16-bit Proprietary Microcontroller

CMOS

F^{2} MC-16L MB90650A Series

MB90652A/653A/P653A/654A/F654A

■ DESCRIPTION

The MB90650A series are 16-bit microcontrollers designed for high speed real-time processing in consumer product applications such as controlling celluar phones, CD-ROMs, or VTRs. Based on the $\mathrm{F}^{2} \mathrm{MC}^{* 1}-16 \mathrm{~L}$ CPU core, an $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ is used as the CPU. This CPU includes high-level language-support instructions and robust task switching instructions, and additional addressing modes. In order to reduce the consumption current, dualclock (main/sub) is used. Furthermore, low consumption power supply is achieved by using stop mode, sleep mode, watch mode, pseudo-watch mode, CPU intermittent operation mode.
Microcontrollers in this series have built-in peripheral resources including 10 -bit A/D converter, 8 -bit D/A converter, UART, 8/16-bit PPG, 8/16-bit up/down counter/timer, ${ }^{12}$ C interface ${ }^{* 2}$, $8 / 16$-bit I/O timer (input capture, output compare, and 16-bit free-run timer).
*1:F²MC stands for FUJITSU Flexible Microcontroller.
*2:Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

\square FEATURES

F^{2} MC-16L CPU

- Minimum execution time: $62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ oscillation (Uses PLL clock multiplication) maximum multiplier $=4$
- Instruction set optimized for controller applications Object code compatibility with $\mathrm{F}^{2} \mathrm{MC}$-16(H)
(Continued)

PACKAGE

100-pin plastic LQFP
(FPT-100P-M05)
(FPT-100P-M06)

MB90650A Series

(Continued)
Wide range of data types (bit, byte, word, and long word)
Improved instruction cycles provide increased speed
Additional addressing modes: 23 modes
High code efficiency
Access methods (bank access, linear pointer)
High precision operations are enhanced by use of a 32-bit accumulator Extended intelligent I/O service (access area extended to 64 Kbytes) Maximum memory space: 16 Mbytes

- Enhanced high level language (C) and multitasking support instructions Use of a system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function that does not use instruction (extended I2OS)

PRODUCT LINEUP

Part number Item	MB90652A	MB90653A	MB90P653A	MB90V650A	MB90654A	MB90F654A
Classification	Mask ROM product		OTPROM product	For evaluation	Mask ROM product	FLASH product
ROM size	64 Kbytes	128 Kbytes		-	256 Kbytes	
RAM size	3 Kbytes	5 Kbytes			8 Kbytes	
Power supply voltage	2.2 V to 3.6 V		2.7 V to 5.5 V		2.2 V to 3.6 V 2.4 V to 3.6 V	
CPU functions	The number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time:			```340 8/16 bits 1 to 7 bytes 1/4/8/16/32 bits \(62.5 \mathrm{~ns} / 4 \mathrm{MHz}(\) PLL multiplier \(=4)\) \(1.0 \mu \mathrm{~s} / 16 \mathrm{MHz}\) (minimum)```		
Ports	I/O ports (N-channel open-drain): I/O ports (CMOS):			```4 75 (Input pull-up resistors available: 24/ Can be set as N-channel open-drain: 8) 79```		
A/D converter	Analog inpu 10-bit Conversion $6.13 \mu \mathrm{~s}$: 8 channels solution me : minimum 16 MHz	Analog inputs: 8 channels10-bit resolutionConversion time : minimum 12.25$\mu \mathrm{~s} / 8 \mathrm{MHz}$		Analog inputs : 8 channels 10-bit resolution Conversion time : minimum $6.13 \mu \mathrm{~s} / 16 \mathrm{MHz}$	
D/A converter	2 channels (independent), 8-bit resolution, R-2R type					
8/16-bit up/down counter/timer	16 bits $\times 1$ channel $/ 8$ bits $\times 2$ channels selectable Includes reload and compare functions.					
$1^{2} \mathrm{C}$ interface	1 channelMaster mode/slave mode available					
UART	1 channel Clock synchronous communication Clock asynchronous communication					
I/O extended serial interface	8 bits $\times 2$ channelsLSB-first or MSB-first operation selecable					
8/16-bit PPG	8 bits $\times 2$ channels/16 bits $\times 1$ channel selectable					
16-bit I/O timer	1 channel(Input capture $\times 2$ channels, output compare $\times 4$ channels, and free-run timer $\times 1$ channel)					
DTP/external interrupt	8 inputs					
Timer functions	Timebase timer (18-bit)/watchdog timer (18-bit)/watch timer (15-bit)					
DTMF generator	Supports every ITU-T (CCITT) tone for output (Internal 16 MHz shall be used for DTMF generator).					
Low-power consumption modes	CPU intermittent operation mode, sub clock mode, stop mode, sleep mode, watch mode, pseudo-watch mode					
PLL function	Selectable multiplier: 1/2/3/4 (Set a multiplier that does not exceed the assured operation frequency range.)					
Other		-	$V_{P P}$ is shared with the MD2 pin (for EPROM programming)		-	
Package	FPT-100P-M05, FPT-100P-M06			PGA-256C-A02	FPT-100P-M05, FPT-100P-M06	

Notes: - MB90V650A device is assured only when operate with the tools, under the condition of power supply voltage: 2.7 V to 3.3 V , operating temparature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and operating frequency: 1.5 MHz to 8 MHz

- For more information about each package, see seciton "PACKAGE DIMENSIONS".

MB90650A Series

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)
(Top view)

(FPT-100P-M06)

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
80	82	X0	A	Crystal oscillator pin
81	83	X1	A	Crystal oscillator pin
77	79	X1A	B	Crystal oscillatort pins (32 kHz)
78	80	X0A	B	Crystal oscillatort pins (32 kHz)
47 to 49	49 to 51	MD0 to MD2	D	Operating mode selection pins Connect directly to Vcc or Vss.
50	52	TEST	D	Test input pin This pin must always be fixed to " H ".
75	77	$\overline{\mathrm{RST}}$	C	Reset input pin
83 to 90	85 to 92	P00 to P07	$\begin{gathered} \mathrm{E} \\ (\mathrm{STBC}) \end{gathered}$	General-purpose I/O ports Pull-up resistors can be set (RD07 to RD00 = "1") using the pull-up resistor setting register (RDRO). The setting does not apply for ports set as outputs (D07 to D00 = "1": invalid at the output setting).
		AD00 to AD07		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).
91 to 98	93 to 100	P10 to P17	$\underset{(\mathrm{ETBC})}{\mathrm{E}}$	General-purpose I/O ports Pull-up resistors can be set (RD17 to RD10 = " 1 ") using the pull-up resistor setting register (RDR1). The setting does not apply for ports set as outputs (D17 to D10 = "1": invalid at the output setting).
		AD08 to AD15		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).
$\begin{gathered} 99 \\ 100, \\ 1 \text { to } 6 \end{gathered}$	$\begin{gathered} 1, \\ 2, \\ 3 \text { to } 8 \end{gathered}$	$\begin{aligned} & \text { P20, } \\ & \text { P21, } \\ & \text { P22 to P27 } \end{aligned}$	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the HACR register is " 0 " function as the P20 to P27 pins.
		A16, A17, A18 to A23		In external bus mode, pins for which the corresponding bit in the HACR register is " 1 " function as the upper address output pins (A16 to A23).
7	9	P30	$\begin{gathered} \text { I } \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the ALE pin in external bus mode.
		ALE		Functions as the address latch enable signal.
8	10	P31	$\begin{gathered} \text { I } \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the $\overline{\mathrm{RD}}$ pin in external bus mode.
		$\overline{\mathrm{RD}}$		Functions as the read strobe output ($\overline{\mathrm{RD}}$).
10	12	P32	$\begin{gathered} \text { I } \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the WRL pin in external bus mode if the WRE bit in the ECSR register is " 1 ".
		$\overline{\text { WRL }}$		Functions as the lower data write strobe output ($\overline{\mathrm{WRL}}$).

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90650A Series

Pin no.		Pin name	$\begin{aligned} & \text { Circuit } \\ & \text { type } \end{aligned}$	Function
LQFP*1	QFP*2			
11	13	P33	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the ECSR register is " 1 ".
		$\overline{\text { WRH }}$		Functions as the upper data write strobe output ($\overline{\mathrm{WRH}}$).
12	14	P34	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the ECSR register is " 1 ".
		HRQ		Functions as the hold request input pin (HRQ).
13	15	P35	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the ECSR register is " 1 ".
		$\overline{\text { HAK }}$		Functions as the hold acknowledge output ($\overline{\mathrm{HAK}}$) pin.
14	16	P36	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the ECSR register is " 1 ".
		RDY		Functions as the external ready input (RDY) pin.
15	17	P37	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the ECSR register is " 1 ".
		CLK		Functions as the machine cycle clock output (CLK) pin.
16	18	P40	$\begin{gathered} \mathrm{H} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port When UART0 is operating, the data at the pin is used as the serial input (SINO). Can be set as an open-drain output port (OD40 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D40 = "0": invalid at the input setting).
		SIN0		Functions as the UARTO serial input (SINO).
17	19	P41	$\begin{gathered} \mathrm{G} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as the SOTO pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD41 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D41 = "0": invalid at the input setting).
		SOTO		Functions as the UARTO serial data output pin (SOTO).

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90650A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
18	20	P42	$\begin{gathered} \mathrm{H} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port When UARTO is operating in external shift clock mode, the data at the pin is used as the clock input (SCKO). Also, functions as the SCKO pin if the SOE bit in the UMC register is " 1 ". Can be set as an open-drain output port (OD42 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D42 = "0": invalid at the input setting).
		SCK0		Functions as the UARTO serial clock I/O pin (SCK0).
19	21	P43	$\begin{gathered} \mathrm{H} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port When I/O extended serial is operating, the data at the pin is used as the serial input (SIN1). Can be set as an open-drain output port (OD43 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D43 = "0": invalid at the input setting).
		SIN1		Functions as the serial input for I/O extended serial data.
20	22	P44	$\begin{gathered} \mathrm{G} \\ (\mathrm{STBC}) \end{gathered}$	General-purpose I/O port Functions as the SOT1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD44 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D44 = "0": invalid at the input setting).
		SOT1		Functions as the output pin (SOT1) for I/O extended serial data.
22	24	P45	$\begin{gathered} \mathrm{H} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port When I/O extended serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK1). Also, functions as the SCK1 pin if the SOE bit in the UMC register is " 1 ". Can be set as an open-drain output port (OD45 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D45 = "0": invalid at the input setting).
		SCK1		Functions as the I/O extended serial clock I/O pin (SCK1).
23	25	P46	$\begin{gathered} \mathrm{G} \\ (\mathrm{STBC}) \end{gathered}$	General-purpose I/O port Can be set as an open-drain output port (OD46 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs ($\mathrm{D} 46=$ " 0 ": invalid at the input setting).
		ADTG		Functions as the external trigger input pin for the A / D converter.
24	26	P47	K (NMOS/H) (STBC)	Open-drain type general-purpose I/O port

[^0](Continued)

MB90650A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
$\begin{aligned} & 36 \text { to } 39 \\ & 41 \text { to } 44 \end{aligned}$	$\begin{aligned} & 38 \text { to } 41, \\ & 43 \text { to } 46 \end{aligned}$	$\begin{aligned} & \text { P50 to P53, } \\ & \text { P54 to P57 } \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O ports
		ANO to AN3, AN4 to AN7		The pins are used as analog inputs (ANO to AN7) when the A/D converter is operating.
57	59	P60	$\begin{gathered} \mathrm{F} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD60 = " 1 ") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D60 = "1": invalid at the output setting).
		SIN2		Functions as a data input pin (SIN2) for I/O extended serial.
58	60	P61	$\underset{\text { (STBC) }}{\mathrm{E}}$	General-purpose I/O port Function as the SOT2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD61 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D61 = " 1 ": invalid at the output setting).
		SOT2		Functions as an output pin (SOT2) for I/O extended serial data.
59	61	P62	$\begin{gathered} \mathrm{F} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port When I/O extended serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK2). Also, functions as the SCK2 pin if the SOE bit in the UMC register is " 1 ". A pull-up resistor can be set (RD62 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D62 = "1": invalid th the output setting).
		SCK2		Functions as the I/O extended serial clock I/O pin (SCK2).
60	62	P63	$\begin{gathered} \mathrm{E} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD63 = " 1 ") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D63 = "1": invalid at the output setting).
		PPG00		Functions as the PPG00 output when PPG output is enabled.
61	63	P64	$\begin{gathered} \mathrm{E} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD64 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D64 = "1": invalid at the output setting).
		PPG01		Functions as the PPG01 output when PPG output is enabled.

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90650A Series

Pin no.		Pin name	Circuit type	Function
LQFP**	QFP*2			
62	64	P65	$\begin{gathered} \mathrm{E} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD65 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D65 = " 1 ": invalid at the output setting).
		CKOT		Functions as the CKOT output when CKOT is operating.
63	65	P66	$\begin{gathered} \mathrm{E} \\ (\mathrm{STBC}) \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD66 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D66 = " 1 ": invalid at the output setting).
		PPG10		Functions as the PPG10 output when PPG output is enabled.
64	66	P67	$\begin{gathered} \mathrm{E} \\ (\mathrm{STBC}) \end{gathered}$	General-purpose I/O port A pull-up resistor can be set (RD67 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D67 = "1": invalid at the output setting).
		PPG11		Functions as the PPG11 output when PPG output is enabled.
25	27	P70	$\begin{gathered} \mathrm{K} \\ \text { (NMOS/H) } \\ \text { (STBC) } \end{gathered}$	Open-drain type I/O port
		SDA		${ }^{2} \mathrm{C}$ interface data I/O pin This function is valid when $I^{2} \mathrm{C}$ interface operations are enabled. Set port output to $\mathrm{Hi}-\mathrm{Z}(\mathrm{PDR}=1)$ during ${ }^{2} \mathrm{C}$ interface operations.
26	28	P71	$\begin{gathered} \mathrm{K} \\ \text { (NMOS/H) } \\ \text { (STBC) } \end{gathered}$	Open-drain type I/O port
		SCL		${ }^{2} \mathrm{C}$ interface clock I/O pin This function is valid when $I^{2} C$ interface operations are enabled. Set port output to $\mathrm{Hi}-\mathrm{Z}(\mathrm{PDR}=1)$ during ${ }^{2} \mathrm{C}$ interface operations.
27	29	P72	$\begin{gathered} \mathrm{K} \\ \text { (STBC) } \end{gathered}$	Open-drain type I/O port
30	32	P73	$\begin{gathered} \mathrm{M} \\ \text { (STBC) } \end{gathered}$	Open-drain type I/O port Functions as a D/A output pin when DAEO $=$ " 1 " in the D / A control register (DACR).
		DA00		Functions as D/A output 0 when the D/A converter is operating.
31	33	P74	$\begin{gathered} \mathrm{M} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port Functions as a D/A output pin when DAE1 = " 1 " in the D/A control register (DACR).
		DA01		Functions as D/A output 1 when the D/A converter is operating.
45	47	P80	J	General-purpose I/O port
		IRQ0		Functions as external interrupt request I/O 0 .

*1: FPT-100P-M05
(Continued)
*2: FPT-100P-M06

MB90650A Series

Pin no.		Pin name	Circuit type	Function
LQFP*1	QFP*2			
46	48	P81	J	General-purpose I/O port
		IRQ1		Functions as external interrupt request I/O 1.
51	53	P82	J	General-purpose I/O port
		IRQ2		Functions as external interrupt request I/O 2.
52	54	P83	J	General-purpose I/O port
		IRQ3		Functions as external interrupt request I/O 3.
53	55	P84	J	General-purpose I/O port
		IRQ4		Functions as external interrupt request I/O 4.
54	56	P85	J	General-purpose I/O port
		IRQ5		Functions as external interrupt request I/O 5.
55	57	P86	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port This applies in all cases.
		OUT3		Event output for channel 3 of the output compare
65	67	P90	J	General-purpose I/O port
		AINO		Input to channel 0 of the 8/16-bit up/down counter/timer
		IRQ6		Functions as an interrupt request input.
66	68	P91	(STBC)	General-purpose I/O port
		BINO		Input to channel 0 of the 8/16-bit up/down counter/timer
67	69	P92	$\stackrel{\mathrm{J}}{\text { (STBC) }}$	General-purpose 1/O port
		ZIN0		Input to channel 0 of the 8/16-bit up/down counter/timer
68	70	P93	J	General-purpose I/O port
		AIN1		Input to channel 1 of the 8/16-bit up/down counter/timer
		IRQ7		Functions as an interrupt request input.
69	71	P94	$\begin{gathered} \mathrm{J} \\ \text { (STBC) } \end{gathered}$	General-purpose 1/O port
		BIN1		Input to channel 1 of the 8/16-bit up/down counter/timer
70	72	P95	$\stackrel{\mathrm{J}}{(\mathrm{STBC})}$	General-purpose I/O port
		ZIN1		Input to channel 1 of the 8/16-bit up/down counter/timer
71	73	P96	$\stackrel{\mathrm{J}}{\text { (STBC) }}$	General-purpose 1/O port
		IN0		Trigger input for channel 0 of the input capture
72	74	P97	$\begin{gathered} \mathrm{J} \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port
		IN1		Trigger input for channel 1 of the input capture
73	75	PA0	$\begin{gathered} \mathrm{I} \\ \text { (STBC) } \end{gathered}$	General-purpose 1/O port
		OUTO		Event output for channel 0 of the output compare

*1: FPT-100P-M05
*2: FPT-100P-M06

MB90650A Series

(Continued)

Pin no.		Pin name	$\begin{aligned} & \text { Circuit } \\ & \text { type } \end{aligned}$	Function
LQFP**	QFP*2			
74	76	PA1	$\begin{gathered} 1 \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port
		OUT1		Event output for channel 1 of the output compare
76	78	PA2	$\begin{gathered} \text { I } \\ \text { (STBC) } \end{gathered}$	General-purpose I/O port
		OUT2		Event output for channel 2 of the output compare
82	84	Vcc1	-	Power supply (3.0 V) input pin
21	23	Vcc2	-	Power supply (3.0 V/5.0 V) input pin
$\begin{aligned} & 9, \\ & 40, \\ & 79 \end{aligned}$	$\begin{aligned} & 11, \\ & 42, \\ & 81 \end{aligned}$	Vss	-	Power supply (0.0 V) input pin
32	34	AVcc	-	A/D converter power supply pin
33	35	AVRH	-	A/D converter external reference power supply pin
34	36	AVRL	-	A/D converter external reference power supply pin
35	37	AVss	-	A/D converter power supply pin
28	30	DVRH	-	D/A converter external reference power supply pin
29	31	DVss	-	D/A converter power supply pin
56	58	DTMF	N	DTMF output pin

*1: FPT-100P-M05
*2: FPT-100P-M06
Note: STBC = Incorporates standby control
NMOS = N-ch open-drain output

MB90650A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation feedback resistance : Approx. $1 \mathrm{M} \Omega$
B		- Oscillation feedback resistance : Approx. $10 \mathrm{M} \Omega$
C		- Hysteresis input with pull-up Resistance approx. $50 \mathrm{k} \Omega$
D		- Hysteresis input port
E		- Incorporates pull-up resistor control (for input) - CMOS level I/O Resistance approx. $50 \mathrm{k} \Omega$
F		- Incorporates pull-up resistor control (for input) - CMOS level output - Hysteresis input Resistance approx. $50 \mathrm{k} \Omega$

(Continued)

MB90650A Series

Type	Circuit	Remarks
G		- CMOS level I/O - Incorporates open-drain control
H		- CMOS level output - Hysteresis input - Incorporates open-drain control
I		- CMOS level I/O
J		- CMOS level output - Hysteresis input
K		- Hysteresis input - N-ch open-drain output
L		- CMOS level I/O - Analog input

(Continued)

MB90650A Series

(Continued)

Type	Circuit	Remarks
M		- CMOS level I/O - Analog output - Shared with D/A outputs
N		- DTMF analog output

MB90650A Series

HANDLING DEVICES

1. Preventing Latch-up

Latch-up occurs in a CMOS IC if a voltage greater than Vcc or less than Vss is applied to an input or output pin or if the voltage applied between V_{cc} and V ss exceeds the rating.
If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.
For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input

To reliably reset the controller by inputting an " L " level to the $\overline{R S T}$ pin, ensure that the " L " level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all V_{cc} pins are at the same voltage. The same applies for the V_{ss} pins.

5. Precautions when Using an External Clock

Drive the X0 pin only when using an external clock.

- Using an external clock

6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always turn off the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before turning off the digital power supply (V_{Cc}).
When turning the power on or off, ensure that AVRH does not exceed AVcc.
Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed $A V$ cc.

7. Turn-on Sequence for D/A Converter Power Supply

Always turn on the D/A converter power supply (DVR), after turning off the digital power supply (Vcc).
And in the turning off the power supply sequence always turn off the digital power supply (Vcc) after turning off the D/A converter power supply (DVR).

MB90650A Series

8. Initializing

In this device there are some kinds of inner resisters which are initializid only by power on reset. It is possible to initialize these resisters by turning on the power supply again.

9. Power Supply Pins

When there are several $\mathrm{Vcc}_{c c}$ and $\mathrm{V}_{\text {ss }}$ pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.
In addition, give a due consideration to the connection in that current supply be connected to V_{cc} and V_{ss} with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ between Vcc and V ss near this device as a bypass capacitor.

10.Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible, and that the wiring does not closs the other wirings.
In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

11. About 2 Power Supplies

The MB90650A series usually uses the $3-\mathrm{V}$ power supply as the main power source. With $\mathrm{Vcc} 1=3 \mathrm{~V}$ and Vcc 2 $=5 \mathrm{~V}$, however, it can interface with P20 to P27, P30 to P37, P40 to P47, and P70 to P72 for the 5-V power supply separately from the $3-\mathrm{V}$ power supply. Note, however, that the analog power supplies such as A/D and D/A can be used only as $3-V$ power supplies.

MB90650A Series

PROGRAMMING FOR MB90P653A

In EPROM mode, the MB90P653A functions equivalent to the MBM27C1000/1000A. This allows the EPROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter (do not use the electronic signature mode).

1. Program Mode

When shipped from Fujitsu, and after each erasure, all bits ($128 \mathrm{~K} \times 8$ bits) in the MB90P653A are in the " 1 " state. Data is written to the ROM by selectively programming " 0 " into the desired bit locations. Bits cannot be set to "1" electrically.

2. Programming Procedure

(1) Set the EPROM programmer to MBM27C1000/1000A.
(2) Load program data into the EPROM programmer at 00000 н to 1 FFFFн.

Note that ROM addresses FE0000н to FFFFFFн in the operation mode in the MB90P653A series assign to 00000 to 1 FFFFF in the EPROM mode (on the EPROM programmer).

The 00 bank PROM mirror is 48 Kbytes. (This is a mirror for FF4000н to FFFFFFFн.)
(3) Mount the MB90P653A on the adapter socket, then fit the adapter socket onto the EPROM programmer. When mounting the device and the adapter socket, pay attention to their mounting orientations.
(4) Start programming the program data to the device.
(5) If programming has not successfully resulted, connect a capacitor of approx. $0.1 \mu \mathrm{~F}$ between Vcc and GND , between Vpp and GND.

Note: The mask ROM products (MB90653A, MB90652A) does not support EPROM mode. Data cannot, therefore, be read by the EPROM programmer.

MB90650A Series

3. EPROM Programmer Socket Adapter

| Part no. | MB90652APFV | MB90653APFV | MB90P653APFV | MB90652APF | MB90653APF |
| :--- | :---: | :---: | :---: | :---: | :---: | MB90P653APF | Package |
| :--- |
| Compatible
 socket
 adapter
 Sun Hayato
 Co., Ltd. |

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106

4. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

5. Programming Yeild

MB90P653A cannot be write tested for all bits due to their nature. Therefore the write yield cannot always be guaranteed to be 100%.

MB90650A Series

6. EPROM Mode Pin Assignments

- MBM27C1000/1000A compatible pins

MBM27C1000/1000A		MB90P653A	
Pin n o.	Pin name	Pin no.	Pin name
1	$\mathrm{V}_{\text {PP }}$		MD2
2	$\overline{\mathrm{OE}}$		P32
3	A15		P17
4	A12		P14
5	A07		P27
6	A06		P26
7	A05		P25
8	A04		P24
9	A03		P23
10	A02		P22
11	A01		P21
12	A00		P20
13	D00		P00
14	D01		P01
15	D02		P02
16	GND		Vss

- Non-MBM27C1000/1000A compatible pins

Pin no .	Pin name	Treatment
	$\begin{array}{\|l\|} \hline \text { MD0 } \\ \text { MD1 } \\ \text { X0 } \\ \text { X0A } \\ \hline \end{array}$	Connect a pull-up resistor of $4.7 \mathrm{k} \Omega$.
	X1 to X1A	OPEN
See "PIN ASSIGNMENT"	AV ${ }^{\text {co }}$ AVRH P37 P40 to P47 P50 to P57 P60 to P67 P70 to P74 P80 to P86 P90 to P97 PA0 to PA2 N.C. TEST	Connect a pull-up resistor of about $1 \mathrm{M} \Omega$ to each pin.

MBM27C1000/1000A		MB90P653A	
Pin no.	Pin name	Pin no.	Pin name
32	Vcc		Vcc
31	$\overline{\text { PGM }}$		P33
30	N.C.		-
29	A14		P16
28	A13		P15
27	A08		P10
26	A09		P11
25	A11		P13
24	A16		P30
23	A10		P12
22	$\overline{\mathrm{CE}}$		P31
21	D07		P07
20	D06		P06
19	D05		P05
18	D04		P04
17	D03		P03

- Power supply, GND connection pins

Classification	Pin no.	Pin name
Power supply	See "PIN ASSIGNMENT"	HST Vcc GND
		DVRH
	See	P34
	"PIN ASSIGNMENT"	P35
		P36
		AVTRL
		AVss
		DVss
		V $_{v}$

MB90650A Series

BLOCK DIAGRAM

MB90650A Series

MEMORY MAP

- MB90652, MB90653, MB90P653

Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.
For example, to access to 00 COOOH is to access to the ROM content of FFCOOOH in practice.
Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00.
So, the image for FF4000н to FFFFFFн can be seen in bank 00, while FE0000н to FF3FFFн can only be seen in bank FF and FE.

MB90650A Series

- MB90654A, MB90F654A

Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.
For example, to access to 00 COOOH is to access to the ROM content of FFCOOOH in practice.
Because the ROM area of FF bank exceeds 48 Kbytes, all the area can be seen in bank 00.
So, the image for FF4000н to FFFFFFH can be seen in bank 00, while FE0000н to FF3FFFH can only be seen in bank FF and FE.

MB90650A Series

F²MC-16L CPU PROGRAMMING MODEL

- Dedicated registers

AH	AL	Accumulator
	USP	User stack pointer
	SSP	System stack pointer
	PS	Processor status
	PC	Program counter
	USPCU	User stack upper register
	SSPCU	System stack upper register
	USPCL	User stack lower register
	SSPCL	System stack lower register
	DPR	Direct page register
	PCB	Program bank register
	DTB	Data bank register
	USB	User stack bank register
	SSB	System stack bank register
	ADB	Additional data bank register
	-16 bits	

- General-purpose registers

- Processor status (PS)

I/O MAP

Address	Register	Register name	Read/ write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXв
01H	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	1 $\times X X X X X X^{\text {B }}$
05	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07 ${ }^{\text {r }}$	Port 7 data register	PDR7	R/W	Port 7	---XX111в
08н	Port 8 data register	PDR8	R/W	Port 8	-XXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX ${ }_{\text {¢ }}$
ОАн	Port A data register	PDRA	R/W	Port A	$----X X$ ®
OBн to 0FH	(Reserved area)				
10 H	Port 0 direction register	DDR0	R/W	Port 0	00000000в
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000в
12н	Port 2 direction register	DDR2	R/W	Port 2	00000000в
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000в
14 ${ }^{\text {H}}$	Port 4 direction register	DDR4	R/W	Port 4	-0000000в
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000в
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000в
17 ${ }^{\text {H}}$	Port 7 direction register	DDR7	R/W	Port 7	---00---в
18н	Port 8 direction register	DDR8	R/W	Port 8	-0000000в
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000в
$1 \mathrm{AH}^{\text {H}}$	Port A direction register	DDRA	R/W	Port A	----000в
1 BH	Port 4 pin register	ODR4	R/W	Port 4	-0000000в
1 CH	Port 0 resistance register	RDR0	R/W	Port 0	00000000в
1Dн	Port 1 resistance register	RDR1	R/W	Port 1	00000000в
$1 \mathrm{E}_{\text {н }}$	Port 6 resistance register	RDR6	R/W	Port 6	00000000в
1 FH	Analog input enable register	ADER	R/W	Port 5, A/D	11111111в
2 OH	Serial mode register 0	SMR0	R/W	UARTO	00000000в
21н	Serial control register 0	SCR0	R/W		00000100в
22н	Serial input register/ serial output register 0	$\begin{aligned} & \text { SIDR/ } \\ & \text { SODRO } \end{aligned}$	R/W		ХХХХХХХХв

(Continued)

MB90650A Series

Address	Register	$\begin{aligned} & \text { Register } \\ & \text { name } \end{aligned}$	Read/ write	Resource name	Initial value
23н	Serial status register 0	SSR0	R/W	UART0	00001-00в
24 +	Serial mode control status register 0	SMCSO	R/W	I/O extended serial interface 0	---0000в
25 H	Serial mode control status register 0	SMCS0	R/W		00000010в
26	Serial data register 0	SDR0	R/W		XXXXXXXX ${ }_{\text {¢ }}$
27	Clock division control register	CDCR	R/W	Communications prescaler	0---1111в
28H	Serial mode control status register 1	SMCS1	R/W	I/O extended serial interface 1	---0000в
29н	Serial mode control status register 1	SMCS1	R/W		00000010в
2 2н $^{\text {¢ }}$	Serial data register 1	SDR1	R/W		XXXXXXXX
2Bн to 2F\%	(Reserved area)				
30н	Interrupt/DTP enable register	ENIR	R/W	DTP/external interrupts	00000000в
31н	Interrupt/DTP source register	EIRR	R/W		00000000в
32н	Request level setting register	ELVR	R/W		00000000в
33н					00000000в
34 to 35 н	(Reserved area)				
36н	Control status register 1	ADCS1	R/W	A/D converter	00000000в
37	Control status register 2	ADCS2			00000000в
38-	Data register 1	ADCR1	R		XXXXXXXX
39н	Data register 2	ADCR2			XXXXXXXX
ЗАн	D/A converter data register 0	DAT0	R/W	D/A converter	XXXXXXXX
3Вн	D/A converter data register 1	DAT1	R/W		XXXXXXXX
3С	D/A control register channel 0	DACR0	R/W		-------0в
3D ${ }_{\text {¢ }}$	D/A control register channel 1	DACR1	R/W		-------0в
ЗЕн	Clock control register	CLKR	R/W	Clock output control register	----0000в
$3 \mathrm{~F}_{\mathrm{H}}$	(Reserved area)				
40н	Reload register lower channel 0	PRLLO	R/W	8/16-bit PPG	XXXXXXXX ${ }^{\text {¢ }}$
41н	Reload register upper channel 0	PRLH0	R/W		XXXXXXXX
42н	Reload register lower channel 1	PRLL1	R/W		XXXXXXXX
43-	Reload register upper channel 1	PRLH1	R/W		XXXXXXXX
44	PPG0 operation mode control register channel 0	PPGC0	R/W		0X000XX1в
45	PPG1 operation mode control register channel 1	PPGC1	R/W		0X000001в
46н	PPG0, PPG1 output control register channel 0 , channel 1	PPGOE	R/W		00000000в
47 H to 4FH	(Reserved area)				
50н	Lower compare register channel 0	OCCP0	R/W	16-bit I/O timer output compare (channel 0 to channel 3)	ХХХХХХХХв

(Continued)

MB90650A Series

Address	Register	Register name	Read/ write	Resource name	Initial value
51н	Upper compare register channel 0	OCCP0	R/W	16-bit I/O timer Output compare (channel 0 to channel 3)	XXXXXXXXв
52н	Lower compare register channel 1				XXXXXXXX
53н	Upper compare register channel 1				XXXXXXXX
54	Lower compare register channel 2	OCCP2	R/W		XXXXXXXX
55н	Upper compare register channel 2				XXXXXXXXв
56н	Lower compare register channel 3	OCCP3	R/W		XXXXXXXX
57	Upper compare register channel 3				XXXXXXXX
58н	Compare control status register channel 0	OCSO	R/W		0000--00в
59н	Compare control status register channel 1	OCS1	R/W		---00000в
5 Ан $^{\text {¢ }}$	Compare control status register channel 2	OCS2	R/W		0000--00в
5Вн	Compare control status register channel 3	OCS3	R/W		---00000в
5CH to 5F		(Res	ved area)		
60н	Lower input capture register channel 0		R	16-bit I/O timer Input capture (channel 0, channel 1)	XXXXXXXX
61н	Upper input capture register channel 0		R		ХХХХХХХХХв
62н	Lower input capture register channel 1	IPCP1	R		XXXXXXXX
63н	Upper input capture register channel 1		R		XXXXXXXX
64	Input capture control status register	ICSO, 1	R/W		00000000в
65	(Reserved area)				
66н	Lower timer data register	TCDTL	R/W	16-bit I/O timer Free-run timer	00000000в
67 H	Upper timer data register	TCDTH	R/W		00000000в
68H	Timer control status register	TCCS	R/W		00000000в
69н to 6Fн	(Reserved area)				
70 н	Up/down count register channel 0	UDCR0	R	8/16-bit up/down counter/timer	00000000в
71н	Up/down count register channel 1	UDCR1			00000000в
72н	Reload compare register channel 0	RCR0	W		00000000в
73н	Reload compare register channel 1	RCR1			00000000в
74	Counter status register channel 0	CSR0	R/W		00000000в
75 н	(Reserved area)				
76	Counter control register channel 0	CCRLO	R/W	8/16-bit up/down counter/timer	00001000в
77		CCRH0			00000000в
78	Counter status register channel 1	CSR1	R/W		00000000в
79н	(Reserved area)				
7Ан	Counter control register channel 1	CCRL1	R/W	8/16-bit up/down counter/timer	00000000в

(Continued)

MB90650A Series

Address	Register	Register name	Read write	Resource name	Initial value
7Вн	Counter control register channel 1	CCRH1	R/W	8/16-bit up/down counter/timer	Х0001000в
7С ${ }_{\text {н }}$ to 7FH	(Reserved area)				
80н	$1^{2} \mathrm{C}$ bus status register	IBSR	R	${ }^{2} \mathrm{C}$ C interface	00000000в
81н	${ }^{1} \mathrm{C}$ c bus control register	IBCR	R/W		00000000в
82н	${ }^{12} \mathrm{C}$ bus clock control register	ICCR	R/W		--0XXXXXв
83н	$1^{2} \mathrm{C}$ bus address register	IADR	R/W		-XXXXXXX
84н	${ }^{12} \mathrm{C}$ bus data register	IDAR	R/W		XXXXXXXX
85 to 87 ${ }^{\text {H }}$	(Reserved area)				
88н	DTMF control register	DTMC	-	-	00000000в
89н	DTMF data register	DTMD	-	-	000Х0000в
8A to 9Eн	(Reserved area) (Accessing 90н to 9Ен is prohibited)				
9F\%	Delayed interrupt generation/ release register	DIRR	R/W	Delayed interrupt generation module	-------0в
AOH	Low-power consumption mode control register	LPMCR	R/W	Low-power consumption mode	00011000в
A1H	Clock selection register	CKSCR	R/W	Low-power consumption mode	11111100в
А2н to A4н	(Reserved area)				
A5 ${ }^{\text {H}}$	Auto-ready function selection register	ARSR	W	External bus pin control circuit	0011--00в
А6	External address output control register	HACR	W	External bus pin control circuit	00000000в
A7H	Bus control signal selection register	ECSR	W	External bus pin control circuit	0000*00-в
A8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXX111в
A9 ${ }^{\text {}}$	Timebase timer control register	TBTC	R/W	Timebase timer	1--00000в
ААн	Watch timer control register	WTC	R/W	Watch timer	1X-00000в
ABн to AF	(Reserved area)				

(Continued)

MB90650A Series

(Continued)

Address	Register	$\begin{aligned} & \text { Register } \\ & \text { name } \end{aligned}$	Read/ write	Resource name	Initial value
B0н	Interrupt control register 00	ICR00	R/W	Interrupt controller	00000111в
B1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W		00000111в
B3н	Interrupt control register 03	ICR03	R/W		00000111в
B4	Interrupt control register 04	ICR04	R/W		00000111в
B5	Interrupt control register 05	ICR05	R/W		00000111в
В6н	Interrupt control register 06	ICR06	R/W		00000111в
B7 ${ }^{\text {}}$	Interrupt control register 07	ICR07	R/W		00000111в
B8\%	Interrupt control register 08	ICR08	R/W		00000111в
B9н	Interrupt control register 09	ICR09	R/W		00000111в
$\mathrm{BA}_{\boldsymbol{H}}$	Interrupt control register 10	ICR10	R/W		00000111в
BBн	Interrupt control register 11	ICR11	R/W		00000111в
BC_{H}	Interrupt control register 12	ICR12	R/W		00000111в
BD	Interrupt control register 13	ICR13	R/W		00000111в
$\mathrm{BE}_{\text {н }}$	Interrupt control register 14	ICR14	R/W		00000111в
BF_{H}	Interrupt control register 15	ICR15	R/W		00000111в
$\mathrm{COH}_{\text {to }} \mathrm{FFH}^{\text {r }}$	(External area)				

About Programming
R/W : Readable and writable
R : Read only
W : Write only
Explanation of initial values
0 : The initial value of this bit is " 0 ".
1: The initial value of this bit is " 1 ".
*: The initial value of this bit is " 0 " or " 1 ".
X : The initial value of this bit is undefined.
-: This bit is not used. The initial value is undefined.
Note: Areas below address 0000FFн not listed in the table are reserved areas. These addresses are accessed by internal access. No access signals are output on the external bus.

■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

Interrupt source	${ }^{2} \mathrm{OS}$ support	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reset	\times	\#08	FFFFDC	-	-
INT 9 instruction	\times	\#09	FFFFD8н	-	-
Exception	\times	\#10	FFFFD4 ${ }_{\text {н }}$	-	-
A/D converter	\bigcirc	\#11	FFFFD0 ${ }_{\text {H }}$	ICR00	0000B0н
Timebase timer interval interrupt	\times	\#12	FFFFCCH		
DTP/external interrupt 0 (External interrupt 0)	\bigcirc	\#13	FFFFFC8	ICR01	0000B1н
16-bit free-run timer (l/O timer) overflow	\bigcirc	\#14	FFFFFC4		
I/O extended serial interface 1	\bigcirc	\#15	FFFFFC0 ${ }_{\text {H }}$	ICR02	0000В ${ }^{\text {¢ }}$
DTP/external interrupt 1 (External interrupt 1)	\bigcirc	\#16	FFFFBC		
I/O extended serial interface 2	\bigcirc	\#17	FFFFB8	ICR03	0000B3н
DTP/external interrupt 2 (External interrupt 2)	\bigcirc	\#18	FFFFB4		
DTP/external interrupt 3 (External interrupt 3)	\bigcirc	\#19	FFFFB0	ICR04	0000B4н
8/16-bit PPG 0 counter borrow	\bigcirc	\#20	FFFFACH		
8/16-bit up/down counter/timer 0 compare	\bigcirc	\#21	FFFFA8H	ICR05	0000B5
8/16-bit up/down counter/timer 0 underflow/overflow, up/down invert	\bigcirc	\#22	FFFFA4		
8/16-bit PPG 1 counter borrow	\bigcirc	\#23	FFFFA0н	ICR06	0000B6н
DTP/external interrupt 4/5 (External interrupt 4/5)	\bigcirc	\#24	FFFF9C ${ }_{\text {н }}$		
Output compare (channel 2) match (//O timer)	\bigcirc	\#25	FFFF98н	ICR07	0000B7\%
Output compare (channel 3) match (/O timer)	\bigcirc	\#26	FFFF94		
Watch prescaler	\times	\#27	FFFF90н	ICR08	0000B8H
DTP/external interrupt 6 (External interrupt 6)	\bigcirc	\#28	FFFF8C		
8/16-bit up/down counter/timer 1 compare	\bigcirc	\#29	FFFF88н	ICR09	0000B9н
8/16-bit up/down counter/timer 1 underflow/overflow, up/down invert	\bigcirc	\#30	FFFF84		
Input capture (channel 0) read (/O timer)	\bigcirc	\#31	FFFF80н	ICR10	0000ВАн
Input capture (channel 1) read (/O timer)	\bigcirc	\#32	FFFF7C		
Output compare (channel 0) match (//O timer)	\bigcirc	\#33	FFFF78	ICR11	0000ВВн
Output compare (channel 1) match (//O timer)	\bigcirc	\#34	FFFF74		
Completion of flash memory write/erase	\times	\#35	FFFF70н	ICR12	0000BCH
DTP/external interrupt 7 (External interrupt 7)	\bigcirc	\#36	FFFF6C ${ }_{\text {н }}$		
UART0 receive complete	\bigcirc	\#37	FFFF68н	ICR13	0000BDн
UART0 transmit complete	\bigcirc	\#39	FFFF60н	ICR14	0000ВЕн
$1^{2} \mathrm{C}$ interface	\times	\#41	FFFF58	ICR15	0000BFH
Delayed interrupt generation module	\times	\#42	FFFF54 ${ }_{\text {¢ }}$		

\bigcirc : Indicates that the interrupt request flag is cleared by the $I^{2} O S$ interrupt clear signal.
© : Indicates that the interrupt request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (stop request present).
\times : Indicates that the interrupt request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: For resources in which two interrupt sources share the same interrupt number, the ${ }^{2}{ }^{2} \mathrm{OS}$ interrupt clear signal clears both interrupt request flags.

MB90650A Series

PERIPHERAL RESOURCES

1. Parallel Ports

(1) I/O Ports

Each port pin can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.
When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data register before switching a pin from input to output, the instruction reads the input level at the pin and not the data register latch value.

- Block diagram

MB90650A Series

(2) Port Direction Registers

- Port 0 data register (PDRO)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
Address : 000000 H	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXв	R/W*

- Port 1 data register (PDR1)

Address : 000001H

P17	P16	P15	P14	P13	P12	P11	P10

Initial value	Access
$X X X X X X X X$	R / W^{*}

- Port 2 data register (PDR2)

Address: 000002H

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
P27	P26	P25	P24	P23	P22	P21	P20

Initial value	Access
$X X X X X X X X B$	R / W^{*}

- Port 3 data register (PDR3)

Address : 000003H

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
P37	P36	P35	P34	P33	P32	P31	P30

Initial value	Access
$X X X X X X X X B$	R / W^{\star}

- Port 4 data register (PDR4)

Address : 000004

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
P47	P46	P45	P44	P43	P42	P41	P40

Initial value	Access
$1 X X X X X X X_{B}$	R / W^{\star}

- Port 5 data register (PDR5)

Address: 000005

Initial value	Access
$X X X X X X X X B$	R / W^{*}

- Port 6 data register (PDR6)

Address:000006

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
P67	P 66	P 65	P 64	P 63	P 62	P 61	P 60

Initial value	Access
$X X X X X X X X$	R / W^{*}

- Port 7 data register (PDR7)

	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Address : 000007H	-	-	-	P74	P73	P72	P71	P70

Initial value	Access
-- XX111 $_{B}$	R / W^{*}

- Port 8 data register (PDR8)

Address : 000008H

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	P86	P85	P84	P83	P82	P81	P80

Initial value	Access
- XXXXXXX 2	R / W^{*}

- Port 9 data register (PDR9)

Address: 000009

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
P97	P96	P95	P94	P93	P92	P91	P90

Initial value	Access
XXXXXXXXB	R / W^{*}

- Port A data register (PDRA)

Address: 00000Ан

$\overline{R / W} \overline{\mathrm{X}}$: Readable and writable
\bar{X} : Indeterminate

* : The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.
- Input mode

Read: Reads the corresponding pin level.
Write: Writes to the output latch.

- Output mode

Read: Reads the value of the data register latch.
Write: The value is output from the corresponding pin.

MB90650A Series

(3) Port Direction Registers

- Port 0 direction register (DDR0)

Address: 000010H

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D07	D06	D05	D04	D03	D02	D01	D00

Initial value	Access
00000000_{B}	R / W^{*}

- Port 1 direction register (DDR1)

Address: 000011H

| | bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | bit 89.

Initial value	Access
00000000_{B}	R / W^{*}

- Port 2 direction register (DDR2)

Address : 000012H

l bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D27	D26	D25	D24	D23	D22	D21	D20

Initial value	Access
0000000 B	R / W^{*}

- Port 3 direction register (DDR3)

Address : 000013H

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
D37	D36	D35	D34	D33	D32	D31	D30

Initial value	Access
0000000 B	R / W^{*}

- Port 4 direction register (DDR4)

Address : 000014

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	D46	D45	D44	D43	D42	D41	D40

Initial value	Access
-0000000_{B}	R / W^{*}

- Port 5 direction register (DDR5)

Address : 000015 H

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
D57	D56	D55	D54	D53	D52	D51	D50

Initial value	Access
00000000_{B}	R / W^{*}

- Port 6 direction register (DDR6)

Address : 000016

D67	D66	D65	D64	D63	D62	D61	D60

Initial value	Access
00000000_{B}	R / W^{*}

- Port 7 direction register (DDR7)

Address: 000017H

Initial value
Access

- Port 8 direction register (DDR8)

Address : 000018

Initial value	Access
-000000 B	$\mathrm{R} / \mathrm{W}^{*}$

- Port 9 direction register (DDR9)

	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value	Access
Address : 000019H	D97	D96	D95	D94	D93	D92	D91	D90	00000000в	R/W*

- Port A direction register (DDRA)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	Access
Address: 00001Aн	-	-	-	-	-	DA2	DA1	DAO	----000 в	R/W*

R/W : Readable and writable

- : Unused

MB90650A Series

(Continued)

*: The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.

- Input mode

Read: Reads the corresponding pin level.
Write: Writes to the output latch.

- Output mode

Read: Reads the value of the data register latch.
Write: The value is output from the corresponding pin.
When pins are used as ports, the register bits control the corresponding pins as follows.
0 : Input mode
1: Output mode
Bits are set to " 0 " by a reset.

- P47, P70 to P72

No DDR for this port. Data is always available in this port, so when using P70 and P71 as ${ }^{2} \mathrm{C}$ pin, set PDR value to " 1 ". (Otherwise when using P70 and P71 by themselves, turn off the $I^{2} \mathrm{C}$.)
As this port is open-drain output style, so when using this port as an input port, in order to turn off the output transister, set the output data resister value to " 1 " and add the pull up resister to the external pin.

MB90650A Series

(4) Port Resistance Registers

- Register configuration

- Port 0 resistance register (RDRO)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value Access
Address : 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000в R/W

- Port 1 resistance register (RDR1)

	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value Access
Address : 00001D	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	00000000в R/W

- Port 6 resistance register (RDR6)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value Access
Address : 00001Eн	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	00000000в R/W

R/W : Readable and writable

- Block diagram

MB90650A Series

(5) Port Pin Register

- Register configuration

- Port 4 pin register (ODR4)

| | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 | Initial value Access | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Address : 00001BH | - | OD46 | OD45 | OD44 | OD43 | OD42 | OD41 | OD40 | $-0000000_{\mathrm{B}} \mathrm{R} / \mathrm{W}$ |

R/W : Readable and writable Unused

- Block diagram

Abstract

Notes: • Pin register R/W Performs open-drain control in output mode. 0: Operate as a standard output port in output mode. 1: Operate as an open-drain output port in output mode. The setting has no meaning in input mode (output $\mathrm{Hi}-\mathrm{z}$). The direction register (DDR) sets input or output mode. - This function is disabled when using an external bus mode. In this case, do not write to this register.

(6) Analog Input Enable Register

- Register configuration

- Analog input enable register (ADER)

Address : 00001FH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value Access 11111111в R/W
	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
	R/W								

R/W : Readable and writable
Controls each port 5 pin as follows.
0 : Port input mode
1: Analog input mode
Set to " 1 " by a reset.

MB90650A Series

2. UART

The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous communications. The UART has the following features.

- Full duplex, double buffered
- Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer
- Supports multi-processor mode
- Built-in dedicated baud rate generator

Asynchronous : 9615 bps, 31250 bps, 4808 bps, 2404 bps and 1202 bps CLK synchronous : 1 Mbps, $500 \mathrm{kbps}, 250 \mathrm{kbps}, 125 \mathrm{kbps}, 115.2 \mathrm{kbps}$ and 62.5 kbps$\}$

For a 6, 8, 10, 12, or 16 MHz clock.

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support
(1) Register Configuration
bit 15 bit 8 bit 7

CDCR	-
SCR	SMR
SSR	SIDR (R)/SODR (W)
8 bits $\longrightarrow 8$ bits \longrightarrow	

- Serial mode register 0 (SMRO)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000020 ${ }^{\text {H }}$	MD1	MDO	CS2	CS1	CSO	Reserved	SCKE	SOE	00000000в
- Serial control register 0 (SCRO)		R/W							
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000021H	PEN	P	SBL	CL	A/D	REC	RXE	TXE	00000100в
- Serial input register/serial output register 0 (SID	R/W (SODRO)	R/W	R/W	R/W	R/W	W	R/W	R/W	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000022H	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXв
- Serial status register 0 (SSRO)	R/W								
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000023H	PE	ORE	FRE	RDRF	TDRE	-	RIE	TIE	00001-00в
- Clock division control register (CDCR)	R	R	R	R	R	-	R/W	R/W	
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000027H	MD	-	-	-	DIV3	DIV2	DIV1	DIVO	0---1111в
	R/W	-	-	-	R/W	R/W	R/W	R/W	
R/W : Readable and writable R : Read only W: Write only \bar{x} : Unused X : Indeterminate									

MB90650A Series

(2) Block Diagram

MB90650A Series

3. I/O Extended Serial Interface

I/O extended serial interface consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSB-first or MSB-first data transfer can be selected.
The following two serial I/O operation modes are available.

- Internal shift clock mode: Data transfer is synchronized with the internal clock.
- External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By manipulating the general-purpose port that shares the external pin (SCK), this mode also enables the data transfer operation to be driven by CPU instructions.

(1) Register Details

- Serial mode control status register 0, 1 (SMCSO, SMCS1)

Address: $\begin{array}{r}000025 \mathrm{H} \\ 000029 \text { н }\end{array}$	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value 00000010в
	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	
	$\begin{aligned} & \text { R/W } \\ & \text { bit } 7 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 6 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 5 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 4 \end{aligned}$	$\begin{gathered} \mathrm{R} / \mathrm{W}^{* 1} \\ \text { bit } 3 \end{gathered}$	R bit 2	R/W bit 1	$\begin{gathered} \mathrm{R} / \mathrm{W}^{2} \\ \text { bit } 0 \end{gathered}$	Initial value
Address : 000024	-	-	-	-	MODE	BDS	SOE	SCOE	---0000в
	-	-	-	-	R/W	R/W	R/W	R/W	

- Serial data register 0, 1 (SDRO, SDR1)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address: $\begin{array}{r}000026 \text { н } \\ 00002 \text { A }_{H}\end{array}$	D7	D6	D5	D4	D3	D2	D1	D0	
	R/W								
R/W : Readable and writable									
R : Read only									
- : Unused									
X : Indeterminate									

*1: Only "0" can be written.
*2: Only " 1 " can be written. Reading always returns " 0 ".
This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.
bit 3: Serial mode selection bit (MODE)
This bit selects the conditions for starting operation from the halted state. Changing the mode during operation is prohibited

MODE	Operation
0	Start when STRT is set to "1". [Initial value]
1	Start on reading from or writing to the serial data register.

The bit is initialized to " 0 " by a reset. The bit is readable and writable. Set to " 1 " when using the intelligent I/O service.
bit 2: Transfer direction selection bit (BDS: Bit Direction Select)
Selects as follows at the time of serial data input and output whether the data are to be transferred in the order from LSB to MSB or vice versa.

MODE	Operation
0	LSB-first [Initial value]
1	MSB-first

MB90650A Series

(2) Block Diagram

MB90650A Series

4. A/D Converter

The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of $5.2 \mu \mathrm{~s}$ per channel (for a 16 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit resolution
- Eight program-selectable analog input channels

Single conversion mode: Selectively convert a one channel.
Scan conversion mode: Continuously convert multiple channels. Maximum of 8 programselectable channels.
Continuous conversion mode : Repeatedly convert specified channels.
Stop conversion mode: Convert one channel then halt until the next activation. (Enables synchronization of the conversion start timing.)

- An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D conversion. This interrupt can activate $I^{2} O S$ to transfer the result of A / D conversion to memory and is suitable for continuous operation.
- Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

bit 15	bit 8 bit 7
ADCS2	ADCS1
ADCR2	ADCR1
8 bits $\longrightarrow 8$ bits \longrightarrow	

- Control status register 1 (ADCS1)

Address : 000036н

- Control status register 2 (ADCS2)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANEO	00000000в
R/W								
bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
BUSY	INT	INTE	PAUS	STS1	STS0	STRT	DA	00000000 в
R/W								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
7	6	5	4	3	2	1	0	XXXXXXXX в $^{\text {¢ }}$
R	R	R	R	R	R	R	R	

- Data register 2 (ADCR2)

Address : 000039

MB90650A Series

(2) Block Diagram

MB90650A Series

5. D/A Converter

D / A converter is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.
(1) Register Configuration

- D/A converter data register 0 (DATO)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 00003Ан	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	XXXXXXXX
- D/A converter data register 1 (DAT1)	R/W bit 15	R/W bit 14	$\begin{gathered} \text { R/W } \\ \text { bit } 13 \end{gathered}$	R/W bit 12	R/W bit 11	$\begin{aligned} & \text { R/W } \\ & \text { bit } 10 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 9 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 8 \end{aligned}$	Initial value
Address : 00003Bн	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	XXXXXXXXв
- D/A control register channel 0 (DACRO)	$\begin{aligned} & \text { R/W } \\ & \text { bit } 7 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 6 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 5 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 4 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 3 \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { bit } 2 \end{aligned}$	R/W bit 1	$\begin{aligned} & \text { R/W } \\ & \text { bit } 0 \end{aligned}$	Initial value
Address : 00003Сн	-	-	-	-	-	-	-	DAE0	------0в
- D/A control register channel 1 (DACR1)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	R/W	Initial value
Address : 00003D	-	-	-	-	-	-	-	DAE1	------0в
	-	-	-	-	-	-	-	R/W	

R/W : Readable and writable
$\overline{\mathrm{X}}$: Unused

MB90650A Series

(2) Block Diagram

MB90650A Series

6. 8/16-bit PPG

8/16-bit PPG is an 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.
The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

- 8 -bit PPG output in two channels independent operation mode:

Two independent PPG output channels are available.

- 16-bit PPG output operation mode : One 16-bit PPG output channel is available.
- $8+8$-bit PPG output operation mode : Variable-period 8 -bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.
- PPG output operation: Outputs pulse waveforms with variable period and duty ratio. Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

- PPGO operation mode control register channel 0 (PPGC0)

- PPG1 operation mode control register channel 1 (PPGC1)

Address : 000045H	bit 15	it 1	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	PEN1	-	PE10	PIE1	PUF1	MD1	MD0	Reserved
	R/W	-	R/W	R/W	R/W	R/W	R/W	-

- PPG0, PPG1 output control register channel 0, channel 1 (PPGOE)

Address : 000046н

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	
bit 0							
..- PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01
R/W							

Initial value
Address : 000045H
Initial value
0×000001 в

- Reload register lower channel 0, channel 1 (PRLL0, PRLL1)

[^1]X : Indeterminate

MB90650A Series

(2) Block Diagram

- 8/16-bit PPG (channel 0)

MB90650A Series

- 8/16-bit PPG (channel 1)

MB90650A Series

7. 8/16-bit Up/Down Counter/Timer

8/16-bit up/down counter/timer is an up/down counter/timer and consists of six event input pins, two 8 -bit up/ down counters, two 8 -bit reload/compare registers, and their control circuits.

(1) Main Functions

- The 8 -bit count register can count in the range 0 to 256 (or 0 to 65535 in 1×16-bit operation mode).
- The count clock selection can select between four different count modes.

Count modes	Timer mode Up/down counter mode
	Phase difference count mode ($\times 2$)
	Phase difference count mode ($\times 8$)

- Two different internal count clocks are available in timer mode.

Count clock (at 16 MHz operation) $-\quad 125 \mathrm{~ns}$ (8 MHz : Divide by 2) $0.5 \mu \mathrm{~s}$ (1 MHz : Divide by 8)

- In up/down count mode, you can select which edge to detect on the external pin input signal.

Detected edge

Detect falling edges

- Detect rising edges
- Detect both rising and falling edges

Edge detection disabled

- Phase difference count mode is suitable for motor encoder counting. By inputting the A, B, and Z phase outputs from the encoder, a high-precision rotational angle, speed, or similar count can be implemented simply.
- Two different functions can be selected for the ZIN pin.

ZIN pin
Counter clear function
Gate function

- Compare and reload functions are available and can be used either independently or together. A variablewidth up/down count can be performed by activating both functions.
Compare/reload function

Compare function (Output an interrupt when a compare occurs.)

- Compare function (Output an interrupt and clear the counter when a compare occurs.)
- Reload function (Output an interrupt and reload when an underflow occurs.)
Compare/reload function
(Output an interrupt and clear the counter when a compare occurs. Output an interrupt and reload when an underflow occurs.)
Compare/reload disabled
- Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set independently.
- The previous count direction can be determined from the count direction flag.
- An interrupt can be generated when the count direction changes.

(2) Register Configuration

bit 15 bit 8 bit 7

UDCR1	UDCR0
RCR1	RCR0
(Reversed area)	CSR0
CCRH0	CCRL0
(Reversed area)	CSR1
CCRH1	CCRL1
8 bits $\longrightarrow 8$ bits \longrightarrow	

- Up/down count register channel 0 (UDCRO)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000070н	D07	D06	D05	D04	D03	D02	D01	D00	00000000в
- Up/down count register channel 1 (UDCR1)	R	R	R	R	R	R	R	R	Initial value
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	
Address : 000071H	D17	D16	D15	D14	D13	D12	D11	D10	00000000в
	R	R	R	R	R	R	R	R	

- Reload compare register channel 0 (RCRO)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D07	D06	D05	D04	D03	D02	D01	D00
W	W	W	W	W	W	W	W

- Reload compare register channel 1 (RCR1)

Address : 000073	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	D17	D16	D15	D14	D13	D12	D11	D10
	W	W	W	W	W	W	W	W

- Counter status register channel 0, channel 1 (CSR0, CSR1)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
$\text { Address : } \begin{aligned} 000074 \mathrm{H} \\ 000078 \mathrm{H} \end{aligned}$	CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	00000000в
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
$\text { Address : } \begin{aligned} & 000076 \text { н } \\ & 00007 \text { н } \end{aligned}$	-	CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0	$\begin{aligned} & 00001000 \text { в } \\ & 00000000 \text { в } \end{aligned}$
- Counter control register channel $\mathbf{0}$ (CCRH0) $\quad-\quad$ R/W R/W R/W R/W R/W R/W R/W									
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000077	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	00000000в
- Counter control register channel 1 (CCRH1) \quad R/W \quad R/W \quad R/W \quad R/W \quad R/W R/W R/W R/W									
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 00007Bн	-	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	Х0001000в
	-	R/W							

[^2]
MB90650A Series

(3) Block Diagram

- 8/16-bit up/down counter/timer (channel 0)

- 8/16-bit up/down counter/timer (channel 1)

MB90650A Series

8. Clock Output Control Register

Clock output control register outputs the divided machine clock.
(1) Register Configuration

- Clock control register (CLKR)

R/W : Readable and writable

- : Unused
bit 3: Clock output enable bit (CKEN)

MODE	
0	Operate as a standard port.
1	Operate as the clock output.

bit 2 to bit 0: Clock output frequency select bit (FRQ2 to FRQ0)

FRQ2	FRQ1	FRQ0	Output clock	$\phi=\mathbf{1 6} \mathbf{~ M H z}$	$\phi=\mathbf{8} \mathbf{~ M H z}$	$\phi=\mathbf{4} \mathbf{~ M H z}$
0	0	0	$\phi / \mathbf{2}^{1}$	125 ns	250 ns	500 ns
0	0	1	$\phi / 2^{2}$	250 ns	500 ns	$1 \mu \mathrm{~s}$
0	1	0	$\phi / 2^{3}$	500 ns	$1 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
0	1	1	$\phi / 2^{4}$	$1 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$
1	0	0	$\phi / 2^{5}$	$2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$
1	0	1	$\phi / 2^{6}$	$4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$16 \mu \mathrm{~s}$
1	1	0	$\phi / \mathbf{2}^{7}$	$8 \mu \mathrm{~s}$	$16 \mu \mathrm{~s}$	$32 \mu \mathrm{~s}$
1	1	1	$\phi / 2^{8}$	$16 \mu \mathrm{~s}$	$32 \mu \mathrm{~s}$	$64 \mu \mathrm{~s}$

MB90650A Series

9. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F${ }^{2} \mathrm{MC}$-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on " H " and " L " levels can be selected, giving a total of four types.

(1) Register Configuration

- Interrupt/DTP enable register (ENIR)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000030н	EN7	EN6	EN5	EN4	EN3	EN2	EN1	ENO	00000000в
- Interrupt/DTP source register (EIRR)	R/W								
	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000031H	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	00000000в
- Request level setting register (ELVR)	R/W								
Address : 000032н	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LAO	00000000в
	R/W								
Address : 000033н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	00000000в
	R/W								

R/W : Readable and writable
(2) Block Diagram

MB90650A Series

10. 16-bit I/O Timer

The 16 -bit I/O timer consists of one 16 -bit free-run timer, two output compare, and two input capture modules. Based on the 16 -bit free-run timer, these functions can be used to generate two independent waveform outputs and to measure input pulse widths and external clock periods.

- Register configuration

- 16-bit free-run timer
TCDTL: 000066 H
TCDTH $: 000067 \mathrm{H}$
TCCS : 000068

- 16-bit output compare
OCCP0 : 000050н, 51 H
OCCP1 $: 000052 \mathrm{H}, 53 \mathrm{H}$
OCCP2 $: 000054 \mathrm{H}, 55 \mathrm{H}$
OCCP3 : 000056н, 57 H

bit 15	bit 0
OCCP	Compare register channel 0 to channel 3 lower, upper (OCCP0 to OCCP3)

OCS0: 000058н
OCS1 : 000059н
OCS2 : 00005Ан
OCS3 : 00005Вн
\square Compare control status register channel 0 to channel 3 (OCS0 to OCS3)

- 16-bit input capture

- Block diagram

MB90650A Series

(1) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the timer/counter is used as the base time for the input capture and output compare.

- The operating clock for the counter can be selected from four different clocks.

Four internal clocks ($\phi / 4, \phi / 16, \phi / 32, \phi / 64$)

- Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs (the appropriate mode must be set for a compare match).
- The counter can be initialized to 0000 H by a reset, software clear, or compare match with compare register 0 .
- Register details
- Upper timer data register (TCDTH)

Address : 000067H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	T15	T14	T13	T12	T11	T10	T09	T08	00000000в
	R/W								

- Lower timer data register (TCDTL)

Address : 000066H

R/W : Readable and writable

The count value of the 16 -bit free-run timer can be read from this register. The count is cleared to " 0000 b " by a reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted (STOP = "1"). Always use word access.

The 16 -bit free-run timer is initialized by the following.

- Reset
- The clear bit (CLR) of the control status register
- A match between the timer/counter value and compare register 0 of the output compare (if the appropriate mode is set)
- Block diagram

MB90650A Series

(2) Output Compare

The output compare consists of two 16-bit compare registers, compare output latches, and control registers. The modules can invert the output level and generate an interrupt when the 16 -bit free-run timer value matches the compare register value.

- The four compare registers can be operated independently.

Each compare register has a corresponding output pin and interrupt flag.

- The four compare registers can be paired to control the output pins. Invert the output pins using the four compare registers.
- Initial values can be set for the output pins.
- An interrupt can be generated when a compare match occurs.

- Register configuration

- Upper compare register channel 0 to channel 3 (OCCPO to OCCP3)

OCCP0	000051н	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
$\begin{aligned} & \text { OCCP1 } \\ & \text { OCCP2 } \end{aligned}$	$\begin{aligned} & 000053 \mathrm{H} \\ & 000055 \mathrm{H} \end{aligned}$	C15	C14	C13	C12	C11	C10	C09	C08
OCCP3	000057H	R/W							

Initial value XXXXXXXX

- Lower compare register channel 0 to channel 3 (OCCPO to OCCP3)

- Compare control status register channel 0 to channel 3 (OCSO to OCS3)

OCS1: 000059H

OCS2 : 00005A

R/W: Readable and writable
\bar{x} : Unused
X : Indeterminate

MB90650A Series

- Block diagram

MB90650A Series

(3) Input Capture

The input capture consists of two independent external input pins, their corresponding capture registers, and a control register. The value of the 16 -bit free-run timer can be stored in the capture register and an interrupt generated when the specified edge is detected on the signal from the external input pin.

- The edge to detect on the external input signal is selectable.

Detection of rising edges, falling edges, or either edge can be specified.

- The two input capture channels can operate independently.
- An interrupt can be generated on detection of the specified edge on the external input signal.

The input capture interrupt can activate the intelligent I/O service.

- Register details

- Input capture register channel 0, channel 1 (IPCPO, IPCP1)

- Input capture control status register (ICSO, 1)

The 16 -bit free-run timer value is stored in these registers when the specified edge is detected on the input waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)

- Block diagram

MB90650A Series

11. Watchdog Timer, Timebase Timer, and Watch Timer

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18 -bit timebase timer or the 15 -bit watch timer as aclock source, a control register, and a watchdog reset controller.
The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase timer uses the main clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.
The watch timer consists of a 15 -bit timer and a circuit that controls interval interrupts. Note that the watch timer uses the sub clock, regardless of the setting of the MCS bit SCS bit in CKSCR.
(1) Register Configuration

- Watchdog timer control register (WDTC)

- Timebase timer control register (TBTC)

- Watch timer control register (WTC)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 0000AAн	WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0	1×000000 в
	R/W	R	R/W	R/W	R	R/W	R/W	R/	

R/W: Readable and writable
R : Read only
W: Write only
\bar{x} : Unused
X : Indeterminate

MB90650A Series

(2) Block Diagram

MB90650A Series

12. $I^{2} \mathrm{C}$ Interface

The $I^{2} \mathrm{C}$ interface is a serial I / O port that supports the Inter-IC bus and operates as a master/slave device on the $I^{2} \mathrm{C}$ bus. This module has the following features:

- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transfer direction detection function
- Start condition repeat generation and detection function
- Bus error detection function
(1) Register Configuration
- ${ }^{2} \mathrm{C}$ bus status register (IBSR)

Address : 000080н

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & 00000000 \text { в } \end{aligned}$
BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	
R	R	R	R	R	R	R	R	

- ${ }^{2}$ C bus control register (IBCR)

Address : 000081H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT
	R/W							

Initial value
00000000 в

- ${ }^{2} \mathrm{C}$ bus clock control register (ICCR)

Address : 000082н

- ${ }^{2} \mathrm{C}$ bus address register (IADR)

Address : 000083 ${ }^{\text {H }}$	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	-	A6	A5	A4	A3	A2	A1	A0	$-X X X X X X X$ в
	-	R/W							

- ${ }^{2} \mathrm{C}$ bus data register (IDAR)

Address : 000084н

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & X X X X X X X X_{B} \end{aligned}$
D7	D6	D5	D4	D3	D2	D1	D0	
R/W								

R/W : Readable and writable
R : Read only
\bar{x} : Unused
X : Indeterminate

MB90650A Series

(2) Block Diagram

MB90650A Series

13. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins required to extend the CPU's address/data bus outside the device.

(1) Register Configuration

- Auto-ready function selection register (ARSR)

Initial value
0011--00в

- External address output control register (HACR)

Address : 0000A6H

| | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Initial value

- Bus control signal selection register (ECSR)

Address : 0000A7H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	CKE	RYE	HDE	ICBS	HMBS	WRE	LMBS	-	0000*00-в
	W	W	W	W	W	W	W	-	

$$
\frac{\mathrm{W}}{\frac{-}{*}}: \text { Write only }
$$

(2) Block Diagram

MB90650A Series

14. Low-power Consumption Mode (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, Clock Multiplier Function)

The following are the operating modes: PLL clock mode, PLL sleep mode, PLL watch mode, pseudo-watch mode, main clock mode, main sleep mode, main watch mode, main stop mode, sub clock mode, sub sleep mode, sub watch mode, and sub stop mode. Aside from the PLL clock mode, all of the other operating modes are low-power consumption modes.

In main clock mode and main sleep mode, the main clock (main OSC oscillation clock) and the sub clock (sub OSC oscillation clock) operate. In these modes, the main clock divided by 2 is used as the operation clock, the sub clock (sub OSC oscillation clock) is used as the timer clock, and the PLL clock (VCO oscillation clock) is stopped.

In sub clock mode and sub sleep mode, only the sub clock operates. In these modes, the sub clock is used as the operation clock, and the main clock and PLL clock are stopped.

In PLL sleep mode and main sleep mode, only the CPU's operation clock is stopped; all clocks other than the CPU clock operate.

In pseudo-watch mode, only the watch timer and timebase timer operate.
In PLL watch mode, main watch mode, and sub watch mode, only the watch timer operates. In this mode, only the sub clock is used for operation, while the main clock and the PLL clock are stopped (the difference between the PLL watch mode, the main watch mode and the sub watch mode is that it resumes operation after an interrupt in the PLL clock mode, the main clock mode, and the sub clock mode respectively, and there is no reference concerning about clock mode operation).

The main stop mode, sub stop mode, and hardware standby mode stop oscillation, making it possible to retain data while consuming the least amount of power. (The difference between the main stop mode and the sub stop mode is that it resumes operation in the main clock mode and the sub clock mode respectively, and there is no reference concerning about stop mode operation).

The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power consumption by reducing the execution speed of the CPU while supplying a high-speed clock and using on-chip resources.

The PLL clock multiplier can be selected as either 2, 4, 6, or 8 by setting the CS1 and CSO bits. These clocks are divided by 2 to be used as a machine clock.

The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode is woken up.

MB90650A Series

(1) Register Configuration

- Low-power consumption mode control register (LPMCR)

Address : 0000АОн	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value$00011000 \text { в }$
	STP	SLP	SPL	RST	TMD	CG1	CGO	-	
	W	W	R/W	W	w	R/W	R/W		

- Clock selection register (CKSCR)

Address : 0000A1H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
	SCM	MCM	WS1	WS0	SCS	MCS	CS1	CSO	11111100 в
	R	R	R/W	R/W	R/W	R/W	R/W	R/W	

R/W : Readable and writable
R : Read only
W : Write only

- : Unused

MB90650A Series

(2) Block Diagram

- Low-power consumption control circuit and clock generator

- State transition diagram for clock selection (1)

<1> MCS bit cleared and SCS bit set
<2> PLL clock oscillation stabilization delay complete and CS1/0 $=00$ $<3>$ PLL clock oscillation stabilization delay complete and CS1/0 $=01$
<4> PLL clock oscillation stabilization delay complete and CS1/0 $=10$
$<5>$ PLL clock oscillation stabilization delay complete and CS1/0 $=11$
<6> MCS bit set or SCS bit cleared
$<7>$ PLL clock and main clock synchronized timing and SCS $=1$
$<8>$ PLL clock and main clock synchronized timing and SCS $=0$
$<9>$ Main clock oscillation stabilization delay complete and MCS $=0$

MB90650A Series

- State transition diagam for clock selection (2)

<1> SCS bit cleared
<2> Sub clock edge detection timing
<3> SCS bit set
<4> Main clock oscillation stabilization delay complete and MCS = 1
$<5>$ PLL clock and main clock synchronized timing and SCS $=0$
<6> Main clock ascillation stabilization delay complete and MCS $=0$

MB90650A Series

15. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU can be generated and cleared by software using this module.
(1) Register Details

- Delayed interrupt generation/release register (DIRR)

Initial value
-------0в

R/W : Readable and writable

- : Unused

The DIRR register controls generation and clearing of delayed interrupt requests. Writing " 1 " to the register generates a delayed interrupt request. Writing " 0 " to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either " 0 " or " 1 " can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.

(2) Block Diagram

MB90650A Series

16. DTMF Generator

The DTMF (dual tone multifrequency) generator is a module that can generate a series of audio tones as heard from a push-button telephone or a radio transceiver with a keypad. It has the following features:

Capable of generating DTMF tones continuously (or even a single tone)
Capable of generating all CCITT tones: 0 to $9,{ }^{*}, \#, A$ to D
(1) Register list

- DTMF control register (DTMC)	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address : 000088н	-	CSL2	CSL1	CSLO	CDIS	RDIS	OUTE	-	00000000 B
	-	R/W	R/W	R/W	R/W	R/W	R/W	-	
- DTMF data register (DTMD)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address : 000089н	-	-	-	-	DDAT3	DDAT2	DDAT1	DDAT0	000Х0000в
	-	-	-	-	R/W	R/W	R/W	R/W	
R/W : Read/write ena - : Unused X: Undefined									

(2) Block diagram

MB90650A Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$(\mathrm{Vss}=\mathrm{AV} \mathrm{Vss}=0.0 \mathrm{~V})$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc1	Vss -0.3	Vss +4.0	V	MB90652A/653A/654A,
	Vcc2	Vss -0.3	Vss +7.0	V	MB90F654A
	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \left(\mathrm{~V}_{\mathrm{cc} 1}=\mathrm{V}_{\mathrm{cc}} 2\right) \end{aligned}$	Vss - 0.3	Vss +7.0	V	MB90P653A
	AV ${ }_{\text {cc }}$	Vss - 0.3	Vss +4.0	V	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		Vss - 0.3	Vss +7.0	V	MB90P653A *1
	AVRH AVRL	Vss - 0.3	Vss +4.0	V	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		Vss - 0.3	Vss +7.0	V	MB90P653A
	DVRH	Vss - 0.3	Vss +4.0	V	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		Vss - 0.3	Vss +7.0	V	MB90P653A
Input voltage	V	Vss - 0.3	Vss +4.0	V	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		Vss -0.3	Vss +7.0	V	MB90P653A *2,*6
Output voltage	Vo	Vss - 0.3	Vss +4.0	V	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A *2 } \end{aligned}$
		Vss - 0.3	Vss +7.0	V	MB90P653A *2,*6
"L" level maximum output current	loL	-	10	mA	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A *3 } \end{aligned}$
		-	15	mA	MB90P653A *3
"L" level average output current	Iolav	-	3	mA	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		-	4	mA	MB90P653A *4
"L" level total maximum output current	Elo	-	60	mA	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		-	100	mA	MB90P653A
"L" level total average output current	Elolav	-	30	mA	$\begin{array}{\|l\|} \text { MB90652A/653A/654A, } \\ \text { MB90F654A } \end{array}$
		-	50	mA	MB90P653A *5
" H " level maximum output current	Іон	-	-10	mA	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
		-	-15	mA	MB90P653A *3

(Continued)

MB90650A Series

(Continued)
$\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
" H " level average output current	Iohav	-	-3	mA	$\begin{aligned} & \text { MB90652A/653A/654A, }{ }^{*} 4 \\ & \text { MB90F654A } \end{aligned}$
		-	-4	mA	MB90P653A *4
" H " level total maximum output current	Σ Іон	-	-60	mA	MB90652A/653A/654A, MB90F654A
		-	-100	mA	MB90P653A
" H " level total average output current	Σ Iohav	-	-30	mA	*5
Power consumption	Pd	-	200	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: AVcc, AVRH, AVRL and DVRH must not exceed Vcc (Vcc1 and Vcc2 are contained). Similarly, AVRL must not exceed AVRH.
*2: V_{1} and V o must not exceed $\mathrm{Vcc}\left(\mathrm{V}_{\mathrm{cc} 1}\right.$ and V_{cc} are contained $)+0.3 \mathrm{~V}$.
*3: Maximum output current specifies the peak value or one corresponding pin.
*4: The average output current is the rating for the current from an individual pin averaged over 100 ms .
*5: The average total output current is the rating for the current from all pins averaged over 100 ms .
*6: Applies to the P47 and P70 to P72 on the MB90652A/653A/654A and MB90F654A.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90650A Series

2. Recommended Operating Conditions

$(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc1	2.2	3.6	V	For normal operation (MB90652A/653A/654A)
		2.7	3.6	V	For normal operation (MB90P653A)
		2.4	3.6	V	For normal operation (MB90F654A)
	Vcc2	2.2	5.5	V	For normal operation (MB90652A/653A/654A)
		2.7	5.5	V	For normal operation (MB90P653A)
		2.4	5.5	V	For normal operation (MB90F654A)
	Vcc1	1.8	3.6	V	To maintain statuses in stop mode (MB90652A/653A/654A)
		1.8	5.5	V	To maintain statuses in stop mode (MB90P653A)
		1.8	3.6	V	To maintain statuses in stop mode (MB90F654A)
	Vcc2	1.8	5.5	V	To maintain statuses in stop mode (MB90652A/653A/654A)
		1.8	5.5	V	To maintain statuses in stop mode (MB90P653A)
		1.8	5.5	V	To maintain statuses in stop mode (MB90F654A)
"H" level input voltage	VIH	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	Pins other than $\mathrm{V}_{\text {IHs }}$ and $\mathrm{V}_{\text {IHM }}$
	$\mathrm{V}_{\text {IHS }}$	0.8 Vcc	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	Hysteresis input pins
	Vıнм	Vcc-0.3	Vcc +0.3	V	MD pin input
	VIHT	2.4	$\mathrm{Vcc}+0.3$	V	TTL input pins
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	PIns other than Vils and Vilm
	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
	Vilm	Vss - 0.3	$\mathrm{Vss}+0.3$	V	MD pin input
	VILT	Vss - 0.3	0.8	V	TTL input pins
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+85	${ }^{\circ} \mathrm{C}$	

Note: ${ }^{2} \mathrm{C}$ must be used at above 2.7 V .
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90650A Series

3. DC Characteristics

(MB90652A/653A/654A: V cc $=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90P653A: $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB92F654A: $\mathrm{V} \mathrm{cc}=2.4 \mathrm{~V}$ to 3.6 V, $\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level output voltage*2	Vor	Pins except P47, P70 to P72	$\begin{aligned} & \mathrm{Vcc} 2=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc2-0.5	-	-	V	When the 5-V power supply is used
			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}, \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	Vcc1-0.3	-	-	V	When the 3-V power supply is used
"L" level output voltage*2	Vol	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc} 2=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	When the 5-V power supply is used
			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}, \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	When the 3 -V power supply is used
Input leakage current	IIL	$\begin{aligned} & \text { Except P50 } \\ & \text { to P57, } \\ & \text { P90, P91 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	
Pull-up resistor	RPULL	-	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	40	80	400	$\mathrm{k} \Omega$	MB90P653A
				20	65	200	k Ω	$\begin{aligned} & \text { MB90652A/653A/654A, } \\ & \text { MB90F654A } \end{aligned}$
Open-drain output leakage current	leak	$\begin{aligned} & \text { P40 to P47, } \\ & \text { P70 to P72 } \end{aligned}$	-	-	0.1	10	$\mu \mathrm{A}$	
Power supply current	Icc	-	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ Internal 8 MHz operation	-	10	20	mA	MB90652A/653A/654A: During normal operation
	Icc			-	17	24	mA	MB90652A/653A/654A: In A/D operation
	Icc			-	19	26	mA	MB90652A/653A/654A: In D/A operation
	Iccs			-	2.5	5	mA	MB90652A/653A/654A: During sleep
	Icc	-	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ Internal 8 MHz operation	-	20	27	mA	MB90P653A: During normal operation
	Icc			-	24	31	mA	MB90P653A: In A/D operation
	Icc			-	26	33	mA	MB90P653A: In D/A operation
	Iccs			-	4.2	10	mA	MB90P653A: During sleep

* 1 : P40 to P46 are N-ch open-drain pins to be controlled and are usually used as CMOS devices.
* 2 : When the device is used with dual power supplies, the P20 to P27, P30 to P37, P40 to P47, and P70 to P72 are the 5 V pins and the rest are the 3 V pins.
(Continued)

MB90650A Series

(Continued)
(MB90652A/653A/654A: $\mathrm{Vcc}=2.2 \mathrm{~V}$ to 3.6 V, V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90P653A: $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90F654A: $\mathrm{Vcc}=2.4 \mathrm{~V}$ to 3.6 V , $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current	Icc	-	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ Internal 16 MHz operation	-	20	35	mA	MB90652A/653A/654A: During normal operation
	Icc			-	27	45	mA	MB90F654A: During normal operation
	Icc			-	33	50	mA	MB90F654A: Flash write/erase
	Icc			-	31	41	mA	MB90652A/653A/654A: In A/D operation
	Icc			-	34	42	mA	MB90652A/653A/654A: In D/A operation
	Iccs	-	When $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ Internal 16 MHz operation	-	4.8	10	mA	MB90652A/653A/654A: During sleep
	Iccs			-	6.2	12	mA	MB90F654A: During sleep
	Іссн	-	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { When } \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \end{aligned}$	-	0.1	20	$\mu \mathrm{A}$	MB90652A/653A/654A: During stop
	Icch			-	0.2	40	$\mu \mathrm{A}$	MB90F654A: During stop
	Iccı	-	$\begin{aligned} & V_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ External 32 kHz operation (Internal 8 MHz operation)	-	16	140	$\mu \mathrm{A}$	MB90652A/653A/654A, MB90F654A: In sub operation
	Iccı			-	4.4	6	mA	MB90P653A: In sub operation
	Ісст	-	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ External 32 kHz operation	-	10	30	$\mu \mathrm{A}$	MB90652A/653A/654A: In watch mode
	Icct			-	15	30	$\mu \mathrm{A}$	MB90F654A: In watch mode
	Ісст			-	15	60	$\mu \mathrm{A}$	MB90P653A: In watch mode
Input capacitance	Cin	Except AVcc, AVss, Vcc, Vss	-	-	10	80	pF	

Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$

MB90650A Series

4. AC Characteristics

(1) Clock Timing

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fсн	X0, X1	-	3	-	32	MHz	MB90652A/653A/ 654A,MB90F654A
			-	3	-	16	MHz	MB90P653A
	FcL	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	tc	X0, X1	-	31.25	-	333	ns	MB90652A/653A/ 654A,MB90F654A
			-	62.5	-	333	ns	MB90P653A
	tcL	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	-	5	-	-	ns	$\begin{aligned} & \text { MB90652A/653A/ } \\ & \text { 654A,MB90F654A*2 } \end{aligned}$
			-	10	-	-	ns	MB90P653A *2
	PwLH Pwll	XOA	-	-	15.2	-	$\mu \mathrm{S}$	*2
Input clock rise time and fall time	$\begin{aligned} & \mathrm{tor}_{\mathrm{tc}} \\ & \mathrm{tof} \end{aligned}$	X0	-	-	-	5	ns	External clock
Internal operating clock frequency	fcp	-	-	1.5	-	16	MHz	MB90652A/653A/ 654A,MB90F654A
			-	1.5	-	8	MHz	MB90P653A
	fCPL	-	-	-	8.192	-	kHz	
Internal operating clock cycle time	top	-	-	62.5	-	666	ns	
	tcpı	-	-	-	122.1	-	$\mu \mathrm{s}$	
Frequency fluctuation ratio	$\Delta \mathrm{f}$	-	-	-	-	5	\%	When locked *1

*1: The frequency fluction ratio indicates the maximum fluctuation ratio from the set center frequency while locked when using the PLL multiplier.
$\Delta f=\frac{|\alpha|}{\mathrm{fo}} \times 100(\%) \quad$ Center frequency

Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately CLK \times (1 CYC to 50 CYC)], the worst value is not maintained for long. (The pulse, if featured with the long period, would produce practically no error.)
*2: The duty ratio should be in the range 30% to 70%.
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$

MB90650A Series

-Main clock timing condition (XO, X1)

- Subclock timing condition (X0A, X1A)

MB90650A Series

- PLL operation assurance range

Relationship between the internal operating clock frequency and power supply voltage

Relationship between the internal oprating clock frequency and power supply voltage

Relationship between the oscillation frequency and internal operating clock frequency

MB90650A Series

The AC characteristics are for the following measurement reference voltages.

- Input signal waveform

Hysteresis input pins

Other than hysteresis or MD input pins

- Output signal waveform

Output pins

MB90650A Series

(2) Clock Output Timing

Parameter	Symbol	$\underset{\text { Pin }}{\text { name }}$	Condition	Value		Unit	Remarks
				Min.	Max.		
Cycle time	tovc	CLK	-	tcp	-	ns	
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \pm 10 \% \end{aligned}$	tcp / 2-20	tcp / $2+20$	ns	
				tcp / 2-64	tcp / $2+64$	ns	In the external frequency of 5 MHz

tcp: See "(1) Clock Timing."
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

(3) Reset Input Specifications

Parameter	Symbol	Pinname	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\text { RST }}$	-	16 top	-	ns	

tcp: See "(1) Clock Timing."
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$

- AC characteristics measurement conditions

MB90650A Series

(4) Power on Supply Specifications (Power-on Reset)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tR	Vcc	-	-	30	ms	*
Power supply cut-off time	toff	Voc	-	1	-	ms	Due to repeat operation

*: When the power rising, Vcc must be less than 0.2 V .
Notes: • The above standards are the values needed in order to activate a power-on reset.

- Activate a power-on reset by turning on the power supply again this in device.
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

Vcc Abrup When ensu	Itage may cause a power-on reset. ge during operation, suppress variations in the voltage and as shown in the following figure.
Main power supply voltage Vcc Sub-power supply voltage Vss	Holding RAM data It is recommended that the rate of increase in the voltage be kept to no more than $50 \mathrm{mV} / \mathrm{ms}$

MB90650A Series

(5) Bus Read Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
ALE pulse width	tıнLL	ALE	-	tcp /2-20	-	ns	MASK/FLASH
				tcp / $2-35$	-	ns	MB90P653A
Valid address \rightarrow ALE \downarrow time	tavil	Multiplexed address	-	tcp / 2-25	-	ns	MASK/FLASH
				tcp / 2-40	-	ns	MB90P653A
ALE $\downarrow \rightarrow$ address valid time	tlıax	Multiplexed address	-	tcp / 2 - 15	-	ns	
Valid address $\rightarrow \overline{\mathrm{RD}} \downarrow$ time	taviL	Multiplexed address	-	tcp - 15	-	ns	
Valid address \rightarrow valid data input	tavov	Multiplexed address	-	-	5 tcp / 2-60	ns	MASK/FLASH
				-	$5 \mathrm{tcp} / 2-80$	ns	MB90P653A
$\overline{\mathrm{RD}}$ pulse width	trler	$\overline{\mathrm{RD}}$	-	3 tcp / $2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trlov	D15 to D00	-	-	$5 \mathrm{tcp} / 2-60$	ns	MASK/FLASH
				-	$5 \mathrm{tcp} / 2-80$	ns	MB90P653A
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhox	D15 to D00	-	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trнL	RD, ALE	-	tcp / 2 - 15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address valid time	trhax	Address, $\overline{R D}$	-	tcp / 2 - 10	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address, CLK	-	tcp / 2-20	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trLCH	$\overline{\mathrm{RD}}$, CLK	-	tcp / 2-20	-	ns	

tcp: See "(1) Clock Timing."
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

MB90650A Series

(6) Bus Write Timing

$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	A23 to A00	-	tcp - 15	-	ns	
$\overline{\text { WR pulse width }}$	twlwh	$\overline{\mathrm{WR}}$	-	3 tcp / 2 - 20	-	ns	
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovw	D15 to D00	-	3 tcp / 2 - 20	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhox	D15 to D00	-	20	-	ns	MASK/FLASH
				30	-	ns	MB90P653A
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address valid time	twhax	A23 to A00	-	tcp / 2 - 10	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ ALE \uparrow time	twHLH	WR, ALE	-	tcp / 2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \rightarrow$ CLK \uparrow time	twlch	WR, ALE	-	tcp / 2 - 20	-	ns	

tcp: See "(1) Clock Timing."
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$

MB90650A Series

(7) Ready Input Timing

$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
RDY setup time	try ${ }^{\text {a }}$	RDY	-	45	-	ns	MASK/FLASH
			-	70	-	ns	MB90P653A
RDY hold time	try ${ }^{\text {H }}$	RDY	-	0	-	ns	

Notes: • Use the auto-ready function if the RDY setup time is too short

- $\mathrm{Vcc}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$.

MB90650A Series

(8) Hold Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Pin floating $\rightarrow \overline{\mathrm{HAK}} \downarrow$ time	txhaL	$\overline{\text { HAK }}$	-	30	tcp	ns	
$\overline{\text { HAK }} \uparrow \rightarrow$ pin valid time	thatv	$\overline{\text { HAK }}$	-	tcp	2 tcp	ns	

tcp: See "(1) Clock Timing."
Notes: • After reading HRQ, more than one cycle is required before changing HAK.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

(9) UART Timing

$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for the internal shift clock mode output pin	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-80	80	ns	MASK/FLASH
				-120	120	ns	MB90P653A
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	MASK/FLASH
				200	-	ns	MB90P653A
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp	-	ns	
Serial clock "H" pulse width	tshsL	-	$C L=80 \mathrm{pF}+1 \mathrm{TTL}$ for the external shift clock mode output pin	4 tcp	-	ns	
Serial clock "L" pulse width	tsısH	-		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-	150	ns	MASK/FLASH
				-	200	ns	MB90P653A
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	MASK/FLASH
				120	-	ns	MB90P653A
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	MASK/FLASH
				120	-	ns	MB90P653A

Notes: - These are the AC characteristics for CLK synchronous mode.

- C_{L} is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

- Internal shift clock mode

- External shift clock mode

MB90650A Series

(10) I/O Extended Serial Timing
$\left(\mathrm{V} \mathrm{Cc}=2.7 \mathrm{~V}\right.$ to $3.3 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for the internal shift clock mode output pin	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	-		-	80	ns	MASK/FLASH
				-	160	ns	MB90P653A
Valid SIN \rightarrow SCK \uparrow	tvsh	-		tcp	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp	-	ns	
Serial clock "H" pulse width	tshsL	-	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for the external shift clock mode output pin	230	-	ns	MASK/FLASH
				460	-	ns	MB90P653A
Serial clock "L" pulse width	tsısh	-		230	-	ns	MASK/FLASH
				460	-	ns	MB90P653A
SCK $\downarrow \rightarrow$ SOT delay time	tsoov	-		2 tcp	-	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	-		tcp	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		2 tcp	-	ns	

Notes: - These are the AC characteristics for CLK synchronous mode.

- $C_{\llcorner }$is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).
- The values in the table are target values.
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

- Internal shift clock mode

- External shift clock mode

MB90650A Series

(11) $I^{2} C$ Timing

$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to 3.3 V , V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Max.			
SCL clock frequency	fscL	-	-	0	100	kHz	
Bus free time between stop and start conditions	tBus	-	-	4.7	-	$\mu \mathrm{s}$	
Hold time (re-send) start	thDSTA	-	-	4.0	-	$\mu \mathrm{s}$	

Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

5. A/D Converter Electrical Characteristics

(MB90652A/653A/654A: Vcc $=2.2 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90F654A: $\mathrm{V}_{\mathrm{cc}}=2.4 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90P653A: $\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	10	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Linearity error	-	-	-	-	± 2.0	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	MASK/FLASH
			-	-	± 1.5	LSB	MB90P653A
Zero transition voltage	Vот	AN0 to AN7	$\begin{gathered} \text { AVRL } \\ -1.5 \mathrm{LSB} \end{gathered}$	$\begin{aligned} & \text { AVRL } \\ + & 0.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \text { AVRL } \\ + & 2.5 \mathrm{LSB} \end{aligned}$	mV	
Full scale transition voltage	Vfst	AN0 to AN7	$\begin{gathered} \text { AVRH } \\ -4.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \text { AVRH } \\ -1.5 \mathrm{LSB} \end{gathered}$	$\begin{aligned} & \text { AVRH } \\ + & 0.5 \mathrm{LSB} \end{aligned}$	mV	
Conversion time	-	-	6.125^{*}	-	-	$\mu \mathrm{s}$	MASK/FLASH
			$12.25{ }^{*}$	-	-	$\mu \mathrm{s}$	MB90P653A
Analog port input current	IAIN	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	AN0 to AN7	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	AVRL + 2.7	-	$\mathrm{AV}_{\mathrm{cc}}$	V	
		AVRL	0	-	$\begin{gathered} \text { AVRH - } \\ 2.7 \end{gathered}$	V	
Power supply current	IA	AV cc	-	3	-	mA	
	IAH	AVcc	-	-	5^{3}	$\mu \mathrm{A}$	
Reference voltage supply current	If	AVRH	-	200	-	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	$5^{* 3}$	$\mu \mathrm{A}$	
Variation between channels	-	AN0 to AN7	-	-	4	LSB	

*1: For a 16 MHz machine clock
*2: For an 8 MHz machine clock
*3: The current when the A/D converter is not operating or the CPU is in stop mode (for $\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.0 \mathrm{~V}$).
Notes: •The error increases proportionally as |AVRH - AVRL| decreases.

- The output impedance of the external circuits connected to the analog inputs should be in the following range.
The output impedance of the external circuit should be less than approximately $7 \mathrm{k} \Omega$.
When using an external capacitor, it is recommended to have several thousand times the capacitance of the internal capacitor as a guid, if one takes into consideration the effect of the divided capacitance between the external capacitor and the internal capacitor.
- If the output impedance of the external circuit is too high, the sampling time might be insufficient (sampling time $=3.75 \mu \mathrm{~s}$ at a machine clock of 16 MHz).
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$
(Continued)

MB90650A Series

(Continued)

- Analog input circuit model diagram

Note: Use the values shown as guids only.

MB90650A Series

6. D/A Converter Electrical Characteristics

(MB90652A/653A : Vcc $=2.2 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DV}$ ss $=0.0 \mathrm{~V}, 2.2 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DV}$ ss, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90F654A : Vcc $=2.4 \mathrm{~V}$ to 3.6 V, V ss $=\mathrm{DV}$ ss $=0.0 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DV}$ ss, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90P653A : $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{DVss}=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DVss}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	8	8	bit	
Differential linearity error	-	-	-	-	± 0.9	LSB	
Absolute accuracy	-	-	-	-	1	\%	
Linearity error	-	-	-	-	± 1.5	LSB	
Conversion time	-	-	-	10.0	20.0	$\mu \mathrm{s}$	*1
Analog reference power supply voltage	-	DVRH	2.2	-	Vcc	V	MB90652A/653A/654A*2
			2.4	-	Vcc	V	MB90F654A *2
			2.7	-	Vcc	V	MB90P653A *2
Reference voltage supply current	Iove	DVRH	-	100	-	$\mu \mathrm{A}$	*3
	loves		-	-	5	$\mu \mathrm{A}$	*4
Analog output impedance	-	-	-	28	-	k Ω	

*1: Conversion time is the value at the load capacitance $=20 \mathrm{pF}$.
*2: DVRH - DVss (AVss)
*3: Current value at conversion
*4: Current value when stopped
Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V}_{\mathrm{cc}} 2$

MB90650A Series

7. DTMF Electrical characteristics

(MB90652A/653A : V $\mathrm{Vc}=2.2 \mathrm{~V}$ to 3.3 V , $\mathrm{V}_{\mathrm{ss}}=\mathrm{DV}$ ss $=0.0 \mathrm{~V}, 2.2 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DV}$ ss, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90F654A : Vcc $=2.4 \mathrm{~V}$ to 3.6 V, $\mathrm{V}_{\mathrm{ss}}=\mathrm{DVss}=0.0 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DVss}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (MB90P653A : $\mathrm{Vcc}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{Vss}=\mathrm{DVss}=0.0 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{DVRH}-\mathrm{DVss}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value			Unit	Remarks
			Min.	Typ.	Max.		
Output load condition	Ro	$V_{c c}=3 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Machine clock $\mathrm{f}=16 \mathrm{MHz}$	30 k	-	-	Ω	To be specified with DTMF pin pull-down resistor
DTMF output offset voltage (At signal output)	VmoF		-	0.4	-	V	When DTMF terminal is opened$\mathrm{Ro}_{\mathrm{o}}=200 \mathrm{k} \Omega$
DTMF output amplitude (COL single tone)	Vmac		450	530	600	mVP-p	
DTMF output amplitude (ROW single tone)	Vmfor		330	440	500	mV P-P	
COL/ROW level difference	Rmf		1.6	2.0	2.4	dB	

Note: $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 1=\mathrm{V} \mathrm{cc} 2$

- Output level measurement circuit

MB90650A Series

EXAMPLE CHARACTERISTICS

(1) " H " Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (COMS Input)

$\mathrm{V}_{\mathbf{\prime}}$: Threshold when input voltage is set to " H " level
Vı: Threshold when input voltage is set to "L" level

(2) "L" Level Output Voltage

(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

Viнs: Threshold when input voltage in hysteresis characteristics is set to " H " level

Viss: Threshold when input voltage in hysteresis characteristics is set to "L" level

MB90650A Series

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

- Mask ROM products

MB90650A Series

- OTPROM products

Icch vs. Vcc

Iccs vs. Vcc

Iccl vs. Vcc

MB90650A Series

- FLAH products

Iccl vs. Vcc

MB90650A Series

(6) Pull-up Resistance

- Mask ROM products

- OTPROM products

- FLASH products

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Numbers after lower-case letters: Indicate when described in assembler.
\#	Indicates the number of bytes.

MB90650A Series

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word: 16 bits of AL Long : 32 bits of AL:AH
$\begin{aligned} & \hline \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RLO, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000 to 0000FFH)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

MB90650A Series

(Continued)

Symbol	
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the	
04	R4	RW4	RL2		-
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	@RW0 @RW1 @RW2 @RW3			Register indirect	
09					0
0A					0
0B					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
0D					0
OE					
OF					
10	@RW0 + disp8			Register indirect with 8-bit	
11	@RW1 + disp8			displacement	
12	@RW2 + disp8				
13					1
14		$\mathrm{N} 4+\mathrm{dis}$			1
15	@RW5 + disp8				
16	@RW6 + disp8@RW7 + disp8				
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	@RW1 + disp16			displacement	2
1A	$\begin{aligned} & \text { @RW2 + disp16 } \\ & \text { @RW3 + disp16 } \end{aligned}$				2
1B					
1 C	@RW0 + RW7			Register indirect with index	0
1D	@RW1 + RW7			Register indirect with index	0
1 E	@PC + disp16addr16			PC indirect with 16-bit displacement	2
1F				Direct address	2

Note: The number of bytes in the address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the tables of instructions.

MB90650A Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0 C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note: "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90650A Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	~	RG	B	Operation	LH	AH	H	1	S	T	N	z	v	C	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z					-			-	-	-
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z			-	-	-	*	*	-	-	
MOV	A, Ri	1	2	1	0	byte (A) $\leftarrow($ Ri)	Z			-	-	-	*	*	-	-	-
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z			-	-	-	*	*	-	-	-
MOV	A, eam	$2+$	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	Z			-	-	-	*	*	-	-	
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z			-	-	-	*		-	-	-
MOV	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	Z			-	-	-			-	-	-
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	Z	-		-	-	-			-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi) + disp8)	Z				-	-			-	-	-
MOVN	A, \#imm4	1	1	0	0	byte $(\mathrm{A}) \leftarrow$ imm4	Z				-	-	R		-	-	-
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	X				-	-				-	
MOVX	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow($ addr 16$)$	X		-		-	-	*		-	-	-
MOVX	A, Ri	2	2	1	0	byte $(\mathrm{A}) \leftarrow$ (Ri)	X			-	-	-			-	-	-
MOVX	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	X			-	-	-			-	-	-
MOVX	A, eam	$2+$	$3+$ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow$ (eam)	X		-	-	-	-			-	-	-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X				-	-			-	-	-
MOVX	A, \#imm8	2	2	0	0	byte $($ A $) \leftarrow$ imm8	X				-	-			-	-	
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X	-			-	-			-	-	
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(\mathrm{A}) \leftarrow(($ RWi) $)$ disp8)	X		-		-	-	*		-	-	
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow(($ RLi $)+$ disp8)	X			-	-	-	*		-	-	-
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	-	-			-	-			-	-	
MOV	addr16, A	3	4	0	(b)	byte (addr16) \leftarrow (A)	-	-			-	-			-	-	-
MOV	Ri, A	1	2	1	(byte (Ri) $\leftarrow(A)$	-	-			-	-			-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$	-	-			-	-			-	-	-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-			-	-			-	-	-
MOV	io, A	2	3	0	(b)	byte (io) $\leftarrow(A)$	-	-			-	-			-	-	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-	-			-	-			-	-	-
MOV	Ri, ear	2	3	2	(b)	byte (Ri) \leftarrow (ear)	-	-			-	-			-	-	-
MOV	Ri, eam	$2+$	4+ (a)	1	(b)	byte $($ Ri) $) \leftarrow($ eam $)$	-	-			-	-			-	-	-
MOV	ear, Ri	2	4	2	(b)	byte (ear) $\leftarrow(\mathrm{Ri})$	-				-	-			-	-	
MOV	eam, Ri	$2+$	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-		-	-	-			-	-	-
MOV	Ri, \#mm8	2	2	1	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	-			-	-	
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-		-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-		-		-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-				-	-				-	
MOV MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte (eam) \leftarrow imm8	-				-	-	-	-	-	-	-
MOV	@AL, AH	2	3	0	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-				-					-	-
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	-		-	-	-	-	-	-	-	-
XCH	A, eam	2+	5+ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	Z	-		-	-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	A	H	1	s	T	N	z	v	c	RM
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-			-	-					-	
MOVW A, addr1	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-	*	*	-	-	-
MOVW A, SP	1	1	0		word $(A) \leftarrow(S P)$	-		*	-	-	-	*	*	-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow(\mathrm{RWi})$	-		*	-	-	-	*	*	-	-	-
MOVW A, ear	2	2	1	0	word $(A) \leftarrow($ ear $)$	-	*	*	-	-	-	*	*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word (A) $\leftarrow($ eam $)$	-	*	*	-	-	-	*	*	-	-	-
MOVW A, io	+	3	0	(c)	word (A) \leftarrow (io)	-		*	-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{A})$)	-		-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	O	word $(A) \leftarrow$ imm16	-			-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	-		*	-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-			-	-	-	*		-	-	-
MOVW dir, A	2	3	0	(c)	dir) $\leftarrow(A)$	-			-	-	-	*		-	-	-
MOVW addr16,	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-			-	-	-			-	-	-
MOVW SP, A	1	1	0		word (SP) $\leftarrow(\mathrm{A})$			-	-	-	-			-	-	-
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$			-	-	-	-			-	-	-
MOVW ear, A		2	1	(c)	word (ear) $\leftarrow(A)$			-	-	-				-	-	-
MOVW eam, A	$2+$	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$			-	-	-		*		-	-	
MOVW io, A	2	3	0	(c)	word (io) $\leftarrow(\mathrm{A})$			-	-	-					-	
MOVW @RWi+disp8, A	2	5	1	(c)	word ($($ RWi) + disp8 $) \leftarrow(\mathrm{A})$			-	-	-					-	
MOVW @RLi+disp8, A	3	10	2	(c)	word ($($ RLi) + disp8) $\leftarrow(A)$			-	-	-					-	
MOVW RWi, ear	2	3	2	(0)	word (RWi$) \leftarrow$ (ear)			-	-	-						
MOVW RWi, eam	$2+$	4+ (a)	1	(c)	word (RWi) $\leftarrow($ eam $)$			-	-	-				-	-	
MOVW ear, RWi	2	4	2	0	word (ear) \leftarrow (RWi)				-	-						
MOVW eam, RWi	$2+$	$5+$ (a)	1	(c)	word (eam) $\leftarrow($ RWi)			-	-	-				-	-	
MOVW RWi, \#imm16	+	2	1	0	word $(\mathrm{RWi}) \leftarrow$ imm16			-	-	-				-	-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16			-		-	-	-	-	-	-	-
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16					-	-			-	-	-
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16					-	-	-	-	-		
MOVW @AL, AH	2	3	0	(c)	word $((A)) \leftarrow(A H)$				-	-					-	-
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)				-	-	-	-	-	-	-	
XCHW A, eam	$2+$	$5+$ (a)	0	$2 \times$ (c)	word (A) \leftrightarrow (eam)			-	-	-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)			-	-	-	-	-	-	-	-	-
XCHW RWi, eam	$2+$	9+ (a)	2	$2 \times$ (c)	word (RWi) $\leftrightarrow($ eam	-			-	-	-	-		-	-	
MOVL A, ear	2	4	2	0	long $(A) \leftarrow$ (ear)			-	-	-	-				-	-
MOVL A, eam	$2+$	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$			-	-	-				-	-	
MOVL A, \#imm32	5	,	0	(long $(A) \leftarrow$ imm 32	-			-	-						
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(\mathrm{A})$	-		-	-	-	-	*		-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(A)$	-			-	-	-			-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ADD A,\#imm8	2	2	0	0	byte $(A) \leftarrow(A)+$ imm8	Z	-	-	-	-				*	-
ADD A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-	-	-	*	*	*	*	-
ADD A, ear	2	3	1	0	byte $(A) \leftarrow(A)+$ (ear)	Z	-	-	-	-		*		*	-
ADD A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*		*	
ADD ear, A	2	(2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*	*	*	*	-
ADD eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) + (A)	Z	-	-	-	-		*			
ADDC A	1	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$	Z	-	-	-	-	*	*		*	
ADDC A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)+(C)$	Z	-	-	-	-	*	*	*	*	
ADDC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)+(\mathrm{C})$	Z	-	-	-	-		*			-
ADDDC A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-	-	-	*				
SUB A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm8	Z	-	-	-	-	*	*	*	*	-
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-	*	*			
SUB A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-	*			*	-
SUB A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-	*		*		
SUB ear, A	2	3	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-	-	-					-
SUB eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-					*
SUBC A	1	2	0	0	byte $(A) \leftarrow(A H)-(A L)-(C)$	Z	-	-	-	-	*	*		*	-
SUBC A, ear	2	3	1	0	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-	-	-	-	*	*		*	
SUBC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-	-	-	*	*	*	*	
SUBDC A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-	-	-	*	*	*	*	-
ADDW A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-	*	*		*	-
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-	-	-	-	*	*	*	*	-
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-	*		*	*	-
ADDW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)+$ imm16	-	-	-	-	-					
ADDW ear, A	2	3	2	0	word (ear) \leftarrow (ear) $+(\mathrm{A})$	-	-	-	-	-	*		*	*	-
ADDW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) $+(\mathrm{A})$	-	-	-	-	-	*		*		*
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-					-
ADDCW A, eam	2+	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-	*		*	*	
SUBW A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-					
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A)-$ ear)	-	-	-	-	-					
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*				
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	-					
SUBW ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-					-
SUBW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-	*	*		*	*
SUBCW A, ear	2	(1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-	*	*	*	*	-
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-	-	*	*		*	
ADDL A, e	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-	*	*	*	*	-
ADDL A, eam	2+	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-		*			-
ADDL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-	*	*		*	-
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-$ (ear)	-	-	-	-	-	*	*	*	*	-
SUBL A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+(a)$	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW A, ear	2	2	1	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+(a)$	0	(c)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(\mathrm{A}) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	$7+$ (a)	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-	-	-	-	-	-	*	*	-
DIVU A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
MULU A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+$ (a) normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+(\mathrm{a})$ when byte (eam) is zero, and $9+$ (a) when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#		RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
AND	A, \#imm	2	2	0	0	byte $(A) \leftarrow(A)$ and imm8	-	-	-	-	-			R	-	-
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-		*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-		*	R	-	-
AND	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-		*	R	-	*
OR	A, \#imm	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*		R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-			R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-		*	R	-	-
OR	eam, A	2+	5+(a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam) or (A)			-	-	-	*	*	R	-	*
XOR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm	-	-	-	-	-	*		R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*		R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-			R	-	-
XOR	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ xor $($ A $)$	-		-	-	-	*	*	R	-	*
NOT	A	1	2	0	0	byte (A) ז not (A)	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	3		0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-	*		R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-			R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-			R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-			R	-	
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word $($ eam $) \leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
ORW	A	1	2	0	0	word $(A) \leftarrow(A H)$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-			R	-	-
ORW	A, ear	2	3	0	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-			R	-	
ORW	A, eam	2+	$4+$ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*		R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-			R	-	-
ORW	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) or (A)	-		-	-	-		*	R	-	*
XORW	A		2	0	0	word $(A) \leftarrow(A H) \operatorname{xor}(A)$	-	-	-	-				R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-		-	-	-			R	-	-
XORW	A, ear	2	3		0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-		*	R	-	-
XORW	eam, A	2+	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOTW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ea	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	v	C	RM
ANDL	A, ear	2	6	2	(d)	long (A) $\leftarrow(\mathrm{A})$ and (ear)	-	-	-	-	-			R	-	
ANDL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	s	T	N	z	V	c	RMW
NEG	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
NEG NEG	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	-
NEGW A NEGW ear NEGW eam		1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
		2	5+(a)	2	$2 \times$ (c)	word (ear) $\leftarrow 0-$ (ear)	-	-	-	-	-	*	*	*	*	${ }_{*}$
		2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow 0-$ (eam)	-	-	-	-		*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	s	T	N	Z	V	C	RMW
NRML A, R0	2	${ }^{* 1}$	1	0	long $(A) \leftarrow$ Shift until first digit is "1" byte $(R 0)$ \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-	-	-	-	-		*	-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-		*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-			-	*	-
RORC eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-			-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-		*	-	*	*
ASR A, R0	2	*1	1	0	byte $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A, R 0)	-	-	-	-	*		*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	,	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-				-		-
LSRW A/SHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-	*	-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long $(A) \leftarrow$ Arithmetic right shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift ($A, R 0$)	-	-	-	-	*	*	*	-	*	-
LSLL A, RO	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(R 0)$ in all other cases.
*2: 6 when $R 0$ is $0,6+(R 0)$ in all other cases.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	1	s	T	N	z	2	v	c	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-	-			-	-				-	-	-
BNZ/BNE rel	2	${ }^{*}$	0	0	Branch when (Z) $=0$	-	-		-	-	-	-	-		-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) $=1$	-	-		-	-	-	-	-		-	-	-
BNC/BHS rel		*1	0	0	Branch when (C) $=0$	-	-		-	-	-	-	-		-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-		-	-	-	-	-		-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-			-	-	-	-		-	-	-
BV rel		*1	0	0	Branch when (V) $=1$	-	-		-	-	-	-	-		-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-	-			-	-	-	-		-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-	-			-	-	-	-		-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-			-	-	-			-	-	-
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-			-	-	-			-	-	-
BGE rel	2	*1	0	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=0$	-	-			-	-	-			-	-	-
BLE rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) = 1	-	-		-	-	-	-	-		-	-	-
BGT rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z) =0	-	-		-	-	-	-	-		-	-	-
BLS rel	2	*1	0	0	Branch when (C) or (Z) = 1	-	-			-	-	-	-		-	-	-
BHI rel		*1	0	0	Branch when (C) or (Z) $=0$	-	-			-	-	-	-		-	-	-
BRA rel	2	${ }^{*} 1$	0	0	Branch unconditionally	-	-			-	-				-	-	-
JMP @A	1	2	0	0	word $(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-			-	-				-	-	-
JMP addr16		3	0	0	word $(\mathrm{PC}) \leftarrow$ addr16	-	-			-	-				-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-	-			-	-	-			-	-	-
JMP @eam	2+	4+ (a)	0	(c)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam})$	-	-			-	-	-			-	-	-
JMPP @ear*3	2	5	2	0	word (PC) $\leftarrow($ ear) , (PCB) $\leftarrow($ ear +2)	-	-			-	-	-	-		-	-	-
JMPP @eam*3	$2+$	6+ (a)	0	(d)	word (PC) $\leftarrow(e a m),(\mathrm{PCB}) \leftarrow($ eam +2$)$	-	-			-	-	-	-		-	-	-
JMPP addr24	4	4	0	0	word $(P C) \leftarrow$ ad24 0 to 15, $(\mathrm{PCB}) \leftarrow$ ad24 16 to 23	-	-			-					-	-	-
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-	-			-	-				-	-	-
CALL @eam*4	$2+$	7+ (a)	0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-	-			-	-				-	-	-
CALL addr16*5	3	6	0	(c)	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-			-	-				-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-	-			-	-				-	-	-
CALLP @ear *6	2	10	2	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 , $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-	-			-						-	-
CALLP @eam *6	2+	11+ (a)	0	*2	word (PC) \leftarrow (eam) 0 to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-		-	-	-				-	-	-
CALLP addr24*7	4	10	0	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ addr0 to 15 , $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-	-		-	-	-				-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times(\mathrm{c})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1		s	T	N		z	v	C	RMw
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte (A) $=$ imm8	-	-	-		-	-				*	*	-
CWBNE A, \#imm16, rel	4	*1	0	0	Branch when word (A) \neq imm16	-	-	-	-	-	-				*	*	
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) \neq imm 8	-	-	-	-	-	-			*	*	*	-
CBNE eam, \#imm8, relta	4+	*3	0	(b)	Branch when byte (eam) \neq imm8	-	-	-	-	-	-			*	*	*	-
CWBNE ear, \#imm16, rel	5	* 4	1	0	Branch when word (ear) $\neq \mathrm{imm16}$	-	-	-		-	-				*	*	-
CWBNE eam, \#imm16, rel* ${ }^{\text {a }}$	5+	*3	0	(c)	Branch when word (eam) \neq imm16	-	-	-		-	-					*	-
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) $=$	-	-	-		-	-				*	-	-
DBNZ eam, rel	3+	*6	2	$2 \times$ (b)	(ear) - 1, and (ear) $\neq 0$ Branch when byte $($ eam $)=$ (eam) - 1, and (eam) $\neq 0$	-	-	-		-	-				*	-	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) = (ear) - 1, and (ear) $\neq 0$	-	-	-		-	-			*	*	-	-
DWBNZ eam, rel	3+	* 6	2	$2 \times$ (c)	Branch when word (eam) = (eam) - 1, and (eam) $\neq 0$	-	-	-		-	-				*	-	*
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt	-	-	R		S	-	-			-	-	-
INT addr16	3	16	0	$6 \times$ (c)	Software interrupt	-	-	R		S	-	-		-	-	-	-
INTP addr24	4	17	0	$6 \times$ (c)	Software interrupt	-	-	R		S	-	-		-	-	-	-
INT9	1	20	0	$8 \times$ (c)	Software interrupt	-	-	R		S	-	-		-	-	-	-
RETI	1	15	0	$6 \times$ (c)	Return from interrupt	-	-								*	*	-
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	-	-	-		-	-	-			-	-	-
UNLINK	1	5	0	(c)	At constant entry, retrieve old frame pointer from stack.	-	-	-	-	-	-	-			-	-	-
RET *7	1	4	0	(c)	Return from subroutine	-	-	-	-	-	-	-	-	-	-	-	-
RETP *8	1	6	0	(d)	Return from subroutine	-	-	-		-	-	-			-	-	-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Retrieve (word) from stack
*8: Retrieve (long word) from stack
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	Ah	A	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-			-	-	-		-		-	-
PUSHW AH	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{AH})$	-		-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{PS})$	-		-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-		-	-	-	-	-	-	-	-	-
POPW A	,	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, $(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-			-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-		-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	*	*	*	*	*	*		-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	6× (c)	Context switch instruction	-		-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ and imm8			-		*	*		*	*		-
OR CCR, \#imm8	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-		-		*	*		*	*	*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) \leftarrow imm8			-	-	-	-		-	-		-
MOV ILM, \#imm8	2	2	0	0	byte (LLM) \leftarrow imm8	-		-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWW) \leftarrow ear	-		-	-	-	-		-	-		-
MOVEA RWi, eam	$2+$	$2+$ (a)	1	0	word (RWi) \longleftarrow eam			-	-	-	-		-	-		-
MOVEA A, ear	2	1	0	0	word (A) \leftarrow ear	-			-	-	-		-	-	-	-
MOVEA A, eam	2+	1+ (a)	0	0	word $(A) \leftarrow$ eam	-			-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ +ext (imm8)	-		-	-	-	-		-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ imm16	-			-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $($ A $) \leftarrow$ (brgl)	Z		*	-	-	-		*	-		-
MOV brg2, A	2	1	0	0	byte (brg2) $\leftarrow(\mathrm{A})$	-		-	-	-	-	*	*	-	-	-
NOP	1	1	0	0	No operation			-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space			-	-	-	-	-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space			-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space			-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space			-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-		-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-			-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state
DTB, DPR

: 2 states

*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVB A, dir:bp	3	5	0	(b)	byte $(A) \leftarrow($ dir:bp) b	Z		-	-	-	*	*	-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte $(A) \leftarrow$ (addr16:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(A) \leftarrow($ io:bp) b	Z		-	-	-	*	*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) b=1	-	-	-	-	-	-	*	-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=1$	-	-	-	-		-	*	-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
SBBS addr16:bp, re	5	*3	0	$2 \times(\mathrm{b})$	Branch when (addr16:bp) $\mathrm{b}=1, \mathrm{bit}=1$	-	-	-	-	-	-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $b=1$	-	-	-	-	-	-	-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	z	v	c	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	
SWAPW	1	2	0	0	word $(A H) \leftrightarrow(A L)$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 23 String Instructions [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH $+\leftarrow$ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH-ז@AL-, counter = RW0		-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	${ }^{*}$	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow$ AL, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n : Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ for count out, and $7 \times n+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times(\mathrm{RWO})$ in any other case
*3: (b) $\times($ RWO $)+(b) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RW0 $)+(c) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times n$
*8: $2 \times($ RW0 $)$
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90650A Series

ORDERING INFORMATION

Model	Package	Remarks
MB90652APFV		
MB90653APFV	100-pin plastic LQFP	
MB90P653APFV	(FPT-100P-M05)	
MB90654APFV		
MB90F654APFV		
MB90652APF	100-pin plastic QFP	
MB90653APF	MB90P653APF	(FPT-100P-M06)

MB90650A Series

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F9910

© FUJITSU LIMITED Printed in Japan

[^0]: : FPT-100P-M05
 *2: FPT-100P-M06

[^1]: R/W : Readable and writable

[^2]: R/W : Readable and writable
 R : Read only
 W : Write only

 - : Unused

 X : Indeterminate

