
numSlot : number of connections

Outputs None

Returns Success = NBCS_SUCCESS
Fail re NBCS ERR INVALID DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 151
Document ID: PMC-2021248, Issue 1

Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_INVALID_TRIB
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_OPA_CONNECT
 NBCS_ERR_OPA_DISCONNECT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Reserving total number of virtual tributaries for CAS routes:
nbcsFmgtRsvpCasRoute

Applicable only when the fabric is initialized to handle CAS traffic, this function reserves the
total number of virtual tributaries as CAS routes for routing CAS DS0 calls. It should be invoked
in all CSD instances in the system in case of a distributed one. This function has to be called
again after invocation of nbcsFmgtSetLpbkMode.

Prototype INT4 nbcsFmgtRsvpCasRoute(UINT2 numCasRoute)

Inputs numCasRoute : number of VTs reserved for CAS
 routing

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_POLL_TIMEOUT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Setting Port Protection: nbcsFmgtSetProtect

This function sets up 1+1, 1:N port protection or UPSR association. For 1+1 port protection, the
handles of the working and protection port are specified by port1Handle and port2Handle
respectively. For 1:N port protection application, user can set up the protection by either calling
this function N times with N different working ports (specified by the handle in port1Handle)
or calling this function once by supplying a group handle (specified again by port2Handle)
with N working ports grouped together. In the case of UPSR, the handles of the two SBSs
involved in a UPSR are specified by port1Handle and port2Handle.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 152
Document ID: PMC-2021248, Issue 1

For 1+1 port protection, both the working and protect SBSs must not be engaged in other
protection; otherwise, an error code will be returned. Likewise for 1:N protection, all the SBSs
should not be involved in other protection at the time of this call with the exception of the protect
SBS which may currently be defined as a protect SBS in a 1:N protection. The same applies to
the UPSR case.

Prototype INT4 nbcsFmgtSetProtect(sNBCS_HNDL port1Handle,
sNBCS_HNDL port2Handle, eNBCS_PORTPROTECT
protectMode)

Inputs port1Handle : device/group handle (from nbcsAdd)
 of the working SBS(s) or the first SBS
 in a UPSR
port2Handle : device handle of the protection SBS or
 the second SBS in a UPSR
protectMode : protection mode:
 NBCS_PORTPROTECT_1PLUS1,
 NBCS_PORTPROTECT_1FORN
 NBCS_PORTPROTECT_UPSR

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_OPA_PROTECT_EXIST
 NBCS_ERR_INVALID_ARG

Valid States NBCS_INACTIVE, NBCS_ACTIVE

Side Effects None

Clearing Port Protection: nbcsFmgtClearProtect

This function clears a 1+1, 1:N port protection or an UPSR association. For 1+1 port protection,
either the working or the protect SBS can be given to clear the protection. In the case of a UPSR,
either one of the SBSs can be given for the clearing. For 1:N port protection, the working SBS or
SBSs (if a group handle containing all working SBSs is supplied) must be given to clear the 1:N
protection. The exception is for the trivial case when N=1 in the 1:N protection, the protect SBS
can also be given to clear the protection.

Prototype INT4 nbcsFmgtClearProtect(sNBCS_HNDL sbsHandle)

Inputs sbsHandle : device handle of the SBS

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 153
Document ID: PMC-2021248, Issue 1

 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_OPA_PROTECT_NONEXISTENT
 NBCS_ERR_OPA_PROTECT_1FORN

Valid States NBCS_INACTIVE, NBCS_ACTIVE, NBCS_PRESENT

Side Effects None

Switching Over a Port Protection: nbcsFmgtSwitchProtect

This function switches traffic over for a current 1+1 and 1:N port protection or switches virtual
paths in a UPSR. In a 1+1 port protection, this function swaps traffic between active and inactive
ports. If at the time of the request the working port is active, then this function swaps traffic to the
protection port and makes it active. In the 1:N port protection case, this function swaps traffic
from the working port (if currently active) to the protection port which then becomes active. If the
protection port is currently active protecting other working ports, then this call fails. Calling this
function to switch traffic over from the protection port back to the working port always succeeds.
The handle of the working port should be given (via sbsSlot) when switching traffic back from
protection to working port.

The pending active port after the switch over is returned via argument activeSbsSlot. If a
NULL for this parameter is given, no active port information will be returned. The parameter,
numSlots, is ignored when performing 1+1 or 1:N port protection switchover.

This function also performs paths switchover in the context of UPSR. When dropping traffic from
a UPSR, it is by default from the working path. In the event of a signal degradation in the
working path, traffic will instead be dropped from the protect path. One or more protected
connections (the total is specified by numSlots) dropped from the UPSR can be specified by
sbsSlot. All destinations currently drawing traffic from the specified path(s) will be switched
over to the protect path from the active one. The function returns an error code if the first path
does not originate from a SBS defined in UPSR protection. (Hence, the handles in the sbsSlot
array for subsequent entries can be left unfilled.). If the parameter activeSbsSlot is non-
NULL, the pending active path of the first tributary (i.e., the first entry in the sbsSlot array)
after a UPSR path switchover will be returned in this parameter.

Prototype INT4 nbcsFmgtSwitchProtect(sNBCS_SLOT* sbsSlot,
UINT2 numSlots, sNBCS_SLOT* activeSbsSlot)

Inputs sbsSlot : pointer to (array of) tributaries for
 switchover
numSlots : number of paths to switchover
activeSbsSlot : pointer to device handle for active port

Outputs activeSbsSlot : pointer to device handle for active port

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_SYS_CONFIG
 NBCS_ERR_INVALID_SWITCHOVER

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 154
Document ID: PMC-2021248, Issue 1

Valid States NBCS_INACTIVE, NBCS_ACTIVE, NBCS_PRESENT

Side Effects None

5.8 Event Processing Functions

This section of the document describes the functions that perform the following tasks that sets,
gets and clears the event mask.

Polling the Chipset Driver Events: nbcsPoll

Commands the chipset driver to poll the underlying drivers for the NSE/SBS device(s). The call
will fail unless the chipset driver was initialized (via the MIV when calling nbcsModuleOpen) to
operate in polling mode. The function also works in the context of a group.

Prototype INT4 nbcsPoll(sNBCS_HNDL handle)

Inputs handle : device/group handle (from nbcsAdd or
 nbcsGroupAdd)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE

Side Effects None

Getting the Event Enable Mask: nbcsEventGetMask

This function returns the current setting of the event mask of the Narrowband Chipset device.
User has to ensure that the buffer pointed to by pMask is large enough to hold all the masks.

Prototype INT4 nbcsEventGetMask(sNBCS_HNDL handle,
sNBCS_MASK_EVT *pMask)

Inputs handle : device handle (from nbcsAdd)
pMask : pointer to the event mask structure

Outputs pMask : pointer to updated event mask
 structure

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 155
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Setting the Event Mask: nbcsEventSetMask

This function sets the event mask of the Narrowband Chipset device. A field set in the mask
enables the processing of the corresponding event for the specified device. Enabled events will be
processed and the corresponding callback function (if properly registered) will be invoked when
the event occurs. For the zero values in the mask, the processing state of the corresponding event
remains unchanged.

The function also operates in the context of a group. All the members (devices) in the group will
be set to the mask given by pMask. The members have to be the same type or an error code will
be returned.

Prototype INT4 nbcsEventSetMask(sNBCS_HNDL handle,
sNBCS_MASK_EVT *pMask)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)
pMask : pointer to the event mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_GROUPS_MIXED_DEV
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Clearing the Event Mask: nbcsEventClearMask

This function clears the event mask of the Narrowband Chipset device. A field set in the mask
disables the processing of the corresponding event for the specified device. Application will not
be notified of the occurrence of any disabled events via any callback functions. For the zero
values in the mask, the processing state of the corresponding event remains unchanged.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 156
Document ID: PMC-2021248, Issue 1

The function also operates in the context of a group. All the members (devices) in the group will
have their event mask cleared as indicated by pMask. The members have to be the same type or
an error code will be returned.

Prototype INT4 nbcsEventClearMask(sNBCS_HNDL handle,
sNBCS_MASK_EVT *pMask)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)
pMask : pointer to the event mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_GROUPS_MIXED_DEV
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Detecting C1 Frame Pulse: nbcsEventDetectC1FP

This function prepares the CSD to detect the arrival of the C1 frame pulse. A callback function
will be issued to notify user the receipt of C1 frame pulse. This is mostly used when a
synchronized page switch across the entire fabric is required. The main task for this function is to
enable the C1 frame pulse interrupt in the specified underlying NSE or SBS device. For a NSE
device, the callback function is called from the context of the ISR (interrupt service routine) of
the NSE device driver. It is very important to keep this callback function to a bare minimum of
processing. For a SBS device, the callback function is called from the context of a deferred
processing routine (DPR) task.

The arrival of the C1 frame pulse depends on the system configuration mode. In a TeleCombus-
based system, the C1 frame pulse arrives at every 125 microseconds. In a SBI bus system
configured in column mode or DS0 mode without CAS, the pulse comes at every 4 frames, or
500 microseconds. With the presence of CAS DS0 in SBI bus, the pulse is detected at every 48
frames, or 6 milliseconds.

Prototype INT4 nbcsEventDetectC1FP(sNBCS_HNDL handle,
UINT1 dir)

Inputs handle : device handle (from nbcsAdd) of
 NSE/SBS
dir : direction for SBS devices: 0 =
 incoming, 1 = received. Ignored for
 NSE devices

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 157
Document ID: PMC-2021248, Issue 1

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE

Side Effects None

5.9 Status and Counts Functions

Reading the Device Counters: nbcsStatsGetCounts

This function retrieves all the device counts. This routine should be called by the application
code, in the context of a task. It is the user’s responsibility to ensure that this function is called
often enough to prevent the device counts from saturating or rolling over. This function also
operates in the context of a group. The buffer pointed to by pCntr should be large enough to hold
all the returned counts of the members in the group.

Prototype INT4 nbcsStatsGetCounts(sNBCS_HNDL handle,
sNBCS_CNTR *pCntr)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)
pCntr : allocated memory for counts

Outputs pCntr : current device counts

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

Getting the Current Status: nbcsStatsGetStatus

This function retrieves a snapshot of the current status from the device registers. This involves
retrieving current alarms, status, and clock activity. It also operates in the context of a group. It is
the user’s responsibility to ensure the buffer indicated by pStatus is large enough to hold all the
returned status of the members in the group.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 158
Document ID: PMC-2021248, Issue 1

Prototype INT4 nbcsStatsGetStatus(sNBCS_HNDL handle,
sNBCS_STATUS *pStatus)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd)
pStatus : pointer to allocated memory

Outputs pStatus : current status

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Side Effects None

5.10 Device Diagnostics

Testing Register Accesses: nbcsDiagTestReg

This function verifies the specified device register access in the chipset by writing and reading
back values. It also supports the group operation with the same device type. Mixed devices in the
same group is disallowed.

Prototype INT4 nbcsDiagTestReg(sNBCS_HNDL handle,
sNBCS_DIAG_TEST_REG *ptestReg)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd) ; if group, all
 members must be of same type
ptestReg : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_GROUP_STATE
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_PRESENT

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 159
Document ID: PMC-2021248, Issue 1

Testing RAM Accesses: nbcsDiagTestRam

This function verifies the specified device RAM access by writing and reading back values. It
also supports the group operation with the same device type. Mixed devices in the same group is
disallowed.

Prototype INT4 nbcsDiagTestRam(sNBCS_HNDL handle,
sNBCS_DIAG_TEST_RAM *ptestRam)

Inputs handle : device/group handle (from nbcsAdd
 or nbcsGroupAdd); if group, all
 members must be of same type
ptestRam : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEV_ABSENT
 NBCS_ERR_INVALID_GROUP_STATE

Valid States NBCS_PRESENT

Side Effects None

Controlling diagnostic loopback: nbcsDiagLpbk

This function controls 3 diagnostic loopback available in the SBS devices.

Prototype INT4 nbcsDiagLpbk(sNBCS_HNDL handle, eNBCS_LPBK
lpbk, UINT1 enable)

Inputs handle : device handle (from nbcsAdd)
lpbk : specifies one of the three loopback
 options
enable : 0 – disable, 1 – enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = NBCS_ERR_INVALID_DEV
 NBCS_ERR_INVALID_DEVICE_STATE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_DEV_ABSENT

Valid States NBCS_ACTIVE, NBCS_INACTIVE

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 160
Document ID: PMC-2021248, Issue 1

Side Effects None

5.11 Callback Functions

The Narrowband Chipset driver has the capability to callback functions within the user code
when certain events occur. The names given to the callback functions are given as examples. The
addresses of the callback functions are passed during the nbcsModuleOpen call (inside a MIV).
To avoid using the callbacks, the user should set the address of the callback functions to NULL
within the MIV.

Notifying the Application of ILC data received events: cbackIlcRxData

This callback function is provided by the user and is used by the CSD to report in-band link data
received events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. Note: the callback function’s address is passed to the driver during the
nbcsModuleOpen call. If the address of the callback function was passed as a NULL at
initialization, then no callback will be made. Since DPV buffer is not employed, there is no need
to call sysNbcsDPVBufferRtn to release the DPV buffer upon the return of this function.

Prototype void cbackIlcRxData(sNBCS_USR_CTXT usrCtxt,
UINT4 event, UINT4 link)

Inputs usrCtxt : user context (from nbcsAdd)
event : event bitmask
link : link descriptor

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 161
Document ID: PMC-2021248, Issue 1

Notifying the Application of ILC header bits changed events: cbackIlcHead

This callback function is provided by the user and is used by the CSD to report in-band link
header bits changed events back to the application. This function should be non-blocking.
Typically, the callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. Note: the callback function’s address is passed to the driver
during the nbcsModuleOpen call. If the address of the callback function was passed as a NULL
at initialization, then no callback is made. The event field in the DPV is a bit mask that reports
all the ILC event(s) encountered. The info field in the DPV is encoded as the link descriptor
indicating which ILC link is causing the event(s).

Application is responsible for calling sysNbcsDPVBufferRtn to release the DPV buffer upon
the return of this function.

Prototype void cbackIlcHead(sNBCS_USR_CTXT usrCtxt,
sNBCS_DPV *pdpv)

Inputs usrCtxt : user context (from nbcsAdd)
pdpv : (pointer to) DPV that describes
 this event

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Notifying the Application of Interface events: cbackIntf

This callback function is provided by the user and is used by the CSD to report interface-related
events back to the application. This function should be non-blocking. Typically, the callback
routine sends a message to another task with the event identifier and other context information.
The task that receives this message can then process this information according to the system
requirements. Note: the callback function’s address is passed to the driver during the
nbcsModuleOpen call. If the address of the callback function was passed as a NULL at
initialization, then no callback is made. The event field in the DPV is a bit mask that reports all
the INTF event(s) encountered. The info field in the DPV is encoded as the link descriptor
indicating which link is causing the event(s).

Application is responsible for calling sysNbcsDPVBufferRtn to release the DPV buffer upon
the return of this function.

Prototype void cbackIntf(sNBCS_USR_CTXT usrCtxt,
sNBCS_DPV *pdpv)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 162
Document ID: PMC-2021248, Issue 1

Inputs usrCtxt : user context (from nbcsAdd)
pdpv : (pointer to) DPV that describes
 this event

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Notifying the Application of LVDS Link events: cbackLkc

This callback function is provided by the user and is used by the CSD to report LVDS link-related
events back to the application. This function should be non-blocking. Typically, the callback
routine sends a message to another task with the event identifier and other context information.
The task that receives this message can then process this information according to the system
requirements. Note: the callback function’s address is passed to the driver during the
nbcsModuleOpen call. If the address of the callback function was passed as a NULL at
initialization, then no callback is made. The event field in the DPV is a bit mask that reports all
the LKC event(s) encountered. The info field in the DPV is encoded as the link descriptor
indicating which link is causing the event(s).

Application is responsible for calling sysNbcsDPVBufferRtn to release the DPV buffer upon
the return of this function.

Prototype void cbackLkc(sNBCS_USR_CTXT usrCtxt, sNBCS_DPV
*pdpv)

Inputs usrCtxt : user context (from nbcsAdd)
pdpv : (pointer to) DPV that describes
 this event

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 163
Document ID: PMC-2021248, Issue 1

Notifying the Application of Space/time Switch events: cbackStsw

This callback function is provided by the user and is used by the CSD to report space/time
switch-related events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other context
information. The task that receives this message can then process this information according to
the system requirements. Note: the callback function’s address is passed to the driver during the
nbcsModuleOpen call. If the address of the callback function was passed as a NULL at
initialization, then no callback is made. The event field in the DPV is a bit mask that reports all
the STSW event(s) encountered. The info field in the DPV is encoded as the switch descriptor
indicating which space/time switch is causing the event(s).

Application is responsible for calling sysNbcsDPVBufferRtn to release the DPV buffer upon
the return of this function.

Prototype void cbackStsw(sNBCS_USR_CTXT usrCtxt,
sNBCS_DPV *pdpv)

Inputs usrCtxt : user context (from nbcsAdd)
pdpv : (pointer to) DPV that describes
 this event

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Notifying the Application of C1 Frame Pulse: cbackC1FP

This callback function is provided by the user and is used by the CSD to report arrival of C1FP
events back to the application. This function should be non-blocking and short because it is
invoked in the interrupt service routine (ISR) context. User should exercise caution when filling
in this callback function. For instance, it should not wait for any semaphores which creates a
blocking situation. Typically, the callback routine sends a message to another task with the event
identifier and other context information. The task that receives this message can then process this
information according to the system requirements. Note: the callback function’s address is passed
to the driver during the nbcsModuleOpen call. If the address of the callback function was passed
as a NULL at initialization, then no callback is made. Since DPV buffer is not employed, there is
no need to call sysNbcsDPVBufferRtn to release the DPV buffer upon the return of this
function.

Prototype void cbackC1FP(sNBCS_USR_CTXT usrCtxt, UINT4
rsv1, UINT4 rsv2)

Inputs usrCtxt : user context (from nbcsAdd)
rsv1 : reserved field 1

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 164
Document ID: PMC-2021248, Issue 1

rsv2 : reserved field 2

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Notifying the Application of PRGM events: cbackPrgm

This callback function is provided by the user and is used by the CSD to report PRGM-related
events back to the application. This function should be non-blocking. Typically, the callback
routine sends a message to another task with the event identifier and other context information.
The task that receives this message can then process this information according to the system
requirements. Note: If the address of the callback function was passed as a NULL at initialization,
then no callback is made. The event field in the DPV is a bit mask that reports all the PRGM
event(s) encountered. The info field in the DPV is encoded as the timeslot indicating which
STS-1 path is causing the event(s).

Application is responsible for calling sysNbcsDPVBufferRtn to release the DPV buffer upon
the return of this function.

Prototype void cbackPrgm(sNBCS_USR_CTXT usrCtxt,
sNBCS_DPV *pdpv)

Inputs usrCtxt : user context (from nbcsAdd)
pdpv : (pointer to) DPV that describes
 this event

Outputs None

Returns None

Valid States NBCS_ACTIVE

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 165
Document ID: PMC-2021248, Issue 1

6 HARDWARE INTERFACE
The Narrowband Chipset driver does not interface directly with the user’s hardware. Instead, it
goes through the underlying SBS/NSE device drivers. Please refer to the SBS and NSE drivers’
manual for specific porting instructions. It is the responsibility of the user to connect these
requirements into the hardware, either by defining a macro or by writing a function for each item
listed. For correct operation, parameters and return values must match those prototypes.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 166
Document ID: PMC-2021248, Issue 1

7 RTOS INTERFACE
The Narrowband Chipset driver requires the use of some Real-Time Operating System (RTOS)
resources. In this section of the manual, a listing of each required resource is shown, along with a
declaration and any specific porting instructions. It is the responsibility of the user to connect
these requirements into the RTOS, either by defining a macro or by writing a function for each
item listed. Care should be taken when matching parameters and return values.

7.1 Memory Allocation / De-Allocation

Allocating Memory: sysNbcsMemAlloc

This function allocates specified number of bytes of memory.

Format #define sysNbcsMemAlloc(numBytes)

Prototype UINT1 * sysNbcsMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Freeing Memory: sysNbcsMemFree

This function frees memory allocated using sysNbcsMemAlloc.

Format #define sysNbcsMemFree(pfirstByte)

Prototype void sysNbcsMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region
 being de-allocated

Outputs None

Returns None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 167
Document ID: PMC-2021248, Issue 1

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending and
receiving messages. The following calls, provided by the user, allow the driver to get and return
buffers from the RTOS. It is the user’s responsibility to create any special resources or pools to
handle buffers of these sizes during the sysNbcsBufferStart call. These functions must be
non-blocking.

Starting Buffer Management: sysNbcsBufferStart

This function alerts the RTOS to make sure buffer is available and sized correctly. Depending on
the RTOS, this can involve the creation of new buffer pools.

Format #define sysNbcsBufferStart()

Prototype INT4 sysNbcsBufferStart(void)

Inputs None

Outputs None

Returns Success = 0
Failure = <any other value>

Getting a DPV Buffer: sysNbcsDPVBufferGet

This function gets a buffer from the RTOS.

Format #define sysNbcsDPVBufferGet()

Prototype void * sysNbcsDPVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a buffer
Failure = NULL (pointer)

Returning a DPV Buffer: sysNbcsDPVBufferRtn

This function returns a buffer to the RTOS when the information in the block is no longer needed.

Format #define sysNbcsDPVBufferRtn(pBuf)

Prototype void sysNbcsDPVBufferRtn(void *pBuf)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 168
Document ID: PMC-2021248, Issue 1

Inputs pBuf : (pointer to) a buffer

Outputs None

Returns None

Stopping Buffer Management: sysNbcsBufferStop

This function alerts the RTOS that the driver no longer needs any buffers and that if any special
resources were created to handle these buffers, they can now be deleted.

Format #define sysNbcsBufferStop()

Prototype void sysNbcsBufferStop(void)

Inputs None

Outputs None

Returns None

7.3 Timers

Creating a Timer: sysNbcsTimerCreate

This function creates a timer object for general use.

Format #define sysNbcsTimerCreate()

Prototype void * sysNbcsTimerCreate(void)

Inputs None

Outputs None

Returns Success = (pointer to) a timer object
Failure = NULL (pointer)

Starting a Timer: sysNbcsTimerStart

This function starts a timer.

Format #define sysNbcsTimerStart(ptimer, period, pfunc)

Prototype INT4 sysNbcsTimerStart(void *ptimer, UINT4
period, void *pfunc)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 169
Document ID: PMC-2021248, Issue 1

Inputs ptimer : (pointer to) timer object
period : time (in milliseconds)
pfunc : function to invoke when timer expires

Outputs None

Returns Success = 0
Failure = <any other value>

Aborting a Timer: sysNbcsTimerAbort

This function aborts a running timer.

Format #define sysNbcsTimerAbort(ptimer)

Prototype INT4 sysNbcsTimerAbort(void *ptimer)

Inputs ptimer : (pointer to) timer object

Outputs None

Returns Success = 0
Failure = <any other value>

Deleting a Timer: sysNbcsTimerDelete

This function deletes a timer.

Format #define sysNbcsTimerDelete(ptimer)

Prototype void sysNbcsTimerDelete(void *ptimer)

Inputs ptimer : (pointer to) timer object

Outputs None

Returns None

Suspending a Task: sysNbcsTimerSleep

This function suspends execution of a driver task for a specified number of milliseconds.

Format #define sysNbcsTimerSleep(msec)

Prototype void sysNbcsTimerSleep(UINT4 msec)

Inputs msec : sleep time in milliseconds

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 170
Document ID: PMC-2021248, Issue 1

Outputs None

Returns None

7.4 Semaphores

Creating a Semaphore: sysNbcsSemCreate

This function creates a binary semaphore object.

Format #define sysNbcsSemCreate()

Prototype void * sysNbcsSemCreate(void)

Inputs None

Outputs None

Returns Success = (pointer to) a semaphore object
Failure = NULL (pointer)

Taking a Semaphore: sysNbcsSemTake

This function takes a binary semaphore.

Format #define sysNbcsSemTake(psem)

Prototype INT4 sysNbcsSemTake(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns Success = 0
Failure = <any other value>

Giving a Semaphore: sysNbcsSemGive

This function gives a binary semaphore.

Format #define sysNbcsSemGive(psem)

Prototype INT4 sysNbcsSemGive(void *psem)

Inputs psem : (pointer to) a semaphore object

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 171
Document ID: PMC-2021248, Issue 1

Outputs None

Returns Success = 0
Failure = <any other value>

Deleting a Semaphore: sysNbcsSemDelete

This function deletes a binary semaphore object.

Format #define sysNbcsSemDelete(psem)

Prototype void sysNbcsSemDelete(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns None

7.5 Preemption

Disabling Preemption: sysNbcsPreemptDisable

This routine prevents the calling task from being preempted. If the driver is in interrupt mode, this
routine locks out all interrupts as well as other tasks in the system. If the driver is in polling
mode, this routine locks out other tasks only.

Format #define sysNbcsPreemptDisable()

Prototype INT4 sysNbcsPreemptDisable(void)

Inputs None

Outputs None

Returns Preemption key (passed back as an argument in
sysNbcsPreemptEnable)

Re-Enabling Preemption: sysNbcsPreemptEnable

This routine allows the calling task to be preempted. If the driver is in interrupt mode, this routine
unlocks all interrupts and other tasks in the system. If the driver is in polling mode, this routine
unlocks other tasks only.

Format #define sysNbcsPreemptEnable(key)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 172
Document ID: PMC-2021248, Issue 1

Prototype void sysNbcsPreemptEnable(INT4 key)

Inputs key : preemption key (returned by
 sysNbcsPreemptDisable)

Outputs None

Returns None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Porting the Narrowband Chipset Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 173
Document ID: PMC-2021248, Issue 1

8 PORTING THE NARROWBAND CHIPSET DRIVER
This section outlines how to port the Narrowband Chipset driver to your hardware and RTOS
platform. However, this document can offer only guidelines for porting the Narrowband Chipset
driver as each platform and application is unique.

8.1 Driver Source Files

The C source files listed in the following table contain the code for the Narrowband Chipset
driver. You may need to either modify the existing code or develop additional code. The code is in
the form of constants, macros, and functions. For the ease of porting, the code is grouped into
source files (src) and header files (inc). The src files contain the functions and the inc files
contain the constants and macros.

Directory File Description

src nbcs_api.c Device and module management

 nbcs_fmgt.c Fabric management block functions

 nbcs_stsw.c Space/time switch block functions

 nbcs_diag.c Diagnostics functions

 nbcs_lkc.c LVDS link controller block functions

 nbcs_ilc.c In-band link controller block
functions

 nbcs_prgm.c PRGM block functions

 nbcs_intf.c Interface/Clock configuration
functions

 nbcs_evt.c Event processing functions

 nbcs_rtos.c RTOS specific functions

 nbcs_stats.c Status and counts functions

 nbcs_util.c Miscellaneous functions

 nbcs_dal_sbsnse
.c

DAL implementation for SBS and
NSE devices

inc nbcs_api.h API function prototypes

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Porting the Narrowband Chipset Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 174
Document ID: PMC-2021248, Issue 1

Directory File Description

 nbcs_defs.h Constants, macros and enumerated
types

 nbcs_err.h Driver error codes

 nbcs_fns.h Non-API function prototypes

 nbcs_rtos.h RTOS specific constants, macros and
function prototypes

 nbcs_strs.h Driver structures

 nbcs_typs.h Standard types

 nbcs_dal.h DAL prototypes

example nbcs_app.c Example callback functions and
example code

 nbcs_app.h Prototype and definitions for the
example code

 nbcs_debug.c Example debug code for reporting
register accesses to the device

 nbcs_debug.h Prototype and definitions for the
debug code

 nbcs_profile.c Example profiles

 nbcs_dal_null.c Empty DAL functions

8.2 Driver Porting Procedures

The following procedures summarize how to port the Narrowband Chipset driver to your
platform.

To port the Narrowband Chipset driver to your platform:

Step 1: Port the driver’s RTOS extensions (page 175)

Step 2: Port the driver’s application-specific elements (page 176)

Step 3: Build the driver (page 177)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Porting the Narrowband Chipset Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 175
Document ID: PMC-2021248, Issue 1

Step 1: Porting Driver RTOS Extensions

The RTOS extensions encapsulate all RTOS specific services and data types used by the driver.
These RTOS extensions include:

�� Memory Management

�� Task management

�� Message queues, semaphores and timers

The compiler-specific data type definitions are located in nbcs_typs.h. The files
nbcs_rtos.h and nbcs_rtos.c contain macros and functions for RTOS specific services.

To port the driver’s RTOS extensions:

1. Modify the data types in nbcs_typs.h. The number after the type identifies the data-type
size. For example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute the compiler
types that yield the desired types as defined in this file.

2. Modify the RTOS specific macros in nbcs_rtos.h:

Service Type Macro Name Description

Memory sysNbcsMemAlloc Allocates the memory block

 sysNbcsMemFree Frees the memory block

 sysNbcsMemCpy Copies the memory block from src to
dest

 sysNbcsMemSet Sets each character in the memory
buffer

Semaphores sysNbcsSemCreate Creates a semaphore

 sysNbcsSemTake Takes a semaphore

 sysNbcsSemGive Gives a semaphore

 sysNbcsSemDelete Deletes a semaphore

3. Modify the RTOS specific functions in nbcs_rtos.c:

Service Type Function Name Description

Timer sysNbcsTimerSleep Sleeps a task

 sysNbcsTimerCreate Creates a timer

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Porting the Narrowband Chipset Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 176
Document ID: PMC-2021248, Issue 1

Service Type Function Name Description

 sysNbcsTimerStart Starts a timer

 sysNbcsTimerAbort Aborts a timer

 sysNbcsTimerDelete Deletes a timer

Buffer sysNbcsBufferStart Start buffer management

 sysNbcsDPVBufferGet Gets a DPV buffer

 sysNbcsDPVBufferRtn Returns a DPV buffer

 sysNbcsBufferStop Stops buffer management

Preemption sysNbcsPreemptDisabl
e

Disables preemption

 sysNbcsPreemptEnable Enables preemption

Step 2: Porting Driver Application-Specific Elements

Application specific elements are configuration constants used by the API for developing an
application. This section describes how to modify the application specific elements in the
Narrowband Chipset driver.

To port the driver’s application-specific elements:

1. Modify the type definition for the user context in nbcs_typs.h. The user context is used to
identify a device in your application callbacks.

2. Modify the value of the base error code (NBCS_ERR_BASE) in nbcs_err.h. This ensures
that the driver error codes do not overlap with other error codes used in your application.

3. Define the application-specific constants for your hardware configuration in nbcs_defs.h:

Device Constant Description Default

NBCS_MAX_SBS The maximum number of SBS
devices that can be supported by
this driver

32

NBCS_MAX_NSE The maximum number of NSE
devices that can be supported by
this driver

5

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Porting the Narrowband Chipset Driver

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 177
Document ID: PMC-2021248, Issue 1

NBCS_MAX_SBS_INIT_PROFS The maximum number of SBS
initialization profiles

5

NBCS_MAX_NSE_INIT_PROFS The maximum number of NSE
initialization profiles

5

NBCS_MAX_GROUP The maximum number of groups
allowed in the driver

7

NBCS_MAX_MCAST The maximum number of
destinations in a multicast
connection attempt

32

4. Define the following application-specific constants for your RTOS-specific services in
nbcs_rtos.h:

Task Constant Description Default

NBCS_MAX_DPV_BUF The maximum number of DPV
buffers

950

5. Code the callback functions according to your application. There are sample callback
functions in nbcs_app.c. You can use these callback functions or you can customize them
before using the driver. The driver will call these callback functions when an event occurs on
the device. These functions must conform to the following prototype (cback should be
replaced with your callback function name):

void cback(sNBCS_USR_CTXT usrCtxt, sNBCS_DPV *pdpv)

Step 3: Building the Driver

This section describes how to build the Narrowband Chipset driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler and compiler
options.

2. Choose from among the different compile options supported by the driver as per your
requirements.

3. Compile the source files and build the Narrowband Chipset API driver library using your
make utility.

4. Link the Narrowband Chipset API driver library to your application code.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 178
Document ID: PMC-2021248, Issue 1

APPENDIX A: CODING CONVENTIONS

This section of the manual describes the coding conventions used to implement PMC chipset
driver software.

Variable Type Definitions

Table 59: Variable Type Definitions

Type Description

UINT1 unsigned integer value of size 1 byte (0x0 – 0xFF)

UINT2 unsigned integer value of size 2 bytes (0x0 – 0xFFFF)

UINT4 unsigned integer value of size 4 bytes (0x0 – 0xFFFFFFFF)

INT1 signed integer value of size 1 byte (0x0 – 0xFF)

INT2 signed integer value of size 2 bytes (0x0 – 0xFFFF)

INT4 signed integer value of size 4 bytes (0x0 – 0xFFFFFFFF)

Naming Conventions

Table 60 summarizes the naming conventions followed by PMC-Sierra driver software. Detailed
descriptions are then provided in the following sub-sections.

The names used in the drivers are detailed enough to make their purpose fairly clear. Please note
that the device name appears in prefix.

Table 60: Naming Conventions

Type Naming convention Examples

Macros Uppercase, prefix with “m”
and device abbreviation

mNBCS_SLICE_OFFSET

mNBCS_QE_VC_NUM

mNBCS_[BLK]_<PURPOSE>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 179
Document ID: PMC-2021248, Issue 1

Type Naming convention Examples

Enumerated
Types

Uppercase, prefix with “e”
and device abbreviation

eNBCS_MOD_STATE

eNBCS_DEV_STATE

eNBCS_<OBJECT>

Constants Uppercase, prefix with
device abbreviation

NBCS_SUCCESS

NBCS_BITMSK_RESET

NBCS_BITOFF_BIP8

NBCS_[CATEGORY]_<OBJECT>

Structures Uppercase, prefix with “s”
and device abbreviation

sNBCS_CSDDB

sNBCS_CNTR_LOH

sNBCS_MASK_ISR

sNBCS_STATUS_QE_VC

sNBCS_<PURPOSE>_<BLK>_[OBJECT]

API Functions Hungarian notation, prefix
with device abbreviation

nbcsAdd()

nbcsStatsGetStatus()

nbcsStatsGetCountsXX()

nbcsDiagTestReg()

nbcs[Blk]<Action>[Object]()

Porting
Functions and
Macros

Hungarian notation, prefix
with “sys” and device
abbreviation

sysNbcsRead()

sysNbcsBufferGet()

sysNbcs[Object]<Action>()

Non-API
Functions

Hungarian notation utilNbcsReset()

<blk>Nbcs<Action>[Object]()

Variables Hungarian notation maxDevs

Pointers to
variables

Hungarian notation, prefix
variable name with “p”

pmaxDevs

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 180
Document ID: PMC-2021248, Issue 1

Type Naming convention Examples

Global variables Hungarian notation, prefix
with device abbreviation

nbcsCsmdb

File Organization

Table 61 presents a summary of the file naming conventions. All file names must start with the
device abbreviation, followed by an underscore and the actual file name. File names convey their
purpose with a minimum number of characters.

Table 61: File Naming Conventions

File Type File Name Description

API (Module and Device
Management)

nbcs_api.c Generic driver API block, contains
Module & Device Management API
such as installing/de-installing driver
instances, read/writes, and
initialization profiles. Contains
functions such as nbcsModuleOpen,
nbcsModuleStart, nbcsAdd.

API (Events) nbcs_evt.c Event processing is handled by this
block. This includes interrupt callback
function management Contains
functions such as
nbcsEventSetMask, and
nbcsEventClearMask.

API (Diagnostics) nbcs_diag.c Contains device diagnostic functions
such as nbcsDiagTestReg,
nbcsDiagTestRam.

API (Interface/Clock
Configuration)

nbcs_intf.c Interface/Clock configuration
functions for connecting the device to
external interfaces
(i.e.,PHY,PL3,UL2,SBI, TeleCombus,
clk/data, LVDS, etc.)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 181
Document ID: PMC-2021248, Issue 1

File Type File Name Description

API (Status and counts) nbcs_stats.c Data collection block for all device
results/counts. Contains
nbcsStatsGetStatus,
nbcsStatsGetCounts.
Functions in this file perform basic
state, error checks and retrieve block
specific status and counts.

API (Device specific
blocks)

nbcs_ilc.c,
nbcs_prgm.c,
nbcs_stsw.c,
nbcs_lkc.c,
nbcs_fmgt.c,

Device specific configuration
functions defined in the driver
architecture. Both API and functions
used internally by driver are located
in these files.

DAL (SBS/NSE
implementation)

nbcs_dal_sbsns
e.c

DAL implementation for use with
SBS and NSE device drivers

RTOS Dependent nbcs_rtos.c,
nbcs_rtos.h

RTOS specific functions such as
sysNbcsBufferGet,
sysNbcsDPVBufferRtn, RTOS
constants and macros

Other nbcs_util.c Utility functions used internally by
the driver (i.e. utilNbcsResetDev)

Header file nbcs_api.h Prototypes for all the API functions of
the driver

Header file nbcs_err.h Error return codes

Header file nbcs_defs.h Device constants and macros, register
offset definitions, bit masks,
enumerated types

Header file nbcs_typs.h Standard types definition (i.e.,
UINT1, UINT2, etc.)

Header file nbcs_fns.h Prototypes for all the non-API
functions used in the driver

Header file nbcs_strs.h All structure definitions

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix B: Narrowband Chipset Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 182
Document ID: PMC-2021248, Issue 1

APPENDIX B: NARROWBAND CHIPSET ERROR CODES

This appendix describes the error codes used in the Narrowband Chipset device driver.

Table 62: Narrowband Chipset Error Codes

Error Code Description

NBCS_SUCCESS Success

NBCS_FAILURE Failure

NBCS_ERR_MEM_ALLOC Memory allocation failure

NBCS_ERR_INVALID_ARG Invalid argument

NBCS_ERR_INVALID_SYS_CONFIG Invalid system configuration

NBCS_ERR_INVALID_GROUP Invalid group ID

NBCS_ERR_DEV_ABSENT Device is not present locally

NBCS_ERR_INVALID_MODULE_STATE Invalid module state

NBCS_ERR_INVALID_MIV Invalid Module Initialization Vector

NBCS_ERR_PROFILES_FULL Maximum number of profiles already added

NBCS_ERR_INVALID_PROFILE Invalid profile

NBCS_ERR_INVALID_PROFILE_NUM Invalid profile number

NBCS_ERR_INT_INSTALL Error while installing interrupts

NBCS_ERR_BUF_START Error while starting buffer management

NBCS_ERR_INVALID_DEVICE_STATE Invalid device state

NBCS_ERR_DEVS_FULL Maximum number of devices already added

NBCS_ERR_DEV_ALREADY_ADDED Device already added

NBCS_ERR_INVALID_DEV Invalid device handle or device ID

NBCS_ERR_INVALID_DIV Invalid Device Initialization Vector

NBCS_ERR_INVALID_MODE Invalid ISR/polling mode

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix B: Narrowband Chipset Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 183
Document ID: PMC-2021248, Issue 1

Error Code Description

NBCS_ERR_INVALID_GROUP_STATE Invalid group state

NBCS_ERR_GROUPS_FULL No more groups are available

NBCS_ERR_ADDING_DEVICE_IN_GRO
UP

Error adding device to group

NBCS_ERR_DELETING_DEVICE_IN_G
ROUP

Error deleting device from group

NBCS_ERR_INVALID_REG Invalid register number

NBCS_ERR_POLL_TIMEOUT Time-out while polling

NBCS_ERR_INVALID_BUS_TYPE Invalid bus type

NBCS_ERR_CSU_LOCK CSU lock failure in devices is detected

NBCS_ERR_GROUPS_MIXED_DEV Mixed devices are found in group

NBCS_ERR_STSW_ACCESS Error accessing STSW blocks

NBCS_ERR_ILC_TX_TIMEOUT Tx ILC timeout

NBCS_ERR_ILC_INVALID_OP Invalid operation in ILC is received

NBCS_ERR_OPA_PROTECT_EXIST Protection scheme exists already

NBCS_ERR_OPA_PROTECT_NONEXIST
ENT

Protection scheme does not exist

NBCS_ERR_OPA_PROTECT_1FORN Error in 1:N Port Protection scheme

NBCS_ERR_OPA_CONNECT Error in setting up tributary/byte connection

NBCS_ERR_OPA_DISCONNECT Error in disconnecting tributary/byte
connection

NBCS_ERR_INVALID_TRIB Invalid tributary

NBCS_ERR_INVALID_PYLD Invalid payload type

NBCS_ERR_INVALID_WIRING Invalid physical wiring

NBCS_ERR_INVALID_SWITCHOVER Invalid port or path level switchover

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix B: Narrowband Chipset Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 184
Document ID: PMC-2021248, Issue 1

Error Code Description

NBCS_ERR_PROTECT_BUSY Protection Port in 1:N port protection scheme
is currently used and not available

NBCS_ERR_OPA_SCHEDULE Cannot schedule a call due to lack of resources

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 185
Document ID: PMC-2021248, Issue 1

APPENDIX C: NARROWBAND CHIPSET EVENTS

This appendix describes the events used in the Narrowband Chipset device driver.

Table 63: Narrowband Chipset Events for PRGM Callbacks

Event Code Description Relevant Information

NBCS_EVENT_PRGM_BYTEERR1 PRGM byte error in
timeslice #1

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR2 PRGM byte error in
timeslice #2

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR3 PRGM byte error in
timeslice #3

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR4 PRGM byte error in
timeslice #4

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR5 PRGM byte error in
timeslice #5

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR6 PRGM byte error in
timeslice #6

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR7 PRGM byte error in
timeslice #7

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR8 PRGM byte error in
timeslice #8

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR9 PRGM byte error in
timeslice #9

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR10 PRGM byte error in
timeslice #10

This event may combine
with other PRGM events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 186
Document ID: PMC-2021248, Issue 1

Event Code Description Relevant Information

NBCS_EVENT_PRGM_BYTEERR11 PRGM byte error in
timeslice #11

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_BYTEERR12 PRGM byte error in
timeslice #12

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC1 PRGM synchronization
error in timeslice #1

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC2 PRGM synchronization
error in timeslice #1

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC3 PRGM synchronization
error in timeslice #3

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC4 PRGM synchronization
error in timeslice #4

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC5 PRGM synchronization
error in timeslice #5

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC6 PRGM synchronization
error in timeslice #6

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC7 PRGM synchronization
error in timeslice #7

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC8 PRGM synchronization
error in timeslice #8

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC9 PRGM synchronization
error in timeslice #9

This event may combine
with other PRGM events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 187
Document ID: PMC-2021248, Issue 1

Event Code Description Relevant Information

NBCS_EVENT_PRGM_SYNC10 PRGM synchronization
error in timeslice #10

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC11 PRGM synchronization
error in timeslice #11

This event may combine
with other PRGM events
to form an event bitmask

NBCS_EVENT_PRGM_SYNC12 PRGM synchronization
error in timeslice #12

This event may combine
with other PRGM events
to form an event bitmask

Table 64: Narrowband Chipset Events for STSW Callbacks

Event Code Description Relevant Information

NBCS_EVENT_STSW_SWAP connection page swap event This event may combine
with other STSW events
to form an event bitmask

NBCS_EVENT_STSW_UPDATE connection page update
event

This event may combine
with other STSW events
to form an event bitmask

Table 65: Narrowband Chipset Events for LKC Callbacks

Event Code Description Relevant Information

NBCS_EVENT_LKC_TXFIFO_
ERR

Transmit FIFO error event This event may combine
with other LKC events
to form an event bitmask

NBCS_EVENT_LKC_RXFIFO_
ERR

Receive FIFO error event This event may combine
with other LKC events
to form an event bitmask

NBCS_EVENT_LKC_OCA Out of character alignment
event

This event may combine
with other LKC events
to form an event bitmask

NBCS_EVENT_LKC_OFA Out of frame alignment
event

This event may combine
with other LKC events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 188
Document ID: PMC-2021248, Issue 1

Event Code Description Relevant Information

NBCS_EVENT_LKC_LCV Link code violation event This event may combine
with other LKC events
to form an event bitmask

Table 66: Narrowband Chipset Events for ILC Callbacks

Event Code Description Relevant Information

NBCS_EVENT_ILC_LINKCHG LINK bit in ILC header
changed

This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_USER0CH
G

USER[0] bit in ILC header
changed

This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_FIFO_OV
ERFLOW

Rx FIFO overflow This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_FIFO_TH
RES

Rx FIFO threshold is
reached

This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_FIFO_TI
MEOUT

Rx FIFO timeout This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_PG0CHG PG[0] ILC header bit
changed

This event may combine
with other ILC events to
form an event bitmask

NBCS_EVENT_ILC_PG1CHG PG[1] ILC header bit
changed

This event may combine
with other ILC events to
form an event bitmask

Table 67: Narrowband Chipset Events for INTF Callbacks

Event Code Description Relevant Information

NBCS_EVENT_INTF_WORKIN
G_FCA

False character alignment
detected in working link (in
SBS device)

This event may combine
with other INTF events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 189
Document ID: PMC-2021248, Issue 1

Event Code Description Relevant Information

NBCS_EVENT_INTF_PROTEC
T_FCA

False character alignment
detected in protect link (in
SBS device)

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_CSU1LO
CK

CSU#1 Lock is detected This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_CSU2LO
CK

CSU#2 Lock is detected (in
NSE devices only)

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_REFDLL
_ERR

Reference DLL error
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_SYSDLL
_ERR

System DLL error detected This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_RXBUS_
PARITY_ERR

Receive bus parity error This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_INC_C1
FP

Incoming C1FP detected This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_RX_C1F
P

Receive C1FP detected This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_OUTBUS
1_COLLISION

Outgoing bus#1 collision
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_OUTBUS
2_COLLISION

Outgoing bus#2 collision
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_OUTBUS
3_COLLISION

Outgoing bus#3 collision
detected

This event may combine
with other INTF events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix C: Narrowband Chipset Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 190
Document ID: PMC-2021248, Issue 1

Event Code Description Relevant Information

NBCS_EVENT_INTF_OUTBUS
4_COLLISION

Outgoing bus#4 collision
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_INCBUS
1_PARITY_ERR

Incoming bus#1 parity error
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_INCBUS
2_PARITY_ERR

Incoming bus#2 parity error
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_INCBUS
3_PARITY_ERR

Incoming bus#3 parity error
detected

This event may combine
with other INTF events
to form an event bitmask

NBCS_EVENT_INTF_INCBUS
4_PARITY_ERR

Incoming bus#4 parity error
detected

This event may combine
with other INTF events
to form an event bitmask

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix D: Narrowband Chipset Initialization Profiles

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 191
Document ID: PMC-2021248, Issue 1

APPENDIX D: NARROWBAND CHIPSET INITIALIZATION
PROFILES

The chipset module initialization profiles provide the user with a convenient way of setting up
common setups in PMC device drivers. This appendix covers the CSD initialization in the context
of centralized TeleCombus and SBI336 bus operation. Example MIVs, DIVs and GIVs will be
presented for those system configurations and the code can be found in
example/nbcs_profile.c. These profiles are built into subroutines that can be compiled as-is
and used in the target application code. Additional profiles may be created by the user for other
required applications.

For a detailed description of the module, device, and group initialization structures, please refer to
page 63 where the MIV, DIV, and GIV are defined. Also please refer to section 5.1 for a
description of the profile usage. Initialization profile management are described on page 104.

Centralized TeleCombus Application

All SBS and NSE devices are under the control of a single microprocessor. The OPA library is
also activated. SBS devices are passing TeleCombus traffic. Path termination mode is HPT.

Module Initialization Vector: nbcsInitMivCentralTelecombus

This profile can be used to set the system in centralized TeleCombus mode with a 1-stage time-
space-time fabric:

�� Bus type is TeleCombus

�� switching mode is column

�� Both SBS and NSE device drivers are present

�� standard fabric is assumed

�� standard OPA scheduling is selected

�� all connection map settings are automatically populated to the offline pages of the devices

�� all connection map page switching is controlled by software

�� all offline pages are automatically synchronized with the online connection page

�� all working/protect link selection in SBS devices are controlled by hardware pin

SBS Device Initialization Vector: nbcsInitSbsDivHPT77

This SBS DIV sets the SBS to the following:

�� single 77MHz incoming bus

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix D: Narrowband Chipset Initialization Profiles

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 192
Document ID: PMC-2021248, Issue 1

�� all timeslices are configured for HPT termination mode

�� the multiframe is 4

�� ILC threshold for all ports are 250 microseconds

�� ILC FIFO threshold is 1 data unit

NSE Device Initialization Vector: nbcsNseDivHPT

This NSE DIV sets the NSE to the following:

�� all timeslices are configured for HPT termination mode

�� the ILC FIFO timeout is 250us

�� the ILC FIFO threshold is 1 data unit

Centralized SBI Bus Application

All SBS and NSE devices are under the control of a single microprocessor. The OPA library is
also activated. SBS devices are passing SBI bus traffic. Path termination mode is LPT.

Module Initialization Vector: nbcsInitMivCentralSbiByte

This profile can be used to set the system in centralized SBI bus byte mode with a 1-stage time-
space-time fabric:

�� Bus type is SBI

�� switching mode is byte

�� Both SBS and NSE device drivers are present

�� standard fabric is assumed

�� standard OPA scheduling is selected

�� all connection map settings are automatically populated to the offline pages of the devices

�� all connection map page switching is controlled by software

�� all offline pages are automatically synchronized with the online connection page

�� all working/protect link selection in SBS devices are controlled by hardware pin

SBS Device Initialization Vector: nbcs InitSbsDivLPT19

This SBS DIV sets the SBS to the following:

�� quad 19.44MHz incoming bus

�� all timeslices are configured for LPT termination mode

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix D: Narrowband Chipset Initialization Profiles

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 193
Document ID: PMC-2021248, Issue 1

�� the multiframe is 48

�� ILC threshold for all ports are 250 microseconds

�� ILC FIFO threshold is 1 data unit

NSE Device Initialization Vector: nbcsInitNseDivLPT

�� all 12 timeslices are configured in LPT termination mode

�� ILC threshold for all ports are 250 microseconds

�� ILC FIFO threshold is 1 data unit

Distributed TeleCombus Core Card Application

The system assumes a distributed system model with only NSE device present locally. There is no
local SBS device and the SBS driver is not required. The OPA module is hosted by the core card.
The system assumes TeleCombus mode of operation. Path termination mode is HPT. ILC is
assumed to be used as the primary mean of system page swapping.

Module Initialization Vector: nbcsInitMivDistCoreTelecombus

This profile can be used to set the system in a distributed TeleCombus mode with a 1-stage time-
space-time fabric in a NSE core card:

�� Bus type is TeleCombus

�� switching mode is column

�� Only NSE device driver is present and SBS driver is absent

�� standard fabric is assumed

�� standard OPA scheduling is selected

�� all connection map settings are automatically populated to the offline pages of the devices

�� all connection map page switching is controlled by ILC

�� all offline pages are automatically synchronized with the online connection page

�� all working/protect link selection in SBS devices are controlled by hardware pin

Distributed TeleCombus Line Card Application

The system assumes a distributed system model with SBS devices present locally. There is no
local NSE device and the NSE driver is not required. The OPA module is also disabled in the line
card. The system assumes TeleCombus mode of operation. Path termination mode is HPT. ILC is
assumed to be used as the primary mean of system page swapping.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix D: Narrowband Chipset Initialization Profiles

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 194
Document ID: PMC-2021248, Issue 1

Module Initialization Vector: nbcsInitMivDistLineTelecombus

This profile can be used to set the system in a distributed TeleCombus mode with a 1-stage time-
space-time fabric in a line card:

�� Bus type is TeleCombus

�� switching mode is column

�� Only SBS device driver is present and NSE driver is absent

�� standard fabric is assumed

�� standard OPA scheduling is selected

�� all connection map settings are automatically populated to the offline pages of the devices

�� all connection map page switching is controlled by ILC

�� all offline pages are automatically synchronized with the online connection page

�� all working/protect link selection in SBS devices are controlled by hardware pin

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix F: Narrowband Chipset Driver Synchronization

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 195
Document ID: PMC-2021248, Issue 1

APPENDIX F: NARROWBAND CHIPSET DRIVER
SYNCHRONIZATION

Overview

In a regular system, there should only be one CSD configured to run the OPA which keeps track
of all the connections in the fabric. If a more fault tolerant system is to be designed, the hardware
that runs the CSD/OPA may become a single point of failure. One possible approach to achieve a
fault tolerant system is to maintain two independent copies of the CSD/OPA running in a working
and protect hardware mechanism (Commands may be broadcast to both for concurrent
processing). In the event of a card failure, the system can be switched over to the protect
hardware (if the working hardware fails). The failed hardware can then be replaced without any
service interruption. Once boot up and initialized, the new hardware can then be synchronized
with the currently active hardware. The fault tolerant system is then fully restored.

The CSD/OPA keeps track of all the system-wide connections by maintaining internal states. This
state information is updated whenever there are call connection/disconnection or switchover
requests. A fault tolerant system will not be completely restored unless this state information can
be fully duplicated in the new hardware. Such process is being defined as the CSD
synchronization. The CSD provides API function to retrieve and restore the internal state of the
software. The saved state of the software is sometimes referred to as a checkpoint.

The CSD/OPA includes an example of a log-based with checkpointing recovery scheme. Prior to
restoring the checkpoint of the CSD/OPA, the CSD should first be initialized. The system relies
on an external repository to keep a log of all device and fabric initialization commands to the
CSD (therefore it is called a log-based with checkpointing recovery scheme). During
synchronization, the initialization command sequence is first “played back” to and then the
checkpoint is restored in the new hardware. These information will then be the exact same state
as the protect card, thus achieving synchronization.

The following outlines a typical event sequence before and after a failure recovery (assuming a
failure in working fabric). The protection switchover procedure is described in (c) and the
recovery procedure starts from step (d).

(a) Both working and protect card are brought up with the same device and fabric initialization
command sequence initially. Subsequent call commands (such as setting up or tearing down
tributaries, and protection switchovers) are always broadcast to both cards simultaneously.
Assuming a reliable communication channel, the states of both cards are in synchronization.

(b) The working CSD is normally in control and incremental change in SBS settings are sent to
remote line cards. Any SBS or NSE settings local to the switch card will be updated by the CSD.

(c) When the working fabric fails, a protection switchover occurs and all SBSs send and receive
traffic via the protect LVDS links. The protect fabric becomes the master (and the lone card) in
the system.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix F: Narrowband Chipset Driver Synchronization

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 196
Document ID: PMC-2021248, Issue 1

(d) The working fabric card is replaced. - Restart the replacement working fabric card by playing
back the exact device and fabric initialization command sequence. This step ensures all
parameters are properly written to the device registers and puts the system to a known initialized
state. This essentially establishes the basic fabric mode of operation and allocates memory. User
then initiates the state retrieval operation from the protect fabric card. The state information is
either stored in a file system or some non-volatile memory. (The state retrieval may also be done
periodically. The frequency is to be determined by the system designer.)

(e) The protect card is still in operation and may process new call request while the working card
is restoring the state information. All new call requests subsequent to the checkpoint should also
be queued up (by the user application) and played back to the working card after the state is
restored though the queuing is optional to the system designer. The system will appear to be
temporarily out of service to new call requests during this period of time if no queuing is
implemented. In either case, all existing calls continue to be in service without any disruption.

(f) When the state is restored in the working card and there are no more pending calls, the state of
the working and the protect fabric is in synchronization and user may switchover to the working
card now. The redundant fabric system is fully restored and we are back at (a) again.

The following two functions outline the retrieval and restoration of checkpoint in a system. They
are served solely as an example and the implementation can be found in the example code
directory in the nbcs_app.c file.

Getting Checkpoint Information from the CSD: nbcsGetCheckPoint

This function retrieves the checkpoint information for the CSD, including the underlying OPA
library. The information can then be used to restore (using API nbcsSetCheckPoint) the state
of another CSD, thus achieving synchronization. It should be repeatedly called until no more data
is returned and this condition is indicated by *pbufSz equals zero. The number and size of the
buffer returned may vary and the exact information, including the order of those buffers being
returned, should be presented to the other copy of the CSD unaltered.

Prototype INT4 nbcsGetCheckPoint(void* pbuf, UINT4*
pbufSz)

Inputs pbuf : pointer to the buffer for holding
 checkpoint information
pbufSz : pointer to the buffer size

Outputs pbufSz : actual number of bytes written to
 the buffer pbuf.

Returns Success = NBCS_SUCCESS
Failure = NBCS_FAILURE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_MODULE_STATE

Valid States NBCS_MOD_READY

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix F: Narrowband Chipset Driver Synchronization

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 197
Document ID: PMC-2021248, Issue 1

Side Effects None

Setting Checkpoint Information in the CSD: nbcsSetCheckPoint

This function restores the checkpoint information in the CSD from another copy of the CSD
(running in a different microprocessor space). The checkpoint information should be obtained
from calling API nbcsSetCheckPoint (in another CSD). All the offline page settings for local
devices will also be restored. It is user’s responsibility to promote the offline to online page
subsequently.

Prototype INT4 nbcsSetCheckPoint(void* pbuf, UINT4*
pbufSz)

Inputs pbuf : pointer to the buffer for holding
 checkpoint information
pbufSz : pointer to the buffer size

Outputs pbufSz : actual number of bytes written to
 the buffer pbuf.

Returns Success = NBCS_SUCCESS
Failure = NBCS_FAILURE
 NBCS_ERR_INVALID_MODULE_STATE
 NBCS_ERR_STSW_ACCESS
 NBCS_ERR_INVALID_MODE
 NBCS_ERR_INVALID_ARG
 NBCS_ERR_INVALID_DEVICE_STATE

Valid States NBCS_MOD_READY

Side Effects None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Appendix G: Driver Abstraction Layer (DAL)

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 198
Document ID: PMC-2021248, Issue 1

APPENDIX G: DRIVER ABSTRACTION LAYER (DAL)

This appendix describes the driver abstraction layer (DAL) between the CSD and the underlying
device drivers. Acting as a “shim” layer between the CSD and the underlying device driver(s), the
DAL can be viewed as a translation layer bridging the interface difference between the CSD and
the low level drivers. When a CSD call is made by the upper layer application, the DAL
dispatches the call to the appropriate underlying device driver(s) for the operation. In addition, the
DAL deciphers messages from the device driver(s) to the CSD, e.g., ISR callback messages and
error codes.

The purpose of the DAL is to decouple the CSD from the underlying device drivers. The reason is
two-fold: (1) the CSD can more easily adapt to various system configurations. (2) allows porting
of the CSD to any future device(s) that may provide similar time:space:time switching
capabilities, as the SBS and NSE devices.

In a centralized configuration with SBS and NSE devices, the DAL is implemented to interact
with both the SBS and NSE device drivers. In a distributed configuration where the SBS or NSE
devices may be absent, the DAL can be implemented to exclude any of the calls to a device driver
that is absent. For instance, in a core NSE card without any SBS devices, calls to the SBS driver
can be implemented as “empty” functions that returns immediately upon invocation. No actual
reference to any SBS driver calls is made.

The DAL lends itself to the porting of the CSD to any future devices that may provide similar
time:space:time fabric capabilities. The CSD will be shielded from a change of underlying
devices and changes are local to the DAL only. The CSD functionality can then be leveraged and
reused in systems built with future switching devices.

The DAL is modeled after a generic time switch device driver and a space switch one. It
comprises the space switch DAL and the time switch DAL. Arranged in logical blocks, the
following sections describe the DAL interface.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 199
Document ID: PMC-2021248, Issue 1

DAL DATA STRUCTURES

This section describes the elements of the driver that configure and control its behavior. The
constants, and structures that the DAL uses are listed.

Constants

The following enumerated constants are used in the DAL:

�� eNBCS_BUSTYPE_DAL: NBCS_INPUT_BUS, NBCS_OUTPUT_BUS, NBCS_TX_BUS and
NBCS_RX_BUS: define the input, output, serial LVDS transmit, and serial LVDS receive bus
respectively for a time switch device.

�� eNBCS_SWH_ACCESSMODE_DAL: NBCS_SSWXFER_UNICAST,
NBCS_SSWXFER_MULTICAST, NBCS_SSWXFER_TIMESLOT, NBCS_SSWXFER_MAP,
NBCS_SSWXFER_STRTTHRU, NBCS_SSWXFER_INPORT and NBCS_SSWXFER_OUTPORT:
define all the access modes of both the time and space switch devices.

Data Structures

DAL Module Initialization Vector: MIV_DAL

Table 68: DAL Module Initialization Vector: sNBCS_MIV_DAL

Field Name Field Type Field Description

perrModule INT4* (pointer to) errModule (see
description in the MDB)

maxDevs UINT2 Maximum number of devices
supported during this session

maxInitProfs UINT2 Maximum number of initialization
profiles

DAL Time/Space Switch Configuration: CFG_SWH_DAL

Table 69: DAL Time/Space Switch Configuration: sNBCS_CFG_SWH_DAL

Field Name Field Type Field Description

rc1Dly UINT2 C1 frame pulse delay

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 200
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

swMode.detailed eNBCS_LKC_SWITCHMODE switching mode for the space
switch. This is a union member.

swMode.simplified eNBCS_SWHMODE switching mode for the time
switch. This is a union member.

swapMode eNBCS_CONMAP_CNTL connection map swap mode

autoUpdate UINT1 connection map automatic offline
update from online page

DAL Space Switch Device Initialization Vector: DIV_SSW_DAL

Table 70: DAL Space Switch Device Initialization Vector: sNBCS_DIV_SSW_DAL

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid

pollISR UINT1 Indicates the type of ISR / polling
to do

cbackISRPageSwap NBCS_CBACK_DAL Address of the function to be
called in the ISR when the C1
frame pulse interrupt is received.

cbackIntf NBCS_CBACK_DAL Address for the callback function
for Interface/Clock events

cbackSsw NBCS_CBACK_DAL Address for the callback function
for space switch events

cbackPort NBCS_CBACK_DAL Address for the callback function
for I/O port events

cbackIlc NBCS_CBACK_DAL Address for the callback function
for ILC events

swhCfg sNBCS_CFG_SWH_DAL switch configuration data structure

portCfg
[NBCS_NSE_MAX_LINKS]

sNBCS_CFG_LKC port configuration data structure

ilcCfg
[NBCS_NSE_MAX_LINKS]

sNBCS_CFG_ILC In-band link controller data
structure

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 201
Document ID: PMC-2021248, Issue 1

DAL Time Switch Device Initialization Vector: DIV_TSW_DAL

Table 71: DAL Time Switch Device Initialization Vector: sNBCS_DIV_TSW_DAL

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid

pollISR UINT1 Indicates the type of ISR / polling
to do

cbackIntf NBCS_CBACK_DAL Address for the callback function
for Interface/Clock configuration
events

cbackTsw NBCS_CBACK_DAL Address for the callback function
for time switch events

cbackPgmc NBCS_CBACK_DAL Address for the callback function
for PRGM events

cbackWplc NBCS_CBACK_DAL Address for the callback function
for Working/Protect LVDS link
events

cbackIlcRx NBCS_CBACK_DAL Address for the callback function
for ILC events

pageSwapControlMode eNBCS_CONMAP_CNTL Source of control for the
connection page switching in all
SBSs:

linkControlMode eNBCS_WPLINK_CNTL Source of control for the working
and protection LVDS link in all
SBSs:

intfBusMode sNBCS_CFG_BUSMODE Bus mode configuration structure

telecomBusCfgFlag UINT1 Set to logic High if TeleCombus is
selected

outBusCfgParam sNBCS_CFG_BUSPARAM Outgoing TeleCombus parameters

txBusCfgParam sNBCS_CFG_BUSPARAM LVDS transmit TeleCombus
parameters

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 202
Document ID: PMC-2021248, Issue 1

DAL Space Switch Interface Control Structure: CTL_INTF_SSW_DAL

Table 72: DAL Space Switch Interface Control Structure: sNBCS_CTL_INTF_SSW_DAL

Field Name Field Type Field Description

csu1 sNBCS_CTL_CSU_DAL CSU#1 control structure

csu2 sNBCS_CTL_CSU_DAL CSU#2 control structure

DAL CSU Control Structure: CTL_CSU_DAL

Table 73: DAL CSU Control Structure: sNBCS_CTL_CSU_DAL

Field Name Field Type Field Description

reset UINT1 1 – CSU is reset

lowPowerMode UINT1 0 – normal mode, 1 – low power
mode

DAL TeleCombus Configuration Structure: CFG_INTF_TCB _DAL

Table 74: DAL TeleCombus Configuration Structure: sNBCS_CFG_INTF_TCB _DAL

Field Name Field Type Field Description

j1Config UINT2 Controls whether the C1FP signal is
pulsed high during J1 byte for each of
the 12 STS-1’s.
Bit 0 controls to STS-1 #1 and Bit 11
controls STS-1 #12
0 – No C1FP pulse on J1 byte
1 – C1FP pulse on J1 byte

v1Config UINT2 Controls whether the C1FP signal is
pulsed high during V1 byte for each
of the 12 STS-1’s. Bit 0 controls to
STS-1 #1 and Bit 11 controls STS-1
#12
0 – No C1FP pulse on V1 byte
1 – C1FP pulse on V1 byte

h1PtrValue UINT1 sets the value of the H1 pointer

h2PtrValue UINT1 sets the value of the H2 pointer

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 203
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

altH1PtrValue UINT1 sets alternate value of H1 pointer

altH2PtrValue UINT1 sets alternate value of the H2 pointers

h1h2PtrSel UINT2 selects whether H1, H2 pointer value
or the alternate H1,H2 pointer values
is inserted on each of the 12 STS-1’s.
Bit 0 controls to STS-1 #1 and Bit 11
controls STS-1 #12
0 – H1, H2 pointer values used
1 – Alternate H1, H2 values used

h1h2EnableFlag UINT1 0 - H1, H2 values are not inserted
1 - H1, H2 values are inserted

DAL Interface Bus Configuration Structure: CFG_INTF_BUSPARM_DAL

Table 75: DAL Interface Bus Configuration Structure: sNBCS_CFG_INTF_BUSPARM_DAL

Field Name Field Type Field Description

oddParityFlag UINT1 0 = even parity, 1 = odd parity

includePl UINT1 Controls whether the PL signal is
included in calculating the parity. 0 –
not included, 1 – included. (For
telecom bus only)

includeC1fp UINT1 Controls whether the C1FP signal is
included in calculating the parity. 0 –
not included, 1 – included. (For
telecom bus only)

j1ByteLock UINT1 controls the position of the J1 byte in
telecom bus mode. 0 – J1 byte locked
to offset 0 1 – J1 byte locked to offset
522.

DAL Interface Bus Mode Structure: CFG_BUSMODE_DAL

Table 76: DAL Interface Bus Mode Structure: sNBCS_CFG_BUSMODE_DAL

Field Name Field Type Field Description

busType eNBCS_BUSTYPE System bus type: SBI or TeleCombus

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
DAL Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 204
Document ID: PMC-2021248, Issue 1

Field Name Field Type Field Description

io eNBCS_IO_BUSMODE single bus or quad bus mode

bridge UINT1 Bridge mode: 0 = serial LVDS in SBS
enabled, 1 = serial LVDS disabled
and parallel bus I/O is enabled.

multiFrm eNBCS_MULTIFRM_MODE Multi-frame mode: NBCS_MF_4 = 4
frames in multi-frame, NBCS_MF_48
= 48 frames in multi-frame

phyDevice UINT1 SBI physical/link layer device mode:
0 = link layer device, 1 = physical
layer device

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 205
Document ID: PMC-2021248, Issue 1

SPACE SWITCH DEVICE DRIVER INTERFACE

This section describes the DAL interface for a generic space switch device driver such as a NSE-
20G or NSE-8G device. The module and device management block, Interface/Clock,
Status/Counts and Diagnostics blocks are standard blocks that encapsulate that of a typical PMC
device driver. The LVDS controller, In-band link Controller, and Space Switch configuration
blocks are logical blocks that are specific to a typical space switch device.

Module and Device Management

The module and device management block connects with that of the underlying driver.

Opening the Space Switch Driver Module: dalNbcsSswModuleOpen

Performs module level initialization of the space switch device driver by calling the underlying
module open function provided by the space switch driver. This usually involves allocating all of
the memory required by the driver and initializing the internal structures.

Prototype INT4 dalNbcsSswModuleOpen(sNBCS_MIV_DAL *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs Places the address of errModule into the MIV passed by the
Application.

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Closing the Space Switch Driver Module: dalNbcsSswModuleClose

Performs module level shutdown of the space switch driver. This involves deleting all devices
being controlled by the driver and freeing all the memory allocated by the driver.

Prototype INT4 dalNbcsSswModuleClose(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 206
Document ID: PMC-2021248, Issue 1

Starting the Space Switch Driver Module: dalNbcsSswModuleStart

Starts the module of the underlying space switch driver. Upon successful return from this
function, the driver is ready to add devices.

Prototype INT4 dalNbcsSswModuleStart(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Stopping the Space Switch Driver Module: dalNbcsSswModuleStop

Stops the module in the underlying time switch driver.

Prototype INT4 dalNbcsSswModuleStop(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Adding a Device: dalNbcsSswAdd

Invokes the native device add function supplied by the space switch driver. The error device
pointer is returned along with the handle returned by the space switch driver.

Prototype INT4 dalNbcsSswAdd(void* usrCtxt, void
baseAddr, void** pHndl, INT4 **pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pHndl : (pointer to) device handle
pperrDevice : (pointer to) an area of memory

Outputs pperrDevice : (pointer to) errDevice (inside the
 DDB of the space switch driver)
pHndl : (pointer to) device handle

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 207
Document ID: PMC-2021248, Issue 1

Deleting a Device: dalNbcsSswDelete

This function is used to remove the specified device from the list of devices being controlled by
the space switch driver. Deleting a device involves clearing the DDB for that device and releasing
its associated device handle.

Prototype INT4 dalNbcsSswDelete(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Initializing a Device: dalNbcsSswInit

Invokes the device initialization function provided by the space switch driver using the DIV or
the profile number. If the DIV is passed as a NULL the profile number is used. A profile number
of zero indicates that all the register bits are to be left in their default state. Note that the profile
number is ignored UNLESS the passed DIV is NULL.

Prototype INT4 dalNbcsSswInit(void* deviceInfo,
sNBCS_DIV_SSW_DAL *pdiv, UINT2 profileNum)

Inputs deviceInfo : device information handle
pdiv : (pointer to) Device Initialization
 Vector
profileNum : profile number (only used if pdiv is
 NULL)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Updating the Configuration of a Device: dalNbcsSswUpdate

Updates the configuration of the device according to the DIV passed by the Application. The only
difference between dalNbcsSswUpdate and dalNbcsSswInit is that no soft reset will be
applied to the device. In addition, a profile number of zero is not allowed.

Prototype INT4 dalNbcsSswUpdate(void* deviceInfo,
sNBCS_DIV_SSW_DAL *pdiv, UINT2 profileNum)

Inputs deviceInfo : device information handle
pdiv : (pointer to) Device Initialization
 Vector
profileNum : profile number (only used if pdiv is

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 208
Document ID: PMC-2021248, Issue 1

 NULL)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Resetting a Device: dalNbcsSswReset

Applies a software reset to the space switch device. This function is typically called before re-
initializing the device (via dalNbcsSswInit).

Prototype INT4 dalNbcsSswReset(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Activating a Device: dalNbcsSswActivate

Restores the state of a device after a de-activate.

Prototype INT4 dalNbcsSswActivate(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

De-Activating a Device: dalNbcsSswDeActivate

De-activates the device from operation.

Prototype INT4 dalNbcsSswDeActivate(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 209
Document ID: PMC-2021248, Issue 1

Reading from Device Registers: dalNbcsSswRead

This function can be used to read a register of a specific space switch device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then reads the contents of this address location

Prototype INT4 dalNbcsSswRead(void* deviceInfo, UINT2
regNum, UINT4* pval)

Inputs deviceInfo : device information handle
regNum : register number
pval : pointer to the value read

Outputs pval : pointer to the value read

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Writing to Device Registers: dalNbcsSswWrite

This function can be used to write to a register of a specific space switch device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then writes the data to the specified address location.

Prototype INT4 dalNbcsSswWrite(void* deviceInfo, UINT2
regNum, UINT4 value)

Inputs deviceInfo : device information handle
regNum : register number
value : value to be written

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Reading from a block of Device Registers: dalNbcsSswReadBlock

This function can be used to read a register block of a specific space switch device by providing
the starting register number and the size to read. This function derives the actual start address
location based on the device handle and starting register number inputs. It then reads the contents
of this data block.

Prototype INT4 dalNbcsSswReadBlock(void* deviceInfo,
UINT2 startRegNum, UINT2 size, UINT4 *pblock)

Inputs deviceInfo : device information handle
startRegNum : starting register number
size : size of the block to read

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 210
Document ID: PMC-2021248, Issue 1

pblock : (pointer to) the block to read

Outputs pblock : (pointer to) the block read

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Writing to a Block of Device Registers: dalNbcsSswWriteBlock

This function can be used to write to a register block of a specific space switch device by
providing the starting register number and the block size. This function derives the actual starting
address location based on the device handle and starting register number inputs. It then writes the
contents of this data block to the starting address location.

Prototype INT4 dalNbcsSswWriteBlock(void* deviceInfo,
UINT2 startRegNum, UINT2 size, UINT4 *pblock,
UINT4 *pmask)

Inputs deviceInfo : device information handle
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Adding an Initialization Profile: dalNbcsSswAddInitProfile

Creates an initialization profile that is stored by the driver. A device can be initialized by passing
the initialization profile number to dalNbcsSswInit.

Prototype INT4 dalNbcsSswAddInitProfile(sNBCS_DIV_SSW_DAL
*pProfile, UINT2 *pProfileNum)

Inputs pProfile : (pointer to) initialization profile being
 added
pProfileNum : (pointer to) profile number to be
 assigned by the driver

Outputs pProfileNum : profile number assigned by the driver

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 211
Document ID: PMC-2021248, Issue 1

Getting an Initialization Profile: dalNbcsSswGetInitProfile

Gets the content of an initialization profile given its profile number.

Prototype INT4 dalNbcsSswGetInitProfile(UINT2 profileNum,
sNBCS_DIV_SSW_DAL *pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Deleting an Initialization Profile: dalNbcsSswDeleteInitProfile

Deletes an initialization profile given its profile number.

Prototype INT4 dalNbcsSswDeleteInitProfile(UINT2
profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Interface/Clock Configuration

Getting/Setting Control: dalNbcsSswCntlIntf

Get/Set the control parameters for the interface/clock control block. This function can be used to
reset one or both CSUs. This function can also be used to enable or disable one or both of the
CSUs.

Prototype INT4 dalNbcsSswCntlIntf(void* deviceInfo, UINT1
accMode, sNBCS_CTL_INTF_SSW_DAL *pcntl)

Inputs deviceInfo : device information handle
accMode : access control: 0 = get, 1 = set
pcntl : (pointer to) the control structure

Outputs pcntl : the control structure when accMode
 is 0

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 212
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Connection Switch Configuration

Configuring the Space Switch: dalNbcsSswCfgSwhParm

Get/Set configuration of the space switch. Parameters to configure include C1 delay, switching
mode, swap mode, and page copy auto update.

Prototype INT4 dalNbcsSswCfgSwhParm(void* deviceInfo,
UINT1 accMode, sNBCS_CFG_SWH_DAL *pconfig)

Inputs deviceInfo : device information handle
accMode : access control: 0 = get, 1 = set
pconfig : (pointer to) configuration structure

Outputs pconfig : configuration structure when
 accMode is 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting Up Connections: dalNbcsSswMapSlot

Establish connections in the space switch. This mapping function can operate in seven different
modes, namely unicast, multicast, timeslot, inport, outport, map, and straight through.

In unicast mode, connection between the first element pointed to by pinport is mapped to the
first element indicated by poutport for the time instance indicated by the first element in
pslot. Such operation repeats numSlot times for all the pairs. It is designed to set up multiple
unicast connections in the switch.

In multicast mode, the first data pointed to by pinport is mapped to all the ports (total indicated
by numSlot) indicated by poutport for the time instance indicated by the first element pointed
to by pslot. It is geared towards setting up one-to-many connections in the switch.

In timeslot mode, this operation will take place for the timeslot indicated by the first element
pointed to by pslot across all ports. Argument pinport is expected to be a pointer to an array
of 32 inports. The first inport in the array will be mapped to outport #1, the second inport in the
array mapped to outport #2, so on and so forth, until all 32 outports are mapped. poutport and
numSlot are ignored in this mode. At first sight, this mode can be achieved using unicast mode
but timeslot mode is designed to take advantage of the efficient access in the hardware and is the
preferred mode over unicast mode if all accesses are restricted to one time instance across all
ports.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 213
Document ID: PMC-2021248, Issue 1

Inport mode allows unicast connections to be established for the port indicated by the first
element pointed to by pinport across multiple timeslots. This mode (and outport mode) are
designed for application connection maps which are organized per-port (rather than per-timeslot
as in the device). In this mode, argument poutport is expected to be a pointer to an array of
outports. This mode can be used to establish connections on all timeslots or on a user specified set
of timeslots. To set up connections on all timeslots, pslot should be set to NULL. (In this case,
the number of elements expected in the poutport array is either 1080 (in TeleCombus/SBI
column modes) or 9720 (in SBI DS0/CAS modes). The inport will be mapped to the first element
in poutport in timeslot #0, to the second element in poutport for timeslot #1, etc. numSlot
will be ignored in this mode.) To set up connections on a user specified set of timeslots, set
numSlot to the number of timeslots, and pass the timeslot values in an array pointed to by the
pslot parameter. The inport will be mapped to the first element in poutport in the timeslot
indicated by the first element in pslot, to the second element in poutport for the timeslot
indicated by the second element in pslot, etc.

Outport mode is similar to inport mode. In this case, unicast connections can be established for
an outport across multiple timeslots. pinport is expected to be a pointer to an array of inports
(one element for each timeslot). The outport is indicated by the first element pointed to by
poutport. The values of pslot and numSlot are to be set as described in the preceding
paragraph.

Map mode is to update the entire connection map. pinport is expected to have 1080n or 9720n
elements in TeleCombus/SBI column mode and SBI DS0/CAS modes, respectively, where n the
number of ports in the device. The order in the array (pointed to by pinport) should be as
follows: inport0[0]…inport0[N-1] inport1[0]…inport1[N-1]…inportM[0]…inportM[N-1] where
M = frame size - 1 and is 1079 in TeleCombus/SBI column or 9719 in SBI DS0/CAS mode and N
= total number of ports which equals to 32. pslot, poutport and numSlot are all ignored in
this mode.

Straight through mode provides a one-to-one direct mapping from input to output ports for each
timeslot. In this mode, input port n is mapped to output port n for every port and timeslot.
pslot, poutport, pinport, and numSlot are all ignored in this mode.

Whenever applicable, the range of timeslots is expected to be from 0-1079 and 0-9719 in the case
of TeleCombus/SBI column mode and SBI DS0/CAS mode respectively.

Prototype INT4 dalNbcsSswMapSlot(void* deviceInfo,
eNBCS_SWH_ACCESSMODE_DAL mode, UINT2 *pslot,
UINT1 *poutport, UINT1 *pinport, UINT4 numSlot)

Inputs deviceInfo : device information handle
mode : access mode
pslot : pointer to (array of) timeslot(s)
poutport : pointer to (array of) out port(s)
pinport : pointer to (array of) in port(s)
numSlot : number of elements

Outputs None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 214
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Source Connections: dalNbcsSswGetSrcSlot

This function returns the inport(s) which map to the given outport(s).

In unicast or multicast mode, the inport mapped to the given outport in time instance slot will
be returned in buffer pointed to by pinport.

In timeslot mode, all 32 inports, for the given timeslot slot, will be returned to a user-supplied
buffer pointed to by pinport, large enough to hold all 32 ports. outport is ignored in this
mode.

In map mode, the entire connection map is returned to the buffer supplied by the user via
pinport. The order in the array is as follows: inport0[0]…inport0[N-1] inport1[0]…inport1[N-
1]…inportM[0]…inportM[N-1] where M = frame size - 1 and is 1079 in TeleCombus/SBI
column or 9719 in SBI DS0/CAS mode and N = total number of ports which equals to 32.
outport and slot are ignored in this mode.

Inport, outport, and straight-through modes are invalid for this function.

Prototype INT4 dalNbcsSswGetSrcSlot(sNBCS_HNDL
deviceHandle, eNBCS_SWH_ACCESSMODE mode, UINT2
slot, UINT1 outport, UINT1 *pinport)

Inputs deviceHandle : device handle
mode : access mode
slot : timeslot (0-1079 in TeleCombus/SBI
 column modes or 0-9719 in SBI
 DS0/CAS modes)
outport : outport number, ignored in timeslot
 mode
pinport : (pointer to) inport(s)

Outputs pinport : (pointer to) inport(s)

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Active Page: dalNbcsSswGetActivePage

Get the active page in the space switch.

Prototype INT4 dalNbcsSswGetActivePage(void* deviceInfo,
UINT1* pPage)

Inputs deviceInfo : device information handle
P (i t t) th ti b

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 215
Document ID: PMC-2021248, Issue 1

pPage : (pointer to) the active page number

Outputs pPage : the active page number

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting Active Page: dalNbcsSswSetActivePage

Set the active page in the space switch.

Prototype INT4 dalNbcsSswSetActivePage(void* deviceInfo,
UINT1 pageNum)

Inputs deviceInfo : device information handle
pageNum : the active page number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Updating Inactive Page: dalNbcsSswUpdateInactivePage

Copy the connection settings from active to inactive page. This function is designed for manual
copy operation when automatic page copy is not activated.

Prototype INT4 dalNbcsSswUpdateInactivePage(void*
deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

LVDS Link Controller

Inserting line code violation: dalNbcsSswInsertLkcLcv

This function enables or disables the insertion of line code violations in the LVDS links

Prototype INT4 dalNbcsSswInsertLkcLcv(void* deviceInfo,
UINT1 port, UINT1 enable)

Inputs deviceInfo : device information handle
t th t b 0 31

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 216
Document ID: PMC-2021248, Issue 1

port :the port number ranges 0-31
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Centering transmit FIFO: dalNbcsSswCenterLkcFifo

This function is used to center the transmit FIFO in the LVDS links.

Prototype INT4 dalNbcsSswCenterLkcFifo(void* deviceInfo,
UINT1 port)

Inputs deviceInfo : device information handle
port : the port number ranges from 0-31.

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Forcing out-of-character alignment: dalNbcsSswForceLkcOca

This function is used to force out-of-character alignment in the LVDS links.

Prototype INT4 dalNbcsSswForceLkcOca(void* deviceInfo,
UINT1 port)

Inputs deviceInfo : device information handle
port : the port number ranges from 0 –31

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Forcing out-of-frame alignment: dalNbcsSswForceLkcOfa

This function is used to force out-of-frame alignment in the LVDS links.

Prototype INT4 dalNbcsSswForceLkcOfa(void* deviceInfo,
UINT1 port)

Inputs deviceInfo : device information handle
port : the port number ranges from 0-31

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 217
Document ID: PMC-2021248, Issue 1

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling the LVDS Link: dalNbcsSswCntlLkc

This function enables/disables the specified link.

Prototype INT4 dalNbcsSswCntlLkc(void* deviceInfo, UINT1
dir, UINT1 port, UINT1 enable)

Inputs deviceInfo : device information handle
dir : 0 = transmit 1 = receive
port : the port number ranges from 0-31
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Accessing Link Operation Mode: dalNbcsSswCntlLkcOpMode

This function allows the user to get or set the current operating mode of the specified link.

A link is by default in standby (low-power) mode. The user can reset the port (which will be in
normal mode again after the reset) or put it in a standby (low power) mode. Resetting or putting
the port in normal mode will bring the port out of standby mode.

Prototype INT4 dalNbcsSswCntlLkcOpMode(void* deviceInfo,
UINT1 port, UINT1 mode)

Inputs deviceInfo : device information handle
port : port number (from 0-31 for NSE-20G
 and 0-11 for NSE-8G)
mode : operating mode: 0 = standby, 1 =
 normal, 2 = reset

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring LVDS link parameters: dalNbcsSswCfgLkc

This function allows user to configure the parameters for a specified link. Parameters are: J0 byte
insertion, and path termination mode.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 218
Document ID: PMC-2021248, Issue 1

Prototype INT4 dalNbcsSswCfgLkc(void* deviceInfo, UINT1
port, UINT1 accMode, sNBCS_CFG_LKC *pconfig)

Inputs deviceInfo : device information handle
port : link number ranges from 0-31
mode : 0 = get ,1 = set
pconfig : pointer to the configuration structure

Outputs pconfig : pointer to the configuration structure if
 accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Inserting Test Pattern in LVDS link: dalNbcsSswInsertLkcTp

This function enables/disables the insertion of test patterns into the LVDS links.

Prototype INT4 dalNbcsSswInsertLkcTp(void* deviceInfo,
UINT1 port, UINT2 tp, UINT1 enable)

Inputs deviceInfo : device information handle
port : port number ranges from 0-31.
tp : test pattern tp[0..9], a 10-bit number
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

In-band Link Controller

The in-band link controller is provided to facilitate inter-device communication. It is particularly
useful to centralize control when the space switch is located in fabric cards and the time switches
are located in multiple line cards.

Configuring the In-band Link Controller: dalNbcsSswCfgIlc

Set/Get ILC configuration parameters which include Rx FIFO timeout, and Rx FIFO interrupt
threshold.

Prototype INT4 dalNbcsSswCfgIlc(void* deviceInfo, UINT1
inport, UINT1 accMode, sNBCS_CFG_ILC *pconfig)

Inputs deviceInfo : device information handle
i t t b (f 0 31)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 219
Document ID: PMC-2021248, Issue 1

inport : port number (from 0-31 max)
accMode : access control: 0 = get, 1 = set
pconfig : (pointer to) configuration structure

Outputs pconfig : configuration structure when
 accMode is 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling Tx/Rx ILC: dalNbcsSswEnableIlc

When disabled, the Tx/Rx ILC will be in “bypass” mode. No messages will be written or
inserted.

Prototype INT4 nbcsIlcTxEnable(void* deviceInfo, UINT1
dir, UINT1 port, UINT1 enable)

Inputs deviceInfo : device information handle
dir : 0 = Tx, 1 = Rx
port : port number (from 0-31 max)
enable : enable flag: 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Sending Messages in ILC: dalNbcsSswTxIlcMsg

This function is used to initiate the transmission of one or more in-band messages on one or more
ports. There is no limitation on the number of messages to send in one request. A single call to
this function can initiate transmission on multiple ports (the exact number is indicated by
numPorts). ptxBufDesc points to an array of descriptors, one for each port on which messages
are to be transmitted. This structure indicates the port number on which to transmit (outport),
the size of this buffer (bufSz), and has a pointer to the buffer to be transmitted (pbuf). On
return, the bufSz field contains the number of bytes transmitted on that port.

The length of each message is fixed at 32 bytes. The parameter pyldSz controls the number of
user bytes that will be written in each message. The maximum payload size a message can carry
is 32 bytes. If pyldSz is less than 32 bytes, the hardware will automatically pad the unfilled
bytes in the message to 32. (Note that these remaining (32 – pyldSz) bytes are uninitialized.)

Prototype INT4 dalNbcsSswTxIlcMsg(void* deviceInfo,
sNBCS_TXBUF_DESC_ILC* ptxBufDesc, UINT1 pyldSz,
UINT1 numPorts)

Inputs deviceInfo : device information handle
t B fD (i t t) b ff d i t ()

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 220
Document ID: PMC-2021248, Issue 1

ptxBufDesc : (pointer to) buffer descriptor(s)
pyldSz : payload size (from 1 to 32 bytes)
numPorts : number of ports (from 1-32 max)

Outputs ptxBufDesc : buffer descriptor(s) that include the
 number of bytes sent for each port.

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Querying Free Space in ILC Tx FIFO: dalNbcsSswGetIlcTxFifoLvl

This function is to check the current capacity of the Tx FIFO. This allows the user to find out
how many more messages can be written to FIFO for transmission.

Prototype INT4 dalNbcsSswGetIlcTxFifoLvl(void*
deviceInfo, UINT1 outport, UINT1* pnumMsg)

Inputs deviceInfo : device information handle
outport : port number (from 0-31 max)
pnumMsg : (pointer to) free FIFO capacity

Outputs pnumMsg : free FIFO capacity

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting Tx Message Header: dalNbcsSswSetIlcTxHdr

Sets LINK, AUX and optionally the PAGE and/or USER bits in the transmit header for a given
port. If the PAGE and/or USER bits have to be changed in a coordinated fashion across all ports,
set the arguments pageUpdate and/or userUpdate to false and use
dalNbcsSswSetIlcTxHdrPage and/or dalNbcsSetIlcTxHdrUser instead.

Prototype INT4 dalNbcsSswSetIlcTxHdr(void* deviceInfo,
UINT1 outport, sNBCS_HEADER_ILC *phead, UINT1
pageUpdate, UINT1 userUpdate)

Inputs deviceInfo : device information handle
outport : port number (from 0-31 max)
phead : pointer to header structure
pageUpdate : flag: 0 = don’t include page bits, 1 =
 include
userUpdate : flag: 0 = don’t include user bits, 1 =
 include

Outputs None

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 221
Document ID: PMC-2021248, Issue 1

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting PAGE bits in Tx Message Header: dalNbcsSswSetIlcTxHdrPage

Sets PAGE[1:0] bits in header for all links simultaneously. This is used to coordinate the changes
across all links. Argument pPage is a pointer to a buffer containing the value of all page bits to be
sent out. The buffer is expected to contain 32 bytes. Each byte contains the value (0-3) of the
PAGE bits to be transmitted in the ILC header on the corresponding port. c1fpSync is a flag that
indicates whether the bits should be updated immediately, or synchronized with the arrival of the
next c1 frame pulse interrupt.

Prototype INT4 dalNbcsSswSetIlcTxHdrPage(void*
deviceInfo, UINT1* pPage, UINT1 c1fpSync)

Inputs deviceInfo : device information handle
pPage : (pointer to) PAGE buffer
c1fpSync : flag: indicates when update takes
 place. (0 = update page bits now,
 1 = update page bits when next c1fp
 interrupt occurs.)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting USER bits in Tx Message Header: dalNbcsSswSetIlcTxHdrUser

Sets USER[2:0] bits in header for all links simultaneously. This is used to coordinate the changes
across all links. Argument puser is a pointer to a buffer containing the value of all page bits to be
sent out. The buffer is expected to contain 32 bytes. Each byte contains the value (0-7) of the
USER bits to be transmitted in the ILC header on the corresponding port. (I.e. the first byte in the
buffer contains the value of the user bits for port 0, the second byte contains the value for port 1,
etc.)

Prototype INT4 dalNbcsSswSetIlcTxHdrUser(void*
deviceInfo, UINT1* puser)

Inputs deviceInfo : device information handle
puser : (pointer to) USER buffer

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 222
Document ID: PMC-2021248, Issue 1

Getting Tx Message Header: dalNbcsSswGetIlcTxHdr

Retrieves all header bits to be transmitted for a given port.

Prototype INT4 dalNbcsSswGetIlcTxHdr(void* deviceInfo,
UINT1 outport, sNBCS_HEADER_ILC *phead)

Inputs deviceInfo : device information handle
outport : port number (from 0-31 max)
phead : (pointer to) header structure

Outputs phead : header structure

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Number of Messages in Rx FIFO: dalNbcsSswGetIlcRxNumMsg

Query the total number of messages currently stored in the Rx FIFO.

Prototype INT4 dalNbcsSswGetIlcRxNumMsg(void* deviceInfo,
UINT1 inport, UINT1 *pnumMsg)

Inputs deviceInfo : device information handle
inport : port number (from 0-31 max)
pnumMsg : (pointer to) the buffer that holds the
 number of messages stored in FIFO

Outputs pnumMsg : the number of messages in the FIFO

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Messages in Rx FIFO: dalNbcsSswGetIlcRxMsg

This function retrieves one or more ILC messages from the Rx FIFO of one or more ports (the
exact number is indicated by numPorts). (A maximum of 8 messages per port can be retrieved
each time this function is called.)

prxBufDesc points to an array of numPorts buffer descriptors, one for each port from which a
message is to be retrieved. Each buffer descriptor indicates the port number from which to read
(inport), the maximum number of messages to read (numMsgs), and has a pointer to numMsgs
message descriptors (pmsgDesc). (If numMsgs is set to 0, this port will be ignored.)

Each message descriptor contains the location in which the message is to be stored (pmsg), and
the status of the CRC for that message (crc) (returned by the driver).

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 223
Document ID: PMC-2021248, Issue 1

This function will read up to numMsgs messages from each port for which a buffer descriptor
exists. The number of messages actually received is returned to the user in the numMsgs field of
the buffer descriptor. (Setting numMsgs to 8 will always read all available messages in the Rx
FIFO.)

The parameter pyldSz controls the number of bytes to be read in one message. The maximum
payload size in a message is 32 bytes. This function will only attempt to read the number of bytes
specified in pyldSz. This gives the user the ability to avoid reading extra bytes in a message if
the payload is known to be fewer than 32 bytes.

Prototype INT4 dalNbcsSswGetIlcRxMsg(void* deviceInfo,
sNBCS_RXBUF_DESC_ILC* prxBufDesc, UINT1 pyldSz,
UINT1 numPorts)

Inputs deviceInfo : device information handle
prxBufDesc : (pointer to) buffer descriptors (this
 must point to numPorts descriptors)
pyldSz : payload size (from 1 to 32 bytes)
numPorts : number of ports (from 1-32)

Outputs prxBufDesc : buffer descriptor structures which
 include the received messages and
 their corresponding CRC status

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Rx Header Bytes: nbcsIlcGetRxHdr

Gets the header bytes received for a given port.

Prototype INT4 dalNbcsGetIlcRxHdr(void* deviceInfo, UINT1
inport, sNBCS_HEADER_ILC *phead)

Inputs deviceInfo : device information handle
inport : port number (from 0-31 max)
phead : (pointer to) header structure

Outputs phead : header structure

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 224
Document ID: PMC-2021248, Issue 1

Status and Counts

Reading the Device Counters: dalNbcsSswGetCounts

This function retrieves all the device counts. This routine should be called by the application
code, in the context of a task. It is the user’s responsibility to ensure that this function is called
often enough to prevent the device counts from saturating or rolling over.

Prototype INT4 dalNbcsSswGetCounts(void* deviceInfo,
sNBCS_CNTR *pCntr)

Inputs deviceInfo : device information handle
pCntr : allocated memory for counts

Outputs pCntr : current device counts

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting the Current Status: dalNbcsSswGetStatus

This function retrieves a snapshot of the current status from the device registers. This involves
retrieving current alarms, status, and clock activity. It is the user’s responsibility to ensure the
buffer indicated by pStatus is large enough to hold all the returned status of the members in the
group.

Prototype INT4 dalNbcsSswGetStatus(void* deviceInfo,
sNBCS_STATUS *pStatus)

Inputs deviceInfo : device information handle
pStatus : pointer to allocated memory

Outputs pStatus : current status

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Interrupt Service Functions

Configuring ISR Processing: dalNbcsSswCfgISRMode

This function allows the user to configure how the interrupts are handled: either in polling
(NBCS_POLL_MODE) or interrupt driven (NBCS_ISR_MODE) modes. If polling is selected,
the user is responsible for calling periodically dalNbcsSswPoll to collect exception data from
the device.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 225
Document ID: PMC-2021248, Issue 1

Prototype INT4 dalNbcsSswCfgISRMode (void* deviceInfo,
eNBCS_ISR_MODE mode)

Inputs deviceInfo : device information handle
mode : mode of operation

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting the Interrupt Enable Mask: dalNbcsSswGetISRMask

Returns the contents of the interrupt mask from the space switch device.

Prototype INT4 dalNbcsSswGetISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Outputs pmask : updated mask structure

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting the Interrupt Enable Mask: dalNbcsSswSetISRMask

Sets the contents of the interrupt mask of the space switch device. A field set in the passed mask
will set the corresponding device interrupt enable. For those zero values in the passed mask, the
corresponding interrupt enables are left unaltered.

Prototype INT4 dalNbcsSswSetISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Clearing the Interrupt Enable Mask: dalNbcsSswClearISRMask

Clears the content of the interrupt mask of the space switch device. A field set in the passed mask
will clear the corresponding device interrupt enable. For those zero values in the passed mask, the
corresponding interrupt enable are left untouched.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 226
Document ID: PMC-2021248, Issue 1

Prototype INT4 dalNbcsSswClearISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Polling the Interrupt Status Registers: dalNbcsSswPoll

Commands the driver to poll the interrupt registers in the device. The call will fail unless the
device was initialized (via dalNbcsSswInit) or configured (via dalNbcsSswCfgISRMode)
into polling mode.

Prototype INT4 dalNbcsSswPoll(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsSswEnaIsrC1fp

Enables or disables the C1 frame pulse interrupt in the space switch.

Prototype INT4 dalNbcsSswEnaIsrC1fp(void* deviceInfo,
UINT1 ena)

Inputs deviceInfo : device information handle
ena : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Space Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 227
Document ID: PMC-2021248, Issue 1

Diagnostics

Testing Register Accesses: dalNbcsSswDiagTestReg

Verifies the hardware access to the device registers by writing and reading back values. The
following types of register tests can be performed --- single value write/read and walking ones.
In addition, each of these tests can be run on the full range of registers.

The write/read test writes the specified value to the specified register and verifies that the same
value is read back. The walking ones test performs a series of writes to the specified register.

Prototype INT4 dalNbcsSswDiagTestReg(void* deviceInfo,
sNBCS_DIAG_TEST_REG *ptestReg)

Inputs deviceInfo : device information handle
ptestReg : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Testing RAM Accesses: dalNbcsSswDiagTestRam

Verifies the hardware access to the device internal RAM by writing and reading back values. The
following types of RAM tests can be performed: single write/read, walking ones, migrating ones,
and aliasing. Note that both connection maps are tested for all types of tests listed above. The
first three types can be performed on either a user-specified range or the entire RAM. Aliasing is
always performed on the entire RAM.

Prototype INT4 dalNbcsSswDiagTestRam(void* deviceInfo,
sNBCS_DIAG_TEST_RAM *ptestRam)

Inputs deviceInfo : device information handle
ptestRam : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 228
Document ID: PMC-2021248, Issue 1

TIME SWITCH DEVICE DRIVER INTERFACE

This section describes the DAL interface for a generic time switch device driver such as a SBS or
a SBSLITE device. The module and device management block, Interface/Clock, Status/Counts
and Diagnostics blocks are standard blocks that encapsulate that of a typical PMC device driver.
The LVDS controller, In-band link Controller, and the Switch configuration blocks are logical
blocks that are specific to a typical time switch device.

Module and Device Management

The module and device management block connects with that of the underlying driver.

Opening the Space Switch Driver Module: dalNbcsTswModuleOpen

Performs module level initialization of the time switch device driver by calling the underlying
module open function provided by the time switch driver. This usually involves allocating all of
the memory required by the driver and initializing the internal structures.

Prototype INT4 dalNbcsTswModuleOpen(sNBCS_MIV_DAL *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs Places the address of errModule into the MIV passed by the
Application.

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Closing the Space Switch Driver Module: dalNbcsTswModuleClose

Performs module level shutdown of the time switch driver. This involves deleting all devices
being controlled by the driver and freeing all the memory allocated by the driver.

Prototype INT4 dalNbcsTswModuleClose(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 229
Document ID: PMC-2021248, Issue 1

Starting the Space Switch Driver Module: dalNbcsTswModuleStart

Starts the module in the underlying time switch driver. Upon successful return from this function,
the driver is ready to add devices.

Prototype INT4 dalNbcsTswModuleStart(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Stopping the Space Switch Driver Module: dalNbcsTswModuleStop

Stops the module in the underlying time switch driver.

Prototype INT4 dalNbcsTswModuleStop(void)

Inputs None

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Adding a Device: dalNbcsTswAdd

Invokes the native device add function supplied by the time switch driver. The error device
pointer is returned along with the handle returned by the time switch driver.

Prototype INT4 dalNbcsTswAdd(void* usrCtxt, void
baseAddr, void** pHndl, INT4 **pperrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pHndl : (pointer to) device handle
pperrDevice : (pointer to) an area of memory

Outputs pperrDevice : (pointer to) errDevice (inside the
 DDB of the time switch driver)
pHndl : (pointer to) device handle

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 230
Document ID: PMC-2021248, Issue 1

Deleting a Device: dalNbcsTswDelete

This function is used to remove the specified device from the list of devices being controlled by
the time switch driver. Deleting a device involves clearing the DDB for that device and releasing
its associated device handle.

Prototype INT4 dalNbcsTswDelete(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Initializing a Device: dalNbcsTswInit

Invokes the device initialization function provided by the time switch driver using the DIV or the
profile number. If the DIV is passed as a NULL the profile number is used. A profile number of
zero indicates that all the register bits are to be left in their default state. Note that the profile
number is ignored UNLESS the passed DIV is NULL.

Prototype INT4 dalNbcsTswInit(void* deviceInfo,
sNBCS_DIV_TSW_DAL *pdiv, UINT2 profileNum)

Inputs deviceInfo : device information handle
pdiv : (pointer to) Device Initialization
 Vector
profileNum : profile number (only used if pdiv is
 NULL)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Updating the Configuration of a Device: dalNbcsTswUpdate

Updates the configuration of the device according to the DIV passed by the Application. The only
difference between dalNbcsTswUpdate and dalNbcsTswInit is that no soft reset will be
applied to the device. In addition, a profile number of zero is not allowed.

Prototype INT4 dalNbcsTswUpdate(void* deviceInfo,
sNBCS_DIV_TSW_DAL *pdiv, UINT2 profileNum)

Inputs deviceInfo : device information handle
pdiv : (pointer to) Device Initialization
 Vector
profileNum : profile number (only used if pdiv is

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 231
Document ID: PMC-2021248, Issue 1

 NULL)

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Resetting a Device: dalNbcsTswReset

Applies a software reset to the time switch device. This function is typically called before re-
initializing the device (via dalNbcsTswInit).

Prototype INT4 dalNbcsTswReset(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Activating a Device: dalNbcsTswActivate

Restores the state of a device after a de-activate.

Prototype INT4 dalNbcsTswActivate(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

De-Activating a Device: dalNbcsTswDeActivate

De-activates the device from operation.

Prototype INT4 dalNbcsTswDeActivate(void* deviceInfo)

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 232
Document ID: PMC-2021248, Issue 1

Reading from Device Registers: dalNbcsTswRead

This function can be used to read a register of a specific time switch device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then reads the contents of this address location

Prototype INT4 dalNbcsTswRead(void* deviceInfo, UINT2
regNum, UINT4* pval)

Inputs deviceInfo : device information handle
regNum : register number
pval : pointer to the value read

Outputs pval : pointer to the value read

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Writing to Device Registers: dalNbcsTswWrite

This function can be used to write to a register of a specific time switch device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then writes the data to the specified address location.

Prototype INT4 dalNbcsTswWrite(void* deviceInfo, UINT2
regNum, UINT4 value)

Inputs deviceInfo : device information handle
regNum : register number
value : value to be written

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Reading from a block of Device Registers: dalNbcsTswReadBlock

This function can be used to read a register block of a specific time switch device by providing
the starting register number and the size to read. This function derives the actual start address
location based on the device handle and starting register number inputs. It then reads the contents
of this data block.

Prototype INT4 dalNbcsTswReadBlock(void* deviceInfo,
UINT2 startRegNum, UINT2 size, UINT4 *pblock)

Inputs deviceInfo : device information handle
startRegNum : starting register number
size : size of the block to read

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 233
Document ID: PMC-2021248, Issue 1

pblock : (pointer to) the block to read

Outputs pblock : (pointer to) the block read

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Writing to a Block of Device Registers: dalNbcsTswWriteBlock

This function can be used to write to a register block of a specific time switch device by
providing the starting register number and the block size. This function derives the actual starting
address location based on the device handle and starting register number inputs. It then writes the
contents of this data block to the starting address location.

Prototype INT4 dalNbcsTswWriteBlock(void* deviceInfo,
UINT2 startRegNum, UINT2 size, UINT4 *pblock,
UINT4 *pmask)

Inputs deviceInfo : device information handle
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Adding an Initialization Profile: dalNbcsTswAddInitProfile

Creates an initialization profile that is stored by the driver. A device can be initialized by passing
the initialization profile number to dalNbcsTswInit.

Prototype INT4 dalNbcsTswAddInitProfile(sNBCS_DIV_TSW_DAL
*pProfile, UINT2 *pProfileNum)

Inputs pProfile : (pointer to) initialization profile being
 added
pProfileNum : (pointer to) profile number to be
 assigned by the driver

Outputs pProfileNum : profile number assigned by the driver

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 234
Document ID: PMC-2021248, Issue 1

Getting an Initialization Profile: dalNbcsTswGetInitProfile

Gets the content of an initialization profile given its profile number.

Prototype INT4 dalNbcsTswGetInitProfile(UINT2 profileNum,
sNBCS_DIV_TSW_DAL *pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Deleting an Initialization Profile: dalNbcsTswDeleteInitProfile

Deletes an initialization profile given its profile number.

Prototype INT4 dalNbcsTswDeleteInitProfile(UINT2
profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Connection Switch Configuration

Configuring the Time Switch: dalNbcsTswCfgSwhParm

Get/Set configuration of the time switch. Parameters to configure include C1 delay, switching
mode, swap mode, and page copy auto update.

Prototype INT4 dalNbcsTswCfgSwhParm(void* deviceInfo,
UINT1 accMode, sNBCS_CFG_SWH_DAL *pconfig)

Inputs deviceInfo : device information handle
accMode : access control: 0 = get, 1 = set
pconfig : (pointer to) configuration structure

Outputs pconfig : configuration structure when
 accMode is 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 235
Document ID: PMC-2021248, Issue 1

Failure = <NBCS error codes>

Setting Up Connections: dalNbcsTswMapSlot

Establish connections in the time switch. This mapping function can operate in three different
modes, namely unicast, map, and straight through.

In unicast mode, the user supplies an array of incoming bytes/columns and an array of the
corresponding outgoing bytes/columns. One to one mapping is assumed for the pinSlot array
and the poutSlot array i.e. pinSlot[0] mapped to poutSlot[0], pinSlot[1] mapped to
poutSlot[1] and so on. numSlot specifies the size of the poutSlot array.

In map mode, the user provides an array of incoming bytes/columns, pinSlot. The size of the
array is specified by numSlot value. pOutSlot points to a single value, which is taken to be the
first outgoing byte/column. The software assumes the remaining outgoing bytes/columns to be
sequential increments from the first outgoing byte/column up to numOutSlot bytes/columns. e.g.
if poutSlot specifies the value x, then the outgoing bytes/columns mapped are x to
x+numOutSlot.

Straight through mode provides a one-to-one direct mapping from input to output ports for each
timeslot. In this mode, input port n is mapped to output port n for every port and timeslot.
pinslot, poutslot, and numSlot are all ignored in this mode.

Whenever applicable, the range of timeslots is expected to be from 0-1079 and 0-9719 in the case
of TeleCombus/SBI column mode and SBI DS0/CAS mode respectively.

Prototype INT4 dalNbcsTswMapSlot(void* deviceInfo, UINT1
dir, eNBCS_SWH_ACCESSMODE_DAL mode, UINT2
*pinslot, UINT2 *poutslot, UINT4 numSlot)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress switch
mode : access mode
pinslot : pointer to (array of) in timeslot(s)
poutslot : pointer to (array of) out timeslot(s)
numSlot : number of elements

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Source Connections: dalNbcsTswGetSrcSlot

This function will return the source bytes/columns for the specified outgoing bytes/columns in the
incoming or outgoing time switch module.

Prototype INT4 dalNbcsTswGetSrcSlot(void* deviceInfo,
UINT1 dir, UINT2* poutslot, UINT2* pinslot,

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 236
Document ID: PMC-2021248, Issue 1

UINT1 dir, UINT2* poutslot, UINT2* pinslot,
UINT2 numSlot)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress switch
poutslot : (pointer to) output timeslot
pinslot : (pointer to) input timeslot
numSlot : number of timeslots

Outputs pinslot : (pointer to) input timeslot(s)

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Active Page: dalNbcsTswGetActivePage

Get the active page in the time switch.

Prototype INT4 dalNbcsTswGetActivePage(void* deviceInfo,
UINT1 dir, UINT1* pPage)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress switch
pPage : (pointer to) the active page number

Outputs pPage : the active page number

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting Active Page: dalNbcsTswSetActivePage

Set the active page in the time switch.

Prototype INT4 dalNbcsTswSetActivePage(void* deviceInfo,
UINT1 dir, UINT1 pageNum)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress switch
pageNum : the active page number

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 237
Document ID: PMC-2021248, Issue 1

Updating Inactive Page: dalNbcsTswUpdateInactivePage

Copy the connection settings from active to inactive page. This function is designed for manual
copy operation when automatic page copy is not activated.

Prototype INT4 dalNbcsTswUpdateInactivePage(void*
deviceInfo, UINT1 dir)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress switch

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

LVDS Link Controller

Inserting line code violation: dalNbcsTswInsertLkcLcv

This function enables or disables the insertion of line code violations in the LVDS links

Prototype INT4 dalNbcsTswInsertLkcLcv(void* deviceInfo,
UINT1 link, UINT1 enable)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Centering transmit FIFO: dalNbcsTswCenterLkcFifo

This function is used to center the transmit FIFO in the LVDS links.

Prototype INT4 dalNbcsTswCenterLkcFifo(void* deviceInfo,
UINT1 link)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 238
Document ID: PMC-2021248, Issue 1

Failure = <NBCS error codes>

Forcing out-of-character alignment: dalNbcsTswForceLkcOca

This function is used to force out-of-character alignment in the LVDS links.

Prototype INT4 dalNbcsTswForceLkcOca(void* deviceInfo,
UINT1 link)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Forcing out-of-frame alignment: dalNbcsTswForceLkcOfa

This function is used to force out-of-frame alignment in the LVDS links.

Prototype INT4 dalNbcsTswForceLkcOfa(void* deviceInfo,
UINT1 link)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling the LVDS Link: dalNbcsTswCntlLkc

This function enables/disables the specified link.

Prototype INT4 dalNbcsTswCntlLkc(void* deviceInfo, UINT1
dir, UINT1 link, UINT1 enable)

Inputs deviceInfo : device information handle
dir : 0 = transmit 1 = receive
link :0 = working, 1 = protect link
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 239
Document ID: PMC-2021248, Issue 1

Configuring LVDS link parameters: dalNbcsTswCfgLkc

This function allows user to configure the parameters for a specified link. Parameters are: J0 byte
insertion, and path termination mode.

Prototype INT4 dalNbcsTswCfgLkc(void* deviceInfo, UINT1
link, sNBCS_CFG_LKC *pconfig)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
pconfig : pointer to the configuration structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Inserting Test Pattern in LVDS link: dalNbcsTswInsertLkcTp

This function enables/disables the insertion of test patterns into the LVDS links.

Prototype INT4 dalNbcsTswInsertLkcTp(void* deviceInfo,
UINT1 link, UINT2 tp, UINT1 enable)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
tp : test pattern tp[0..9], a 10-bit number
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Selecting Active LVDS link: dalNbcsTswSelectLkc

This function selects either the working or protect link on the receive side of a time switch to be
active

Prototype INT4 dalNbcsTswSelectLkc(void* deviceInfo,
UINT1 link)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 240
Document ID: PMC-2021248, Issue 1

Failure = <NBCS error codes>

In-band Link Controller

The in-band link controller is provided to facilitate inter-device communication. It is particularly
useful to centralize control when the time switch is located in fabric cards and the time switches
are located in multiple line cards.

Configuring the In-band Link Controller: dalNbcsTswCfgIlc

Set/Get ILC configuration parameters which include Rx FIFO timeout, and Rx FIFO interrupt
threshold.

Prototype INT4 dalNbcsTswCfgIlc(void* deviceInfo, UINT1
link, UINT1 accMode, sNBCS_CFG_ILC *pconfig)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
accMode : access control: 0 = get, 1 = set
pconfig : (pointer to) configuration structure

Outputs pconfig : configuration structure when
 accMode is 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling Tx/Rx ILC: dalNbcsTswEnableIlc

When disabled, the Tx/Rx ILC will be in “bypass” mode. No messages will be written or
inserted.

Prototype INT4 nbcsIlcTxEnable(void* deviceInfo, UINT1
dir, UINT1 link, UINT1 enable)

Inputs deviceInfo : device information handle
dir : 0 = Tx, 1 = Rx
link :0 = working, 1 = protect link
enable : enable flag: 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 241
Document ID: PMC-2021248, Issue 1

Sending Messages in ILC: dalNbcsTswSetIlcTxMsg

This function is used by the application to transmit messages on the in-band link over the working
and protect serial links. There is no limitation on the number of messages (each message has a
maximum of 32 bytes corresponding to size of data in each transmit FIFO) that can be sent. The
application specifies the transmit data buffer(pBuf inside the ptxBufDesc structure) and the
size of the transmit data buffer(pBufSz inside the ptxBufDesc structure). In addition the
application can also specify the number of bytes of data to be sent in each message(pyldSz,
which ranges from 1 to 32 bytes). If the application wants to use all the available message size, it
will specify the pyldSz to be 32. In the event that the application has fixed size messages less than
32, say n (0 < n < 32) bytes, then pyldSz will be specified as n. In this case the function will put n
bytes of transmit data in each transmit FIFO. Note that the remaining unused bytes in each
transmit FIFO will be uninitialized.

The function returns the number of bytes that have been placed in the transmit FIFO’s in pBufSz.

Prototype INT4 dalNbcsTswSetIlcTxMsg(void* deviceInfo,
sNBCS_TXBUF_DESC_ILC* ptxBufDesc, UINT1 pyldSz,
UINT1 numPorts)

Inputs deviceInfo : device information handle
ptxBufDesc : (pointer to) buffer descriptor(s)
pyldSz : payload size (from 1 to 32 bytes)
numPorts : number of links (from 1-32 max)

Outputs ptxBufDesc : buffer descriptor(s) that include the
 number of bytes sent for each link.

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Querying Free Space in ILC Tx FIFO: dalNbcsTswGetIlcTxFifoLvl

This function is to check the current capacity of the Tx FIFO. This allows the user to find out
how many more messages can be written to FIFO for transmission.

Prototype INT4 dalNbcsTswGetIlcTxFifoLvl(void*
deviceInfo, UINT1 link, UINT1* pnumMsg)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
pnumMsg : (pointer to) free FIFO capacity

Outputs pnumMsg : free FIFO capacity

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 242
Document ID: PMC-2021248, Issue 1

Setting Tx Message Header: dalNbcsTswSetIlcTxHdr

This function sets the values of the ILC transmit header bytes.

Prototype INT4 dalNbcsTswSetIlcTxHdr(void* deviceInfo,
UINT1 link, sNBCS_HEADER_ILC *phead)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
phead : pointer to header structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Number of Messages in Rx FIFO: dalNbcsTswGetIlcRxNumMsg

Query the total number of messages currently stored in the Rx FIFO.

Prototype INT4 dalNbcsTswGetIlcRxNumMsg(void* deviceInfo,
UINT1 link, UINT1 *pnumMsg)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
pnumMsg : (pointer to) the buffer that holds the
 number of messages stored in FIFO

Outputs pnumMsg : the number of messages in the FIFO

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Messages in Rx FIFO: dalNbcsTswGetIlcRxMsg

This function retrieves data from the received messages on the in-band link over the working or
protect link. The application can specify the number of messages to be read by numMsg variable
(inside prxBufDesc). This function reads the number of messages currently available up to a
maximum of numMsg messages. For example, if numMsg is specified as 8 and only 6 messages
are currently available, this function reads the 6 messages and returns. The function updates the
numMsg variable to indicate the actual number of messages read. The data and the CRC status
from each message, are returned in prxBufDesc. The number of bytes of data read from each
message is specified by pyldSz.

Prototype INT4 dalNbcsTswGetIlcRxMsg(void* deviceInfo,
sNBCS_RXBUF_DESC_ILC* prxBufDesc, UINT1 pyldSz)

Inputs deviceInfo : device information handle
prxBufDesc : (pointer to) buffer descriptors (this

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 243
Document ID: PMC-2021248, Issue 1

 must point to numPorts descriptors)
pnumDesc : (pointer to) number of message
 descriptors
pyldSz : payload size (from 1 to 32 bytes)

Outputs prxBufDesc : buffer descriptor structures which
 include the received messages and
 their corresponding CRC status

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting Rx Header Bytes: dalNbcsGetIlcRxHdr

Gets the header bytes received for a given link.

Prototype INT4 dalNbcsGetIlcRxHdr(void* deviceInfo, UINT1
link, sNBCS_HEADER_ILC *phead)

Inputs deviceInfo : device information handle
link :0 = working, 1 = protect link
phead : (pointer to) header structure

Outputs phead : header structure

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Status and Counts

Reading the Device Counters: dalNbcsTswGetCounts

This function retrieves all the device counts. It is the user’s responsibility to ensure that this
function is called often enough to prevent the device counts from saturating or rolling over.

Prototype INT4 dalNbcsTswGetCounts(void* deviceInfo,
sNBCS_CNTR *pCntr)

Inputs deviceInfo : device information handle
pCntr : allocated memory for counts

Outputs pCntr : current device counts

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 244
Document ID: PMC-2021248, Issue 1

Getting the Current Status: dalNbcsTswGetStatus

This function retrieves a snapshot of the current status from the device registers. It is the user’s
responsibility to ensure the buffer indicated by pStatus is large enough to hold all the returned
status of the members in the group.

Prototype INT4 dalNbcsTswGetStatus(void* deviceInfo,
sNBCS_STATUS *pStatus)

Inputs deviceInfo : device information handle
pStatus : pointer to allocated memory

Outputs pStatus : current status

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Interrupt Service Functions

Configuring ISR Processing: dalNbcsTswCfgISRMode

This function allows the user to configure how the interrupts are handled: either in polling
(NBCS_POLL_MODE) or interrupt driven (NBCS_ISR_MODE) modes. If polling is selected,
the user is responsible for calling periodically dalNbcsTswPoll to collect exception data from
the device.

Prototype INT4 dalNbcsTswCfgISRMode (void* deviceInfo,
eNBCS_ISR_MODE mode)

Inputs deviceInfo : device information handle
mode : mode of operation

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Getting the Interrupt Enable Mask: dalNbcsTswGetISRMask

Returns the contents of the interrupt mask from the time switch device.

Prototype INT4 dalNbcsTswGetISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 245
Document ID: PMC-2021248, Issue 1

Outputs pmask : updated mask structure

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Setting the Interrupt Enable Mask: dalNbcsTswSetISRMask

Sets the contents of the interrupt mask of the time switch device. A field set in the passed mask
will set the corresponding device interrupt enable. For those zero values in the passed mask, the
corresponding interrupt enables are left unaltered.

Prototype INT4 dalNbcsTswSetISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Clearing the Interrupt Enable Mask: dalNbcsTswClearISRMask

Clears the content of the interrupt mask of the time switch device. A field set in the passed mask
will clear the corresponding device interrupt enable. For those zero values in the passed mask, the
corresponding interrupt enable are left unaltered.

Prototype INT4 dalNbcsTswClearISRMask(void* deviceInfo,
void *pmask)

Inputs deviceInfo : device information handle
pmask : (pointer to) mask structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Polling the Interrupt Status Registers: dalNbcsTswPoll

Commands the driver to poll the interrupt registers in the device. The call will fail unless the
device was initialized (via dalNbcsTswInit) or configured (via dalNbcsTswCfgISRMode)
into polling mode.

Prototype INT4 dalNbcsTswPoll(void* deviceInfo)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 246
Document ID: PMC-2021248, Issue 1

Inputs deviceInfo : device information handle

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsTswEnaIsrC1fp

Enables or disables the C1 frame pulse interrupt in the time switch.

Prototype INT4 dalNbcsTswEnaIsrC1fp(void* deviceInfo,
UINT1 dir)

Inputs deviceInfo : device information handle
dir : 0 = ingress, 1 = egress

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Diagnostics

Testing Register Accesses: dalNbcsTswDiagTestReg

Verifies the hardware access to the device registers by writing and reading back values. The
following types of register tests can be performed --- single value write/read and walking ones.
In addition, each of these tests can be run on the full range of registers.

Prototype INT4 dalNbcsTswDiagTestReg(void* deviceInfo,
sNBCS_DIAG_TEST_REG *ptestReg)

Inputs deviceInfo : device information handle
ptestReg : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 247
Document ID: PMC-2021248, Issue 1

Testing RAM Accesses: dalNbcsTswDiagTestRam

Verifies the hardware access to the device internal RAM by writing and reading back values. The
following types of RAM tests can be performed: single write/read, walking ones, migrating ones,
and aliasing. Note that both connection maps are tested for all types of tests listed above. The
first three types can be performed on either a user-specified range or the entire RAM. Aliasing is
always performed on the entire RAM.

Prototype INT4 dalNbcsTswDiagTestRam(void* deviceInfo,
sNBCS_DIAG_TEST_RAM *ptestRam)

Inputs deviceInfo : device information handle
ptestRam : (pointer to) test structure

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Controlling diagnostic loopbacks: dalNbcsTswDiagLpbk

This function is used to control the diagnostic loopbacks available on a time switch device

Prototype INT4 dalNbcsTswDiagLpbk(void* deviceInfo,
eNBCS_LPBK lpbk, UINT1 enable)

Inputs deviceInfo : device information handle
lpbk : specifies the loopback options
enable : 0 – disable, 1 – enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

PRBS Generation/Monitoring Control

This section describes the functions that are used to configure the pseudo random pattern
generation and monitoring on the working and protect links. The granularity is assumed to be
STS-1.

Configuring payload for the PRGM: dalNbcsTswCfgPrgmPyld

This function configures the payload for the PRBS generator or monitor on the working and
protect links. The payload can be configured as 12 STS-1’s, 4 STS-3c’s , a combination of STS-
1’s and STS-3c’s or a single STS-12c.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 248
Document ID: PMC-2021248, Issue 1

Prototype INT4 dalNbcsTswCfgPrgmPyld(void* deviceInfo,
UINT1 genMon, UINT1 link, sNBCS_CFG_PRGM_PYLD
*pPyldCfg, UINT1 accMode)

Inputs deviceInfo : device information handle (from nbcsAdd)
genMon : 0 – PRBS generator
 1 – PRBS monitor
link : 0 = working, 1 = protect link
pPyldCfg : structure containing the payload
 configuration
accMode : access control: 0 – get, 1 – set

Outputs pPyldCfg : returns payload configuration
 parameters when accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the PRGM: dalNbcsTswCfgPrgm

This function is used to enable/disable the generation and monitoring of the PRBS sequence on
each STS-1 on the working and protect links. Besides this the function is used to configure the
linear feedback shift register(LFSR), which is used to generate the PRBS sequence. In addition it
can also configure the generator and monitor in the invert PRBS sequence mode or sequential
mode.

Prototype INT4 dalNbcsTswCfgPrgm(void* deviceInfo, UINT1
genMon, UINT1 link, UINT1 sts1Path,
sNBCS_CFG_PRGM *pCfg, UINT1 accMode)

Inputs deviceInfo : device information handle
genMon : 0 – PRBS generator, 1 –monitor
link : 0 = working, 1 = protect link
sts1Path : the STS-1 path. Valid range is 0-11
pCfg : structure containing the bits to be
 programmed in LFSR. Also has flags
 for invert PRBS mode, sequential
 mode, and autonomous mode
accMode : 0 = disable the generation or
 monitoring function, 1= enable the
 generation or monitoring function
 without setting any configurations; 2 =
 set up the configuration before
 enabling the generation or monitoring
 function; 3 = retrieve the configuration
 parameters

Outputs pCfg : returns pattern configuration
parameters hen M d 3

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 249
Document ID: PMC-2021248, Issue 1

 parameters when accMode = 3

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Forcing a bit error in the PRBS sequence: dalNbcsTswForcePrgmErr

This function is used to force a bit error in the PRBS sequence on the specified STS-1 data stream
on the working or protect link. One bit error is inserted each time the function is invoked.

Prototype INT4 dalNbcsTswForcePrgmErr(void* deviceInfo,
UINT1 link, UINT1 sts1Path)

Inputs deviceInfo : device information handle
link : 0 = working, 1 = protect link
sts1Path : STS-1 number. Valid range is 0-11

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Forcing Resynchronization in incoming PRBS data stream:
dalNbcsTswForcePrgmResync

This function is used to force the PRBS monitor on a specified STS-1 on the working or protect
link to resynchronize to the incoming data stream.

Prototype INT4 dalNbcsTswForcePrgmResync(void*
deviceInfo, UINT1 link, UINT1 sts1Path)

Inputs deviceInfo : device information handle
link : 0 = working,1 = protect link
sts1Path : STS-1 number. Valid range is 0-11

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Interface/Clock Configuration

This section describes functions that configure the external interfaces and the clocks of the
device.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 250
Document ID: PMC-2021248, Issue 1

Configuring the TeleCombus/SBI Bus Mode: dalNbcsTswCfgIntfBusMode

 This function configures the mode for the incoming, outgoing, transmit and receive buses.

Prototype INT4 dalNbcsTswCfgIntfBusMode(void* deviceInfo,
sNBCS_CFG_BUSMODE_DAL *pIntfCfg, UINT1 accMode)

Inputs deviceInfo : device information handle
pIntfCfg : structure containing configuration
 parameters for the incoming, outgoing,
 transmit and receive buses
accMode : access control: 0 – get, 1 – set

Outputs pIntfCfg : returns the configuration parameters
 when the accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the bus parameters: dalNbcsTswCfgIntfBusParms

This function configures the bus parity for the incoming, outgoing, transmit and receive buses. It
also configures the offset of the J1 byte for the telecom bus mode.

Prototype INT4 dalNbcsTswCfgIntfBusParms(void*
deviceInfo, UINT1 busType,
sNBCS_CFG_INTF_BUSPARM_DAL *pBusParm, UINT1
accMode)

Inputs deviceInfo : device information handle
busType : 0 = incoming parallel, 1 = outgoing
 parallel, 2 = serial transmit, 3 = serial
 receive bus
pBusParm : parameters to configure the selected
 bus
accMode : access control: 0 – get, 1 – set

Outputs pBusParm : returns the bus parity parameters when
 the accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the TeleCombus Parameters: dalNbcsTswCfgTelecomParms

This function configures the telecom bus specific parameters for the outgoing and the transmit
buses. It configures the behavior of the C1FP signal on occurrence of J1 or V1 byte. The function
also allows the user to specify the values of the H1 and H2 pointers.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 251
Document ID: PMC-2021248, Issue 1

Prototype INT4 dalNbcsTswCfgTelecomParms(void*
deviceInfo, UINT1 busType, sNBCS_CFG_BUSPARAM
*pBusParm, UINT1 accMode)

Inputs deviceInfo : device information handle
busType : 1 = outgoing parallel, 2 = serial
 transmit bus
pBusParm : parameters specifying the behavior of
 the C1FP signal on occurrence of J1 or
 V1 byte and also specifying the value
 of the H1 and H2 pointers
accMode : access control: 0 – get, 1 – set

Outputs pBusParms : returns the egress telecom bus
 parameters when the accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the TeleCombus Payload: dalNbcsTswCfgTelecomPyld

This function configures the telecom bus specific parameters for the outgoing and the transmit
buses. It configures the behavior of the C1FP signal on occurrence of J1 or V1 byte. The function
also allows the user to specify the values of the H1 and H2 pointers.

Prototype INT4 dalNbcsTswCfgTelecomPyld(void* deviceInfo,
UINT1 busType, sNBCS_CFG_PYLD_TCB
*pTelecomPyld)

Inputs deviceInfo : device information handle
busType : 0 = incoming parallel, 1 = outgoing
 parallel, 2 = serial transmit, 3 = serial
 receive bus
pTelecomPyld : TeleCombus payload configuration

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the SBI Bus Payload: dalNbcsTswCfgSbiPyld

This function configures the SBI bus payload type. It assumes symmetrical payload on ingress
and egress direction.

Prototype INT4 dalNbcsTswCfgSbiPyld(void* deviceInfo,
UINT1 busType, sNBCS_CFG_PYLD_SBI *pSbiPyld,
UINT1 accMode)

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 252
Document ID: PMC-2021248, Issue 1

Inputs deviceInfo : device information handle
busType : 0 = incoming parallel, 1 = outgoing
 parallel, 2 = serial transmit, 3 = serial
 receive bus
pSbiPyld : SBI bus payload configuration
accMode : 0 = get,1 = set

Outputs pSbiPyld : SBI bus payload configuration when
 accMode = 0

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling CAS in a SBI Bus Tributary: dalNbcsTswEnableCas

This function enables/disables the CAS processing of a specified SBI tributary.

Prototype INT4 dalNbcsTswEnableCas(void* deviceInfo,
UINT1 dir, sNBCS_TRIB_SBI *pTrib, UINT1 enable)

Inputs deviceInfo : device information handle
dir : 0 = ingress,1 = egress
pTrib : (pointer to) SBI tributary
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Enabling/Disabling SBI Bus Tributary Output:
dalNbcsTswEnableSbiTribOutput

This function is valid only when the outgoing bus is configured for a quad SBI bus. The function
will enable individual tributaries of the SBI bus to be driven on the outgoing bus.

Prototype INT4 dalNbcsTswEnableSbiTribOutput(void*
deviceInfo, sNBCS_TRIB_SBI *pTrib, UINT1
enable)

Inputs deviceInfo : device information handle
pTrib : (pointer to) SBI tributary
enable : 0 = disable, 1 = enable

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 253
Document ID: PMC-2021248, Issue 1

Configuring the SBI Bus Tributary Mode: dalNbcsTswCfgSbiTribTransMode

This function configures the SBI bus tributary whether it is in transparent virtual tributary mode
and/or justification request is enabled.

Prototype INT4 dalNbcsTswCfgSbiTribTransMode(void*
deviceInfo, UINT1 dir, sNBCS_CFG_PYLD_SBI
*pTrib, UINT1 tvtEna, UINT1 justReqEna)

Inputs deviceInfo : device information handle
dir : 0 = incoming parallel, 1 = outgoing
 parallel
pTrib : (pointer to) SBI tributary
tvtEna : 1 = tributary is a transparent virtual
 one
justReqEna : 0 = disable,1 = enable of justification
 request

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Configuring the C1 frame pulse delay: dalNbcsTswCfgC1fpDly

This function configures the delay of the C1 frame pulse in the time switch.

Prototype INT4 dalNbcsTswCfgC1fpDly(void* deviceInfo,
UINT2 dly)

Inputs deviceInfo : device information handle
dly : C1 frame pulse delay

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Controlling the CSU/DLL : dalNbcsTswCntlIntf

This function controls the clock synthesis unit (CSU) and the DLL units in the time switch
device.

Prototype INT4 dalNbcsTswCntlIntf (sNBCS_HNDL
deviceHandle, sNBCS_CFG_INTF_CSU* pcntl)

Inputs deviceHandle : device handle
pcntl : (pointer to) control structure

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Time Switch Device Driver Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 254
Document ID: PMC-2021248, Issue 1

Outputs None

Returns Success = NBCS_SUCCESS
Failure = <NBCS error codes>

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 255
Document ID: PMC-2021248, Issue 1

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation software
written to validate the Narrowband Chipset driver on a validation platform.

API (Application Programming Interface): Describes the connection between this module and the
user’s Application code.

ISR (Interrupt-Service Routine): A common function for intercepting and servicing device events.
This function is kept as short as possible because an Interrupt preempts every other function
starting the moment it occurs and gives the service function the highest priority while running.
Data is collected, Interrupt indicators are cleared and the function ended.

DPR (Deferred-Processing Routine): This function is installed as a task, at a user configurable
priority, that serves as the next logical step in Interrupt processing. Data that was collected by the
ISR is analyzed and then calls are made into the application that inform it of the events that
caused the ISR in the first place. Because this function is operating at the task level, the user can
decide on its importance in the system, relative to other functions.

DEVICE: One Narrowband Chipset Integrated Circuit. There can be many devices, all served by
this one driver module.

�� DIV (Device Initialization Vector): Structure passed from the API to the device during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical device being initialized.

�� CSDDB (Chipset Device Data Block): Structure that holds the essential data for each device.

GROUP: An arbitrary collection of Narrowband devices. After defining a group, the user can use
group-level functions to initialize or configure the devices in the group.

�� GIV (GROUP Initialization Vector): Structure used during GROUP initialization; it contains
several DIVs, which are used to initialize the devices in the GROUP.

�� GDB (GROUP Data Block): Structure that holds pointers to the CSDDBs for each device in
the GROUP.

MODULE: All of the code that is part of this driver, there is only one instance of this module
connected to one or more Narrowband Chipset chips.

�� MIV (Module Initialization Vector): Structure passed from the API to the module during
initialization, it contains parameters that identify the specific characteristics of the driver
module being initialized.

�� CSMDB (Chipset Module Data Block): Structure that holds the Configuration Data for this
module.

RTOS (Real-Time Operating System): The host for this driver.

DAL: Driver Abstraction Layer. This is a portable layer to accommodate devices other than
SBS/NSE that provide the time and space switching functionality.

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 256
Document ID: PMC-2021248, Issue 1

ACRONYMS

ADM: Add Drop Multiplexer

API: Application Programming Interface

ASAP: Any Service Any Port

CAS: Channel Associated Signaling

CRC: Cyclic Redundancy Check

CSD: Chipset Driver

CSDDB: Chipset Device Data Block

DAL: Driver Abstraction Layer

DIV: Device Initialization Vector

DPR: Deferred-Processing Routine

FIFO: First In, First Out

GDB: Group data block

GIV: Group initialization vector

ILC: In-band Link Controller

ISR: Interrupt-Service Routine

ISV: Interrupt-Service (routine) Vector

CSMDB: Chipset Module Data Block

MIV: Module Initialization Vector

NSE: Narrowband Switching Element

OPA: Open Path Algorithm

RTOS: Real-Time Operating System

SBI: Scalable Bandwidth Interconnect

SBS: SBI Bus Serializer

TCB: TeleCombus

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 257
Document ID: PMC-2021248, Issue 1

INDEX

API Functions
nbcsActivate, 52, 54, 61, 119, 128
nbcsAdd, 40, 52, 57, 60, 102, 122, 126, 127, 128,

129, 132, 133, 134, 135, 136, 138, 139, 140,
141, 142, 143, 145, 146, 147, 149, 151, 152,
153, 154, 155, 156, 157, 158, 160, 161, 163,
164, 166, 167, 168, 172, 183, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197,
198, 199, 218, 219, 306

nbcsAddInitProfile, 130
nbcsDeActivate, 52, 129
nbcsDelete, 52, 61, 120, 121, 126
nbcsDeleteInitProfile, 131
nbcsDiagLpbk, 48, 193
nbcsDiagTestReg, 48, 100, 192, 218, 220
nbcsEventClearMask, 79, 80, 188, 220
nbcsEventDetectC1FP, 46, 60, 64, 155, 189
nbcsEventGetMask, 79, 80, 187
nbcsEventSetMask, 79, 80, 187, 220
nbcsFmgtClearProtect, 46, 184
nbcsFmgtDefWiring, 46, 55, 57, 61, 178
nbcsFmgtGetChgMap, 37, 46, 58, 59, 60, 174, 177
nbcsFmgtGetMap, 46, 172, 174
nbcsFmgtMapDS0, 46, 58, 59, 180
nbcsFmgtMapTrib, 37, 46, 58, 59, 169
nbcsFmgtRsvpCasRoute, 46, 137, 182
nbcsFmgtSetLpbkMode, 47, 56, 57, 171, 182
nbcsFmgtSetProtect, 46, 60, 61, 183
nbcsFmgtSwitchProtect, 46, 60, 61, 185
nbcsFmgtUnMapDS0, 46, 58, 60, 181
nbcsFmgtUnMapTrib, 37, 46, 56, 57, 58, 60, 170
nbcsGetCheckPoint, 241
nbcsGetInitProfile, 130
nbcsGroupAdd, 53, 54, 123, 125, 126, 127, 128,

129, 135, 136, 138, 139, 140, 141, 142, 143,
145, 146, 147, 155, 156, 172, 186, 188, 190,
191, 192, 193

nbcsGroupDelete, 54, 125
nbcsGroupGetState, 54, 126
nbcsIlcCntl, 47, 156
nbcsIlcGetRxHdr, 47, 157, 275
nbcsIlcGetRxMsg, 47, 158
nbcsIlcGetRxNumMsg, 47, 159, 160
nbcsIlcGetTxFifoLvl, 47, 162
nbcsIlcSetTxHdr, 47, 164
nbcsIlcTxMsg, 47, 161
nbcsInit, 52, 54, 60, 74, 127, 128, 130
nbcsIntfCfgBus, 44, 135
nbcsIntfCfgC1FrmDly, 44, 139, 140

nbcsIntfCfgCsu, 44, 139
nbcsIntfCfgPyld, 44, 56, 57, 61, 136
nbcsIntfCfgTrib, 44, 56, 57, 61, 137
nbcsLkcCenterFifo, 44, 141, 142
nbcsLkcCfg, 44, 146
nbcsLkcCntl, 44, 144, 145
nbcsLkcForceOfa, 44, 143
nbcsLkcInsertLcv, 44, 140, 141
nbcsLkcInsertTp, 44, 147
nbcsModuleClose, 120
nbcsModuleOpen, 57, 68, 120, 186, 194, 195, 196,

197, 198, 219
nbcsModuleStart, 57, 121, 219
nbcsModuleStop, 121
nbcsPoll, 63, 186
nbcsPrgmCfg, 48, 166
nbcsPrgmCfgPyld, 48, 165, 166
nbcsPrgmForceErr, 48, 167
nbcsPrgmResync, 48, 168
nbcsRead, 132
nbcsReadBlock, 133
nbcsReset, 52, 61, 128
nbcsSetCheckPoint, 241, 242
nbcsStatsGetCounts, 43, 88, 190, 220
nbcsStatsGetStatus, 44, 84, 191, 218, 220
nbcsStswCopyPage, 45, 58, 59, 61, 152
nbcsStswGetPage, 45, 60, 153
nbcsStswGetSrcSlot, 45, 150
nbcsStswMapSlot, 45, 59, 148, 149, 172, 175
nbcsStswSetPage, 45, 60, 155
nbcsStswTogglePage, 45, 58, 59, 60, 64, 71, 73,

154
nbcsWrite, 132
nbcsWriteBlock, 134

Callback Functions
cbackC1FP, 46, 68, 73, 80, 103, 154, 155, 198
cbackIlcHead, 68, 74, 81, 83, 84, 103, 195
cbackIlcRx, 248
cbackIlcRxData, 68, 74, 81, 83, 103, 194
cbackIntf, 68, 74, 80, 104, 196, 246, 248
cbackLkc, 68, 74, 81, 104, 196, 197
cbackNbcsC1FP, 60
cbackPgmc, 248
cbackPrgm, 68, 74, 104, 199
cbackStsw, 68, 74, 81, 104, 197
cbackTsw, 248
cbackWplc, 248

Constants

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 258
Document ID: PMC-2021248, Issue 1

NBCS_ACTIVE, 65, 102, 103, 126, 128, 129,
132, 133, 134, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 150, 151, 152,
153, 154, 155, 156, 157, 159, 161, 162, 163,
165, 166, 167, 168, 169, 170, 171, 172, 174,
178, 179, 181, 182, 184, 186, 187, 188, 189,
190, 191, 194, 195, 196, 197, 198, 199

NBCS_ALL_LINKS, 160, 164
NBCS_BUS_SBI, 66, 69, 104
NBCS_BUS_TCB, 66, 69, 104
NBCS_CALL_MCAST, 67, 169
NBCS_CALL_SETTING, 67, 178
NBCS_CALL_UPSRDROP, 67, 169
NBCS_CBACK, 73, 74, 103, 104, 246, 247, 248
NBCS_CBACK_DAL, 246, 247, 248
NBCS_CBACK_TC, 73, 74, 103
NBCS_CHKPT_CSD, 68
NBCS_CHKPT_OPA, 68
NBCS_DS3_E3_PYLD, 66, 98
NBCS_E1_PYLD, 66, 98
NBCS_ERR_ADDING_DEVICE_IN_GROUP,

124, 224
NBCS_ERR_BASE, 214
NBCS_ERR_BUF_START, 121, 223
NBCS_ERR_DELETING_DEVICE_IN_GROUP,

125, 224
NBCS_ERR_DEV_ABSENT, 132, 133, 134, 139,

140, 141, 142, 143, 144, 145, 146, 147, 149,
151, 152, 153, 154, 155, 156, 157, 159, 160,
162, 163, 165, 166, 167, 168, 186, 187, 188,
189, 190, 192, 193, 194, 222

NBCS_ERR_DEV_ALREADY_ADDED, 122,
124, 223

NBCS_ERR_DEVS_FULL, 122, 223
NBCS_ERR_GROUPS_FULL, 124, 224
NBCS_ERR_GROUPS_MIXED_DEV, 135, 137,

138, 188, 189, 224
NBCS_ERR_ILC_INVALID_OP, 157, 159, 160,

162, 163, 165, 225
NBCS_ERR_INVALID_ARG, 122, 124, 125,

130, 131, 135, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 149, 151, 152, 153,
154, 155, 156, 157, 159, 160, 162, 163, 165,
166, 167, 168, 174, 178, 179, 180, 181, 182,
183, 187, 188, 189, 190, 191, 192, 193, 194,
222, 241, 242

NBCS_ERR_INVALID_BUS_TYPE, 138, 224

NBCS_ERR_INVALID_DEV, 122, 124, 125,
126, 127, 128, 129, 132, 133, 134, 135, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 149, 151, 152, 153, 154, 155, 156, 157,
159, 160, 162, 163, 165, 166, 167, 168, 170,
171, 174, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 223,
242

NBCS_ERR_INVALID_DEVICE_STATE, 127,
129, 135, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 149, 151, 152, 153, 154,
155, 156, 157, 159, 160, 162, 163, 165, 166,
167, 168, 170, 171, 180, 181, 182, 186, 187,
188, 189, 190, 191, 192, 193, 194, 223, 242

NBCS_ERR_INVALID_DIV, 127, 223
NBCS_ERR_INVALID_GROUP, 124, 125, 126,

129, 135, 137, 138, 139, 140, 192, 193, 222,
224

NBCS_ERR_INVALID_GROUP_STATE, 129,
135, 137, 138, 139, 140, 192, 193, 224

NBCS_ERR_INVALID_MIV, 120, 222
NBCS_ERR_INVALID_MODE, 135, 137, 155,

180, 181, 182, 186, 223, 242
NBCS_ERR_INVALID_MODULE_STATE, 120,

121, 122, 124, 125, 130, 131, 174, 178, 179,
222, 241, 242

NBCS_ERR_INVALID_PROFILE, 127, 130,
131, 223

NBCS_ERR_INVALID_PROFILE_NUM, 127,
131, 223

NBCS_ERR_INVALID_PYLD, 170, 171, 225
NBCS_ERR_INVALID_REG, 132, 133, 134, 224
NBCS_ERR_INVALID_SWITCHOVER, 185,

225
NBCS_ERR_INVALID_SYS_CONFIG, 170,

171, 174, 178, 179, 180, 181, 183, 184, 185,
222

NBCS_ERR_INVALID_TRIB, 138, 170, 171,
180, 181, 225

NBCS_ERR_MEM_ALLOC, 120, 151, 152, 222
NBCS_ERR_OPA_CONNECT, 170, 171, 180,

181, 225
NBCS_ERR_OPA_DISCONNECT, 180, 181, 225
NBCS_ERR_OPA_PROTECT_1FORN, 184, 225
NBCS_ERR_OPA_PROTECT_EXIST, 183, 225
NBCS_ERR_OPA_PROTECT_NONEXISTENT,

184, 225
NBCS_ERR_OPA_SCHEDULE, 170, 180, 226
NBCS_ERR_POLL_TIMEOUT, 138, 142, 143,

144, 153, 157, 159, 160, 162, 163, 165, 182,
224

NBCS_ERR_PROFILES_FULL, 130, 222
NBCS_ERR_PROTECT_BUSY, 225

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 259
Document ID: PMC-2021248, Issue 1

NBCS_ERR_STSW_ACCESS, 149, 151, 152,
153, 154, 155, 171, 178, 224, 242

NBCS_EVENT, 118, 227, 228, 229, 230, 231,
232, 233, 234, 235

NBCS_EVENT_ILC_FIFO_OVERFLOW, 232
NBCS_EVENT_ILC_FIFO_THRES, 232
NBCS_EVENT_ILC_FIFO_TIMEOUT, 232
NBCS_EVENT_ILC_LINKCHG, 231
NBCS_EVENT_ILC_PG0CHG, 232
NBCS_EVENT_ILC_PG1CHG, 232
NBCS_EVENT_ILC_USER0CHG, 231
NBCS_EVENT_INTF_CSU1LOCK, 233
NBCS_EVENT_INTF_CSU2LOCK, 233
NBCS_EVENT_INTF_INC_C1FP, 233
NBCS_EVENT_INTF_INCBUS1_PARITY_ERR

, 234
NBCS_EVENT_INTF_INCBUS2_PARITY_ERR

, 234
NBCS_EVENT_INTF_INCBUS3_PARITY_ERR

, 235
NBCS_EVENT_INTF_INCBUS4_PARITY_ERR

, 235
NBCS_EVENT_INTF_OUTBUS1_COLLISION,

234
NBCS_EVENT_INTF_OUTBUS2_COLLISION,

234
NBCS_EVENT_INTF_OUTBUS3_COLLISION,

234
NBCS_EVENT_INTF_OUTBUS4_COLLISION,

234
NBCS_EVENT_INTF_PROTECT_FCA, 233
NBCS_EVENT_INTF_REFDLL_ERR, 233
NBCS_EVENT_INTF_RX_C1FP, 234
NBCS_EVENT_INTF_RXBUS_PARITY_ERR,

233
NBCS_EVENT_INTF_SYSDLL_ERR, 233
NBCS_EVENT_INTF_WORKING_FCA, 232
NBCS_EVENT_LKC_LCV, 231
NBCS_EVENT_LKC_OCA, 231
NBCS_EVENT_LKC_OFA, 231
NBCS_EVENT_LKC_RXFIFO_ERR, 231
NBCS_EVENT_LKC_TXFIFO_ERR, 231
NBCS_EVENT_PRGM_BYTEERR1, 227, 228
NBCS_EVENT_PRGM_BYTEERR10, 228
NBCS_EVENT_PRGM_BYTEERR11, 228
NBCS_EVENT_PRGM_BYTEERR12, 228
NBCS_EVENT_PRGM_BYTEERR2, 227
NBCS_EVENT_PRGM_BYTEERR3, 227
NBCS_EVENT_PRGM_BYTEERR4, 227
NBCS_EVENT_PRGM_BYTEERR5, 227
NBCS_EVENT_PRGM_BYTEERR6, 227
NBCS_EVENT_PRGM_BYTEERR7, 228
NBCS_EVENT_PRGM_BYTEERR8, 228
NBCS_EVENT_PRGM_BYTEERR9, 228

NBCS_EVENT_PRGM_SYNC1, 229, 230
NBCS_EVENT_PRGM_SYNC10, 230
NBCS_EVENT_PRGM_SYNC11, 230
NBCS_EVENT_PRGM_SYNC12, 230
NBCS_EVENT_PRGM_SYNC2, 229
NBCS_EVENT_PRGM_SYNC3, 229
NBCS_EVENT_PRGM_SYNC4, 229
NBCS_EVENT_PRGM_SYNC5, 229
NBCS_EVENT_PRGM_SYNC6, 229
NBCS_EVENT_PRGM_SYNC7, 229
NBCS_EVENT_PRGM_SYNC8, 229
NBCS_EVENT_PRGM_SYNC9, 230
NBCS_EVENT_STSW_SWAP, 230
NBCS_EVENT_STSW_UPDATE, 230
NBCS_FABRIC_DOUBLE_NSESBS, 72, 104
NBCS_FABRIC_DOUBLE_SBS, 67, 72, 104
NBCS_FABRIC_DOUBLE_SBSNSE, 67
NBCS_FABRIC_STD, 67, 72, 104
NBCS_FAILURE, 102, 107, 118, 138, 171, 174,

178, 222, 241, 242
NBCS_FRAC_RT_PYLD, 66, 98
NBCS_ILC_FIFO_125US, 67, 91
NBCS_ILC_FIFO_250US, 67, 91
NBCS_ILC_FIFO_375US, 67, 91
NBCS_ILC_FIFO_500US, 67, 91
NBCS_INACTIVE, 65, 102, 103, 126, 128, 129,

132, 133, 134, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147, 150, 151, 152,
153, 154, 155, 156, 157, 159, 161, 162, 163,
165, 166, 167, 168, 169, 170, 171, 172, 174,
178, 179, 181, 182, 184, 186, 187, 188, 189,
191, 194

NBCS_INDETERMINATE, 119
NBCS_INPUT_BUS, 245
NBCS_IO_BUS_QUAD, 66, 95
NBCS_IO_BUS_SINGLE, 66, 95
NBCS_LINK_CNTL_HW, 67, 71, 73, 105
NBCS_LINK_CNTL_SW, 67, 71, 73, 105
NBCS_MAP_CNTL_HW, 67, 71, 73, 105
NBCS_MAP_CNTL_ILC, 67, 71, 73, 105
NBCS_MAP_CNTL_SW, 67, 71, 73, 105
NBCS_MAX_DPV_BUF, 215
NBCS_MAX_GROUP, 65, 215
NBCS_MAX_MCAST, 215
NBCS_MAX_NSE, 65, 215
NBCS_MAX_NSE_INIT_PROFS, 65, 215
NBCS_MAX_SBI, 98
NBCS_MAX_SBI_SPE, 98
NBCS_MAX_SBS, 65, 215
NBCS_MAX_SBS_INIT_PROFS, 65, 215
NBCS_MAX_SETTING_HEADER, 110
NBCS_MAX_T1_TRIB, 113, 114
NBCS_MF_4, 66, 95, 252
NBCS_MF_48, 66, 95, 252

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 260
Document ID: PMC-2021248, Issue 1

NBCS_MOD_IDLE, 65, 102, 103, 120, 121, 122,
125, 126, 130, 131

NBCS_MOD_READY, 65, 102, 103, 121, 122,
123, 124, 125, 126, 130, 131, 242

NBCS_MOD_START, 65, 102, 103, 120, 121
NBCS_NSE_MAX_LINKS, 76, 81, 85, 89, 115,

247
NBCS_NSE20G, 67, 70, 74, 75, 78, 173, 175
NBCS_NSE20G_PARTNUM, 74, 75
NBCS_NSE8G, 67, 70, 74, 75, 78, 173, 175
NBCS_NSE8G_PARTNUM, 74, 75
NBCS_NUM_STS1, 84, 88, 89, 91, 97, 113, 114
NBCS_NUM_STS1PATH, 84, 88, 89, 91
NBCS_NUM_STS3, 93, 97, 113, 114
NBCS_NUM_VTGROUP, 97
NBCS_O2ILPBK, 67
NBCS_OUTPUT_BUS, 245
NBCS_PORTPROTECT_1FORN, 66, 183
NBCS_PORTPROTECT_1PLUS1, 66, 183
NBCS_PORTPROTECT_NONE, 66
NBCS_PORTPROTECT_UPSR, 66, 183
NBCS_PRESENT, 65, 102, 103, 123, 124, 126,

128, 132, 133, 134, 172, 179, 184, 186, 192,
193

NBCS_QUAD_BUS, 81, 82, 86, 96
NBCS_RX_BUS, 245
NBCS_SBS, 67, 74, 75, 78, 79, 80, 85, 89, 173,

175
NBCS_SBS_LITE_PARTNUM, 74, 75
NBCS_SBS_NUM_LINKS, 75, 80, 85, 89
NBCS_SBS_NUM_TSW, 79, 85
NBCS_SBS_PARTNUM, 74, 75
NBCS_SBSLITE, 67, 78, 173, 175
NBCS_SBSNSE_GROUP, 67
NBCS_SSWXFER_INPORT, 245
NBCS_SSWXFER_MAP, 245
NBCS_SSWXFER_MULTICAST, 245
NBCS_SSWXFER_OUTPORT, 245
NBCS_SSWXFER_STRTTHRU, 245
NBCS_SSWXFER_TIMESLOT, 245
NBCS_SSWXFER_UNICAST, 245
NBCS_START, 65, 102, 103, 127
NBCS_STSW_INPORT, 66, 148, 175, 176, 177
NBCS_STSW_MAP, 66, 148, 150, 173, 175, 176,

177
NBCS_STSW_OUTPORT, 66, 148, 149, 175,

176, 177
NBCS_STSW_TIME_INPORT, 66, 148, 175,

176, 177
NBCS_STSW_TIME_OUTPORT, 66, 148, 149,

173, 175, 176, 177
NBCS_STSW_UNICAST, 66, 148, 150, 175, 176,

177

NBCS_SUCCESS, 120, 121, 124, 125, 126, 127,
128, 129, 130, 131, 135, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 149, 151,
152, 153, 154, 155, 156, 157, 159, 160, 162,
163, 165, 166, 167, 168, 170, 171, 174, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 218, 222,
241, 242, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 264, 265, 266, 267, 268, 269,
270, 271, 272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291, 292, 293, 294, 295, 296,
297, 298, 299, 300, 301, 302, 303, 304, 305,
306, 307, 308, 309, 310, 311, 312, 313, 314

NBCS_SWH_BYTE, 67, 69, 104
NBCS_SWH_COLUMN, 67, 69, 104
NBCS_SWITCHOVER_SETTING, 67, 178
NBCS_T1_PYLD, 66, 98
NBCS_T2RLPBK, 67
NBCS_T82R8LPBK, 67
NBCS_TCB_DS3E3, 66
NBCS_TCB_STST3C, 66
NBCS_TCBVT_VT15, 66, 97
NBCS_TCBVT_VT2, 66, 97
NBCS_TCBVT_VT3, 66, 97
NBCS_TCBVT_VT6, 66, 97
NBCS_TMODE_HPT, 67, 91
NBCS_TMODE_LPT, 67, 91
NBCS_TMODE_MST, 67, 91
NBCS_TX_BUS, 245

DAL Functions
dalNbcsGetIlcRxHdr, 275, 300
dalNbcsSswActivate, 257
dalNbcsSswAdd, 254
dalNbcsSswAddInitProfile, 259
dalNbcsSswCenterLkcFifo, 266
dalNbcsSswCfgIlc, 270
dalNbcsSswCfgISRMode, 277, 279
dalNbcsSswCfgLkc, 269
dalNbcsSswCfgSwhParm, 261
dalNbcsSswClearISRMask, 278, 279
dalNbcsSswCntlIntf, 261
dalNbcsSswCntlLkc, 268
dalNbcsSswCntlLkcOpMode, 268
dalNbcsSswDeActivate, 257
dalNbcsSswDelete, 255
dalNbcsSswDeleteInitProfile, 260
dalNbcsSswDiagTestRam, 280
dalNbcsSswDiagTestReg, 280
dalNbcsSswEnableIlc, 270
dalNbcsSswEnaIsrC1fp, 279
dalNbcsSswForceLkcOca, 267
dalNbcsSswForceLkcOfa, 267

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 261
Document ID: PMC-2021248, Issue 1

dalNbcsSswGetActivePage, 265
dalNbcsSswGetCounts, 276
dalNbcsSswGetIlcRxMsg, 274, 275
dalNbcsSswGetIlcRxNumMsg, 274
dalNbcsSswGetIlcTxFifoLvl, 271
dalNbcsSswGetIlcTxHdr, 273, 274
dalNbcsSswGetInitProfile, 260
dalNbcsSswGetISRMask, 278
dalNbcsSswGetSrcSlot, 264
dalNbcsSswGetStatus, 277
dalNbcsSswInit, 255, 256, 259, 279
dalNbcsSswInsertLkcLcv, 266
dalNbcsSswInsertLkcTp, 269
dalNbcsSswMapSlot, 262, 263
dalNbcsSswModuleClose, 253
dalNbcsSswModuleOpen, 253
dalNbcsSswModuleStart, 254
dalNbcsSswModuleStop, 254
dalNbcsSswPoll, 277, 279
dalNbcsSswRead, 257
dalNbcsSswReadBlock, 258
dalNbcsSswReset, 256
dalNbcsSswSetActivePage, 265
dalNbcsSswSetIlcTxHdr, 272
dalNbcsSswSetIlcTxHdrPage, 272, 273
dalNbcsSswSetIlcTxHdrUser, 273
dalNbcsSswSetISRMask, 278
dalNbcsSswTxIlcMsg, 271
dalNbcsSswUpdate, 256
dalNbcsSswUpdateInactivePage, 266
dalNbcsSswWrite, 258
dalNbcsSswWriteBlock, 259
dalNbcsTswActivate, 286
dalNbcsTswAdd, 283
dalNbcsTswAddInitProfile, 288
dalNbcsTswCenterLkcFifo, 293
dalNbcsTswCfgC1fpDly, 313
dalNbcsTswCfgIlc, 296
dalNbcsTswCfgIntfBusMode, 309
dalNbcsTswCfgIntfBusParms, 309
dalNbcsTswCfgISRMode, 302, 304
dalNbcsTswCfgLkc, 295
dalNbcsTswCfgPrgm, 307
dalNbcsTswCfgPrgmPyld, 306
dalNbcsTswCfgSbiPyld, 311
dalNbcsTswCfgSbiTribTransMode, 312
dalNbcsTswCfgSwhParm, 290
dalNbcsTswCfgTelecomParms, 310
dalNbcsTswCfgTelecomPyld, 310
dalNbcsTswClearISRMask, 303
dalNbcsTswCntlIntf, 313
dalNbcsTswCntlLkc, 295
dalNbcsTswDeActivate, 286
dalNbcsTswDelete, 284

dalNbcsTswDeleteInitProfile, 289
dalNbcsTswDiagLpbk, 305
dalNbcsTswDiagTestRam, 305
dalNbcsTswDiagTestReg, 304, 305
dalNbcsTswEnableCas, 311
dalNbcsTswEnableIlc, 297
dalNbcsTswEnableSbiTribOutput, 312
dalNbcsTswEnaIsrC1fp, 304
dalNbcsTswForceLkcOca, 294
dalNbcsTswForceLkcOfa, 294
dalNbcsTswForcePrgmErr, 308
dalNbcsTswForcePrgmResync, 308
dalNbcsTswGetActivePage, 292
dalNbcsTswGetCounts, 301
dalNbcsTswGetIlcRxMsg, 299
dalNbcsTswGetIlcRxNumMsg, 299
dalNbcsTswGetIlcTxFifoLvl, 298
dalNbcsTswGetInitProfile, 289
dalNbcsTswGetISRMask, 302
dalNbcsTswGetSrcSlot, 291
dalNbcsTswGetStatus, 301
dalNbcsTswInit, 284, 285, 288, 304
dalNbcsTswInsertLkcLcv, 293
dalNbcsTswInsertLkcTp, 295
dalNbcsTswMapSlot, 290, 291
dalNbcsTswModuleClose, 282
dalNbcsTswModuleOpen, 282
dalNbcsTswModuleStart, 283
dalNbcsTswModuleStop, 283
dalNbcsTswPoll, 302, 304
dalNbcsTswRead, 286
dalNbcsTswReadBlock, 287
dalNbcsTswReset, 285
dalNbcsTswSelectLkc, 296
dalNbcsTswSetActivePage, 292
dalNbcsTswSetIlcTxHdr, 298
dalNbcsTswSetIlcTxMsg, 297, 298
dalNbcsTswSetISRMask, 303
dalNbcsTswUpdate, 285
dalNbcsTswUpdateInactivePage, 293
dalNbcsTswWrite, 287
dalNbcsTswWriteBlock, 288

Enumerated Types
eNBCS_ACCESSMODE_STSW, 66, 93, 149, 150
eNBCS_BUSTYPE, 66, 69, 104, 245, 251
eNBCS_BUSTYPE_DAL, 245
eNBCS_CALLTYPE, 67, 169
eNBCS_CHKPT_TYPE, 68, 103
eNBCS_CONMAP_CNTL, 67, 71, 73, 105, 246,

248
eNBCS_DEV_STATE, 103, 111, 115, 126, 218
eNBCS_DEVTYPE, 67, 70, 78, 92, 108, 111, 114,

130

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 262
Document ID: PMC-2021248, Issue 1

eNBCS_FABRIC_SETTING, 67, 110, 177
eNBCS_FABRIC_TYPE, 67, 72, 104
eNBCS_ILC_FIFO_TIMEOUT, 67, 91
eNBCS_IO_BUSMODE, 66, 95, 251
eNBCS_LKC_SWITCHMODE, 92, 246
eNBCS_LPBK, 67, 193, 305
eNBCS_MOD_STATE, 103, 218
eNBCS_MULTIFRM_MODE, 66, 95, 252
eNBCS_PORTPROTECT, 66, 113, 183
eNBCS_SBITRIB_TYPE, 66
eNBCS_SWH_ACCESSMODE_DAL, 245, 263,

291
eNBCS_SWHMODE, 67, 69, 104, 246
eNBCS_TCBTRIB_TYPE, 66, 97
eNBCS_TMODE, 67, 91
eNBCS_WPLINK_CNTL, 67, 71, 73, 105, 248
eSBS_SBITRIB_TYPE, 98

Example Functions
nbcsInitMivCentralSbiByte, 237
nbcsInitMivCentralTelecombus, 236
nbcsInitMivDistCoreTelecombus, 238
nbcsInitMivDistLineTelecombus, 239
nbcsInitNseDivLPT, 238
nbcsInitSbsDivHPT77, 236
nbcsNseDivHPT, 237

Header File
nbcs_api.h, 210, 221
nbcs_app.h, 211
nbcs_dal.h, 211
nbcs_debug.h, 211
nbcs_defs.h, 210, 214, 221
nbcs_err.h, 210, 214, 221
nbcs_fns.h, 210, 221
nbcs_rtos.h, 210, 212, 215, 221
nbcs_strs.h, 210, 221
nbcs_typs.h, 211, 212, 214, 221

Pointers
pAuxBits, 164
pBaseAddr, 77, 78
pblock, 133, 134, 258, 259, 287, 288
pBuf, 89, 90, 93, 161, 172, 173, 175, 176, 203, 297
pbuf1, 111
pbuf2, 111
pBuf2, 93, 173, 175, 177
pbuf3, 111
pBuf3, 93, 174, 175, 177
pbufSz, 241, 242
pBusCfg, 135
pBusParm, 309, 310
pCfg, 146, 166, 167, 307

pcntl, 261, 313, 314
pCntl, 139
pCntr, 190, 276, 301
pDevErr, 111, 114
pDevHandle, 123, 125
pDevInfo, 122, 123, 124
pdpv, 195, 196, 197, 199, 215
pdstSlot, 169, 170, 180, 181
pEgrsPriWireTbl, 178, 179
pEgrsSecWireTbl, 178, 179
pfirstByte, 201
pfunc, 204
pGdb, 106
pGroupHndl, 123, 124
pHdr, 157, 177
phead, 272, 274, 275, 276, 298, 299, 300
pHndl, 254, 255, 283, 284
pIgrsPriWireTbl, 178, 179
pIgrsSecWireTbl, 178, 179
pinport, 262, 263, 264, 265
pInport, 148, 149, 150, 151
pInSlot, 148, 149, 150, 151
pLinkBits, 164
pmask, 134, 259, 278, 279, 288, 302, 303
pmaxDevs, 219
pmiv, 253, 282
pMiv, 120
pModErr, 108
pmsgDesc, 158, 275
pNseDiv, 76, 77
pNseInitProfs, 107
pNumMsg, 160, 162, 163
pNumRxMsg, 160
poutport, 262, 263
pOutport, 148, 149, 150, 151
pOutSlot, 148, 149, 150, 151, 291
pPage, 265, 272, 273, 292
pPageBits, 164
pPageNum, 153
pperrDevice, 122, 123, 124, 254, 255, 283, 284
ppNse, 107, 108
pProfile, 130, 131, 259, 260, 288, 289
pProfileNum, 130, 259, 260, 288, 289
ppSbs, 107, 108
pPyldCfg, 136, 137, 166, 306
prxBufDesc, 275, 299, 300
pSbiPyld, 311
pSbsDiv, 76, 77
pSbsInitProf, 76, 77
pSbsInitProfs, 107
psrcSlot, 169, 170, 180, 181
ptestRam, 193, 280, 281, 305
ptestReg, 192, 280, 305
pTimeSlot, 148

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 263
Document ID: PMC-2021248, Issue 1

pTrib, 137, 138, 311, 312, 313
pTribCfg, 137, 138
pTxBufDesc, 161, 162
pTxHandle, 158, 159, 160
pUserBits, 164
pUsrCtxt, 123, 124

Porting Functions and Macros
sysNbcsBufferStart, 117, 202, 213
sysNbcsBufferStop, 203, 214
sysNbcsDPVBufferGet, 202, 214
sysNbcsDPVBufferRtn, 117, 194, 195, 196, 197,

198, 199, 203, 214, 221
sysNbcsMemAlloc, 201, 212
sysNbcsMemCpy, 212
sysNbcsMemFree, 201, 212
sysNbcsMemSet, 212
sysNbcsPreemptDisable, 207, 208, 214
sysNbcsPreemptEnable, 207, 208, 214
sysNbcsRead(), 219
sysNbcsSemCreate, 205, 206, 212
sysNbcsSemDelete, 207, 213
sysNbcsSemGive, 206, 213
sysNbcsSemTake, 206, 213
sysNbcsTimerAbort, 204, 213
sysNbcsTimerCreate, 203, 204, 213
sysNbcsTimerDelete, 205, 213
sysNbcsTimerSleep, 205, 213
sysNbcsTimerStart, 204, 213

Source Files
nbcs_api.c, 209, 219
nbcs_app.c, 211, 215, 241
nbcs_dal_null.c, 211
nbcs_dal_sbsnse.c, 210, 221
nbcs_debug.c, 211
nbcs_diag.c, 209, 220
nbcs_evt.c, 210, 220
nbcs_fmgt.c, 209, 220
nbcs_ilc.c, 209, 220
nbcs_intf.c, 209, 220
nbcs_lkc.c, 209, 220
nbcs_prgm.c, 209, 220
nbcs_profile.c, 211, 236
nbcs_rtos.c, 210, 212, 213, 221
nbcs_stats.c, 210, 220
nbcs_stsw.c, 209, 220
nbcs_util.c, 210, 221

Structures
sNBCS_CFG_BUSMODE, 94, 95, 248, 251, 309
sNBCS_CFG_BUSMODE_DAL, 251, 309
sNBCS_CFG_BUSPARAM, 94, 95, 96, 249, 310

sNBCS_CFG_ILC, 75, 76, 91, 247, 270, 296
sNBCS_CFG_INTF_BUS, 75, 94, 113, 135, 251,

309
sNBCS_CFG_INTF_BUSPARM_DAL, 251, 309
sNBCS_CFG_INTF_CSU, 94, 139, 313
sNBCS_CFG_LKC, 75, 76, 91, 146, 247, 269, 295
sNBCS_CFG_PRGM, 93, 166, 306, 307
sNBCS_CFG_PRGM_PYLD, 93, 166, 306
sNBCS_CFG_PYLD_SBI, 98, 113, 136, 311, 312
sNBCS_CFG_PYLD_TCB, 97, 113, 136, 310
sNBCS_CFG_SWH_DAL, 246, 247, 261, 290
sNBCS_CFG_TRIB_SBI, 98, 113, 137
sNBCS_CNTR, 88, 190, 218, 276, 301
sNBCS_CNTR_LOH, 218
sNBCS_CONMAP_STSW, 92, 174, 177
sNBCS_CSDDB, 108, 109, 111, 113, 114, 117,

218
sNBCS_CSDDB_NSE, 108, 109, 114, 117
sNBCS_CSDDB_SBS, 108, 109, 111, 113, 117
sNBCS_CSMDB, 102
sNBCS_CTL_CSU_DAL, 249
sNBCS_CTL_INTF_SSW_DAL, 249, 261
sNBCS_DEV_ID_PARM, 112, 115, 116
sNBCS_DEV_SETTINGS, 110
sNBCS_DEVINFO, 78, 116, 122, 123
sNBCS_DIAG_TEST_RAM, 101, 193, 280, 305
sNBCS_DIAG_TEST_REG, 101, 192, 280, 305
sNBCS_DIV, 75, 77, 107, 116, 127, 130, 246,

247, 255, 256, 259, 260, 284, 285, 288, 289
sNBCS_DIV_NSE, 75, 77, 107, 116
sNBCS_DIV_SBS, 75, 77, 107
sNBCS_DIV_SSW_DAL, 246, 255, 256, 259, 260
sNBCS_DIV_TSW_DAL, 247, 284, 285, 288, 289
sNBCS_DPV, 118, 195, 196, 197, 199, 215
sNBCS_DRV_NSE, 106, 108
sNBCS_DRV_SBS, 106, 108
sNBCS_EDGE_WIRING, 100, 178
sNBCS_GDB, 108
sNBCS_GDB, 106, 117
sNBCS_HEADER_ILC, 89, 157, 272, 274, 275,

298, 300
sNBCS_HNDL, 84, 88, 92, 99, 109, 111, 114,

117, 122, 123, 125, 126, 127, 128, 129, 132,
133, 134, 135, 136, 137, 139, 140, 141, 142,
143, 145, 146, 147, 149, 150, 152, 153, 154,
155, 156, 157, 158, 160, 161, 162, 164, 166,
167, 168, 183, 184, 186, 187, 188, 189, 190,
191, 192, 193, 264, 313

sNBCS_LIB_OPA, 106, 109
sNBCS_MASK_EVT, 79, 80, 81, 82, 83, 84, 187,

188
sNBCS_MASK_EVT_ILC, 80, 81, 83
sNBCS_MASK_EVT_INTF, 79, 80, 81
sNBCS_MASK_EVT_LKC, 80, 81, 82

Dow
nl

oa
de

d
by

 a
hm

ed
 m

et
w

al
y

of
 s

ili
co

ne
xp

er
t o

n
Tu

es
da

y,
 1

9
Nov

em
be

r,
20

02
 0

6:
36

:5
2

AM

Narrowband Chipset Device Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 264
Document ID: PMC-2021248, Issue 1

sNBCS_MASK_EVT_NSE, 80
sNBCS_MASK_EVT_PRGM, 80, 84
sNBCS_MASK_EVT_SBS, 79
sNBCS_MASK_EVT_STSW, 79, 81, 82
sNBCS_MASK_ISR, 218
sNBCS_MIV, 68, 120, 245, 253, 282
sNBCS_MSG_DESC_ILC, 89, 90
sNBCS_RXBUF_DESC_ILC, 90, 158, 275, 299
sNBCS_SLOT, 99, 169, 170, 180, 181, 185
sNBCS_STATUS, 84, 85, 86, 87, 88, 191, 218,

277, 301
sNBCS_STATUS_DLL, 86
sNBCS_STATUS_INTF, 85
sNBCS_STATUS_LKC, 85, 88
sNBCS_STATUS_PRGM, 85, 88
sNBCS_STATUS_SIGBUS, 86, 87
sNBCS_STATUS_STSW, 85, 87

sNBCS_TRIB_SBI, 99, 100, 137, 311, 312
sNBCS_TRIB_TCB, 99
sNBCS_TXBUF_ILC, 90
sNBCS_USR_CTXT, 111, 115, 122, 123, 194,

195, 196, 197, 198, 199, 215
uNBCS_HANDLE, 117

Variables
maxDevs, 108, 219, 245
maxGroups, 68, 69, 106
maxInitProfs, 245
maxNseDevs, 68, 106
maxNseInitProfs, 68, 69, 106
maxSbsDevs, 68, 69, 106
maxSbsInitProfs, 68, 69, 106
nbcsMdb, 118

	TITLE PAGE
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Narrowband Chipset Overview
	Software Architecture
	Driver External Interfaces
	Application Programming Interface
	Real-Time OS (RTOS) Interface
	Driver Abstraction Layer (DAL)

	Main Components
	Chipset Module Data-Block
	Module and Chipset Device Management
	Event Processing
	Status and Counts
	Interface/Clock Configuration
	LVDS Serial Link Control
	Space/Time Switch Configuration
	Fabric Management Module
	In-band Link Communication Module
	PRGM Diagnostics
	Chipset Device Diagnostics

	Software States
	Module States
	Chipset Group and Device States

	Operation Processing Flows
	Module Management
	Chipset Device Management
	Group Management
	Typical CSD Startup Sequence
	Connection Setup and Teardown
	1+1 Port Protection in Distributed System
	Adding New Line/Service Card
	Replacing Working Line/Service Card

	Event Processing
	Calling nbcsPoll

	CSD API Availability

	Data Structures
	Constants
	Structures Passed by the Application
	Module and Device Management
	Event Servicing
	Status and Counts Structures
	In-band Link Controller
	LVDS Link Controller
	Space/Time Switch Configuration
	Pseudo Random Bit Sequence Generator/Monitor Configuration
	Interface/Clock Configuration
	Fabric Management Module
	Device Diagnostics Structures (DIAG_TEST)

	Structures in the Driver’s Allocated Memory
	Chipset Module Data Block: CSMDB
	Group Data Block: GDB
	Device Driver Database Block: DRV_SBS, DRV_NSE
	OPA Library Database Block: LIB_OPA
	Device Settings Header: DEV_SETTINGS
	SBS Chipset Device Data Block: CSDDB_SBS
	NSE Chipset Device Data Block: CSDDB_NSE
	Device Identification Parameter Block: DEV_ID_PARM
	Generic Device/Group Handle: HANDLE

	Structures Passed through RTOS Buffers
	Deferred Processing Vector: DPV

	Global Variables

	Application Programming Interface
	Module, Device and Group Management
	Opening the Driver Module: nbcsModuleOpen
	Closing the Driver Module: nbcsModuleClose
	Starting the Driver Module: nbcsModuleStart
	Stopping the Driver Module: nbcsModuleStop
	Adding a Device: nbcsAdd
	Defining a Group or Adding Devices to a Group: nbcsGroupAdd
	Deleting a Group or Devices from a Group: nbcsGroupDelete
	Getting the state of a Group: nbcsGroupGetState
	Deleting a Device: nbcsDelete
	Initializing a Device: nbcsInit
	Resetting a Device: nbcsReset
	Activating a Device: nbcsActivate
	De-Activating a Device: nbcsDeActivate
	Adding an Initialization Profile: nbcsAddInitProfile
	Getting an Initialization Profile: nbcsGetInitProfile
	Deleting an Initialization Profile: nbcsDeleteInitProfile
	Reading from Device Registers: nbcsRead
	Writing to Device Registers: nbcsWrite
	Reading from a block of Device Registers: nbcsReadBlock
	Writing to a Block of Device Registers: nbcsWriteBlock

	Interface/Clock Configuration
	Configuring Bus Interface: nbcsIntfCfgBus
	Configuring Bus Payload Type: nbcsIntfCfgPyld
	Configuring SBI Bus Tributaries: nbcsIntfCfgTrib
	Configuring the CSU/DLL: nbcsIntfCfgCsu
	Configuring the C1 Frame Pulse Delay: nbcsIntfCfgC1FrmDly

	LVDS Serial Link Control
	Inserting line code violation: nbcsLkcInsertLcv
	Centering transmit FIFO: nbcsLkcCenterFifo
	Forcing out-of-character alignment: nbcsLkcForceOca
	Forcing out-of-frame alignment: nbcsLkcForceOfa
	Controlling LVDS link operation mode: nbcsLkcCntl
	Configuring LVDS link parameters: nbcsLkcCfg
	Inserting Test Pattern in LVDS link: nbcsLkcInsertTp

	Space/Time Switch Configuration
	Mapping the time slot: nbcsStswMapSlot
	Getting the source slot: nbcsStswGetSrcSlot
	Copying connection page: nbcsStswCopyPage
	Getting active connection page number: nbcsStswGetPage
	Toggling the connection page: nbcsStswTogglePage
	Setting active connection page number: nbcsStswSetPage

	In-band Communication Link
	Controlling in-band link controller: nbcsIlcCntl
	Retrieving the received header bytes: nbcsIlcGetRxHdr
	Retrieving the received messages: nbcsIlcGetRxMsg
	Getting the number of received messages: nbcsIlcGetRxNumMsg
	Sending in-band link messages: nbcsIlcTxMsg
	Querying Free Space in ILC Tx FIFO: nbcsIlcGetTxFifoLvl
	Setting Tx Message Header: nbcsIlcSetTxHdr

	PRBS Generator and Monitor
	Configuring payload for the PRGM: nbcsPrgmCfgPyld
	Configuring the PRGM: nbcsPrgmCfg
	Forcing a bit error in the PRGM: nbcsPrgmForceErr
	Resynchronizing in the PRGM: nbcsPrgmResync

	Narrowband Switching Service Module
	Mapping virtual tributaries: nbcsFmgtMapTrib
	Unmapping virtual tributary: nbcsFmgtUnMapTrib
	Setting chipset to loopback state: nbcsFmgtSetLpbkMode
	Retrieving Current Connection Map: nbcsFmgtGetMap
	Retrieving Changed Setting of the Connection Map: nbcsFmgtGetChgMap
	Defining the Physical Wiring of the Fabric: nbcsFmgtDefWiring
	Mapping DS0 in SBI bus mode: nbcsFmgtMapDS0
	Unmapping DS0 in SBI bus mode: nbcsFmgtUnMapDS0
	Reserving total number of virtual tributaries for CAS routes: nbcsFmgtRsvpCasRoute
	Setting Port Protection: nbcsFmgtSetProtect
	Clearing Port Protection: nbcsFmgtClearProtect
	Switching Over a Port Protection: nbcsFmgtSwitchProtect

	Event Processing Functions
	Polling the Chipset Driver Events: nbcsPoll
	Getting the Event Enable Mask: nbcsEventGetMask
	Setting the Event Mask: nbcsEventSetMask
	Clearing the Event Mask: nbcsEventClearMask
	Detecting C1 Frame Pulse: nbcsEventDetectC1FP

	Status and Counts Functions
	Reading the Device Counters: nbcsStatsGetCounts
	Getting the Current Status: nbcsStatsGetStatus

	Device Diagnostics
	Testing Register Accesses: nbcsDiagTestReg
	Testing RAM Accesses: nbcsDiagTestRam
	Controlling diagnostic loopback: nbcsDiagLpbk

	Callback Functions
	Notifying the Application of ILC data received events: cbackIlcRxData
	Notifying the Application of ILC header bits changed events: cbackIlcHead
	Notifying the Application of Interface events: cbackIntf
	Notifying the Application of LVDS Link events: cbackLkc
	Notifying the Application of Space/time Switch events: cbackStsw
	Notifying the Application of C1 Frame Pulse: cbackC1FP
	Notifying the Application of PRGM events: cbackPrgm

	Hardware Interface
	RTOS Interface
	Memory Allocation / De-Allocation
	Allocating Memory: sysNbcsMemAlloc
	Freeing Memory: sysNbcsMemFree

	Buffer Management
	Starting Buffer Management: sysNbcsBufferStart
	Getting a DPV Buffer: sysNbcsDPVBufferGet
	Returning a DPV Buffer: sysNbcsDPVBufferRtn
	Stopping Buffer Management: sysNbcsBufferStop

	Timers
	Creating a Timer: sysNbcsTimerCreate
	Starting a Timer: sysNbcsTimerStart
	Aborting a Timer: sysNbcsTimerAbort
	Deleting a Timer: sysNbcsTimerDelete
	Suspending a Task: sysNbcsTimerSleep

	Semaphores
	Creating a Semaphore: sysNbcsSemCreate
	Taking a Semaphore: sysNbcsSemTake
	Giving a Semaphore: sysNbcsSemGive
	Deleting a Semaphore: sysNbcsSemDelete

	Preemption
	Disabling Preemption: sysNbcsPreemptDisable
	Re-Enabling Preemption: sysNbcsPreemptEnable

	Porting the Narrowband Chipset Driver
	Driver Source Files
	Driver Porting Procedures
	Step 1: Porting Driver RTOS Extensions
	Step 2: Porting Driver Application-Specific Elements
	Step 3: Building the Driver
	Module Initialization Vector: nbcsInitMivCentralTelecombus
	SBS Device Initialization Vector: nbcsInitSbsDivHPT77
	NSE Device Initialization Vector: nbcsNseDivHPT
	Module Initialization Vector: nbcsInitMivCentralSbiByte
	SBS Device Initialization Vector: nbcs InitSbsDivLPT19
	NSE Device Initialization Vector: nbcsInitNseDivLPT
	Module Initialization Vector: nbcsInitMivDistCoreTelecombus
	Module Initialization Vector: nbcsInitMivDistLineTelecombus
	Overview
	Getting Checkpoint Information from the CSD: nbcsGetCheckPoint
	Setting Checkpoint Information in the CSD: nbcsSetCheckPoint
	Opening the Space Switch Driver Module: dalNbcsSswModuleOpen
	Closing the Space Switch Driver Module: dalNbcsSswModuleClose
	Starting the Space Switch Driver Module: dalNbcsSswModuleStart
	Stopping the Space Switch Driver Module: dalNbcsSswModuleStop
	Adding a Device: dalNbcsSswAdd
	Deleting a Device: dalNbcsSswDelete
	Initializing a Device: dalNbcsSswInit
	Updating the Configuration of a Device: dalNbcsSswUpdate
	Resetting a Device: dalNbcsSswReset
	Activating a Device: dalNbcsSswActivate
	De-Activating a Device: dalNbcsSswDeActivate
	Reading from Device Registers: dalNbcsSswRead
	Writing to Device Registers: dalNbcsSswWrite
	Reading from a block of Device Registers: dalNbcsSswReadBlock
	Writing to a Block of Device Registers: dalNbcsSswWriteBlock
	Adding an Initialization Profile: dalNbcsSswAddInitProfile
	Getting an Initialization Profile: dalNbcsSswGetInitProfile
	Deleting an Initialization Profile: dalNbcsSswDeleteInitProfile
	Getting/Setting Control: dalNbcsSswCntlIntf
	Configuring the Space Switch: dalNbcsSswCfgSwhParm
	Setting Up Connections: dalNbcsSswMapSlot
	Getting Source Connections: dalNbcsSswGetSrcSlot
	Getting Active Page: dalNbcsSswGetActivePage
	Setting Active Page: dalNbcsSswSetActivePage
	Updating Inactive Page: dalNbcsSswUpdateInactivePage
	Inserting line code violation: dalNbcsSswInsertLkcLcv
	Centering transmit FIFO: dalNbcsSswCenterLkcFifo
	Forcing out-of-character alignment: dalNbcsSswForceLkcOca
	Forcing out-of-frame alignment: dalNbcsSswForceLkcOfa
	Enabling/Disabling the LVDS Link: dalNbcsSswCntlLkc
	Accessing Link Operation Mode: dalNbcsSswCntlLkcOpMode
	Configuring LVDS link parameters: dalNbcsSswCfgLkc
	Inserting Test Pattern in LVDS link: dalNbcsSswInsertLkcTp
	Configuring the In-band Link Controller: dalNbcsSswCfgIlc
	Enabling/Disabling Tx/Rx ILC: dalNbcsSswEnableIlc
	Sending Messages in ILC: dalNbcsSswTxIlcMsg
	Querying Free Space in ILC Tx FIFO: dalNbcsSswGetIlcTxFifoLvl
	Setting Tx Message Header: dalNbcsSswSetIlcTxHdr
	Setting PAGE bits in Tx Message Header: dalNbcsSswSetIlcTxHdrPage
	Setting USER bits in Tx Message Header: dalNbcsSswSetIlcTxHdrUser
	Getting Tx Message Header: dalNbcsSswGetIlcTxHdr
	Getting Number of Messages in Rx FIFO: dalNbcsSswGetIlcRxNumMsg
	Getting Messages in Rx FIFO: dalNbcsSswGetIlcRxMsg
	Getting Rx Header Bytes: nbcsIlcGetRxHdr
	Reading the Device Counters: dalNbcsSswGetCounts
	Getting the Current Status: dalNbcsSswGetStatus
	Configuring ISR Processing: dalNbcsSswCfgISRMode
	Getting the Interrupt Enable Mask: dalNbcsSswGetISRMask
	Setting the Interrupt Enable Mask: dalNbcsSswSetISRMask
	Clearing the Interrupt Enable Mask: dalNbcsSswClearISRMask
	Polling the Interrupt Status Registers: dalNbcsSswPoll
	Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsSswEnaIsrC1fp
	Testing Register Accesses: dalNbcsSswDiagTestReg
	Testing RAM Accesses: dalNbcsSswDiagTestRam
	Opening the Space Switch Driver Module: dalNbcsTswModuleOpen
	Closing the Space Switch Driver Module: dalNbcsTswModuleClose
	Starting the Space Switch Driver Module: dalNbcsTswModuleStart
	Stopping the Space Switch Driver Module: dalNbcsTswModuleStop
	Adding a Device: dalNbcsTswAdd
	Deleting a Device: dalNbcsTswDelete
	Initializing a Device: dalNbcsTswInit
	Updating the Configuration of a Device: dalNbcsTswUpdate
	Resetting a Device: dalNbcsTswReset
	Activating a Device: dalNbcsTswActivate
	De-Activating a Device: dalNbcsTswDeActivate
	Reading from Device Registers: dalNbcsTswRead
	Writing to Device Registers: dalNbcsTswWrite
	Reading from a block of Device Registers: dalNbcsTswReadBlock
	Writing to a Block of Device Registers: dalNbcsTswWriteBlock
	Adding an Initialization Profile: dalNbcsTswAddInitProfile
	Getting an Initialization Profile: dalNbcsTswGetInitProfile
	Deleting an Initialization Profile: dalNbcsTswDeleteInitProfile
	Configuring the Time Switch: dalNbcsTswCfgSwhParm
	Setting Up Connections: dalNbcsTswMapSlot
	Getting Source Connections: dalNbcsTswGetSrcSlot
	Getting Active Page: dalNbcsTswGetActivePage
	Setting Active Page: dalNbcsTswSetActivePage
	Updating Inactive Page: dalNbcsTswUpdateInactivePage
	Inserting line code violation: dalNbcsTswInsertLkcLcv
	Centering transmit FIFO: dalNbcsTswCenterLkcFifo
	Forcing out-of-character alignment: dalNbcsTswForceLkcOca
	Forcing out-of-frame alignment: dalNbcsTswForceLkcOfa
	Enabling/Disabling the LVDS Link: dalNbcsTswCntlLkc
	Configuring LVDS link parameters: dalNbcsTswCfgLkc
	Inserting Test Pattern in LVDS link: dalNbcsTswInsertLkcTp
	Selecting Active LVDS link: dalNbcsTswSelectLkc
	Configuring the In-band Link Controller: dalNbcsTswCfgIlc
	Enabling/Disabling Tx/Rx ILC: dalNbcsTswEnableIlc
	Sending Messages in ILC: dalNbcsTswSetIlcTxMsg
	Querying Free Space in ILC Tx FIFO: dalNbcsTswGetIlcTxFifoLvl
	Setting Tx Message Header: dalNbcsTswSetIlcTxHdr
	Getting Number of Messages in Rx FIFO: dalNbcsTswGetIlcRxNumMsg
	Getting Messages in Rx FIFO: dalNbcsTswGetIlcRxMsg
	Getting Rx Header Bytes: dalNbcsGetIlcRxHdr
	Reading the Device Counters: dalNbcsTswGetCounts
	Getting the Current Status: dalNbcsTswGetStatus
	Configuring ISR Processing: dalNbcsTswCfgISRMode
	Getting the Interrupt Enable Mask: dalNbcsTswGetISRMask
	Setting the Interrupt Enable Mask: dalNbcsTswSetISRMask
	Clearing the Interrupt Enable Mask: dalNbcsTswClearISRMask
	Polling the Interrupt Status Registers: dalNbcsTswPoll
	Enabling/Disabling the C1 Frame Pulse Interrupt: dalNbcsTswEnaIsrC1fp
	Testing Register Accesses: dalNbcsTswDiagTestReg
	Testing RAM Accesses: dalNbcsTswDiagTestRam
	Controlling diagnostic loopbacks: dalNbcsTswDiagLpbk
	Configuring payload for the PRGM: dalNbcsTswCfgPrgmPyld
	Configuring the PRGM: dalNbcsTswCfgPrgm
	Forcing a bit error in the PRBS sequence: dalNbcsTswForcePrgmErr
	Forcing Resynchronization in incoming PRBS data stream: dalNbcsTswForcePrgmResync
	Configuring the TeleCombus/SBI Bus Mode: dalNbcsTswCfgIntfBusMode
	Configuring the bus parameters: dalNbcsTswCfgIntfBusParms
	Configuring the TeleCombus Parameters: dalNbcsTswCfgTelecomParms
	Configuring the TeleCombus Payload: dalNbcsTswCfgTelecomPyld
	Configuring the SBI Bus Payload: dalNbcsTswCfgSbiPyld
	Enabling/Disabling CAS in a SBI Bus Tributary: dalNbcsTswEnableCas
	Enabling/Disabling SBI Bus Tributary Output: dalNbcsTswEnableSbiTribOutput
	Configuring the SBI Bus Tributary Mode: dalNbcsTswCfgSbiTribTransMode
	Configuring the C1 frame pulse delay: dalNbcsTswCfgC1fpDly
	Controlling the CSU/DLL : dalNbcsTswCntlIntf

