32Mbit SGRAM

512K x 32bit x 2 Banks Synchronous Graphic RAM LVTTL

Revision 1.2 August 2000

Samsung Electronics reserves the right to change products or specification without notice.

Rev. 1.2 (Aug. 2000)

Revision History

Revision 1.2 (August 1, 2000)

- Removed K4G323222A-40
- Changed tSH of K4G323222A from 0.7ns to 1.0ns

Revision 1.1 (June 27, 2000)

• Changed ICC5 of K4G323222A-40/45/50/60/70 :Refer to "DC Characteristics table" on page 6.

Revision 1.0 (June 07, 2000)

• Removed K4G323222A-55 and add K4G323222A-70

Revision 0.3 (March 06, 2000)

- For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design
- Changed tCH/tCL of K4G323222A-60 from 2ns to 2.5ns

Revision 0.0 (January 14, 2000) - Target Spec

• Define target spec

CMOS SGRAM

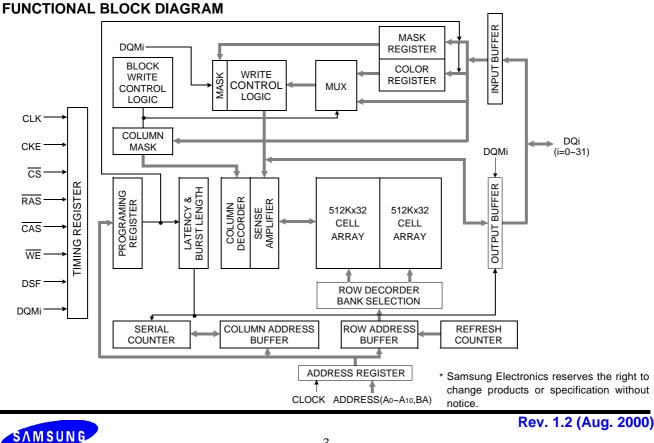
CMOS SGRAM

512K x 32Bit x 2 Banks Synchronous Graphic RAM FEATURES GENERAL

- 3.3V power supply
- LVTTL compatible with multiplexed address
- Dual bank operation
- MRS cycle with address key programs
 - -. CAS Latency (2, 3)
 - -. Burst Length (1, 2, 4, 8 & full page)
 - -. Burst Type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Burst Read Single-bit Write operation
- DQM 0-3 for byte masking
- · Auto & self refresh
- 32ms refresh period (2K cycle)
- 100 Pin PQFP, TQFP (14 x 20 mm)

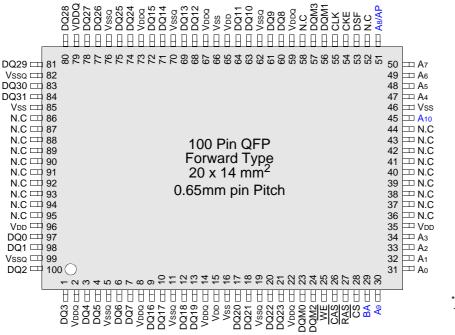
Graphics Features

- SMRS cycle.
 - -. Load mask register
 - -. Load color register
- Write Per Bit(Old Mask)
- Block Write(8 Columns)


GENERAL DESCRIPTION

The K4G323222A is 33,554,432 bits synchronous high data rate Dynamic RAM organized as 2 x 524,288 words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length, and programmable latencies allows the same device to be useful for a variety of high bandwidth, high performance memory system applications.

Write per bit and 8 columns block write improves performance in graphics systems.


ORDERING INFORMATION

Part NO.	Max Freq.	Interface	Package	
K4G323222A-PC/L45	222MHz			
K4G323222A-PC/L50	200MHz			
K4G323222A-PC/L7C	133MHz@CL2	LVTTL	100 PQFP	
K4G323222A-PC/L60	166MHz			
K4G323222A-PC/L70	143MHz			
K4G323222A-QC/L45	222MHz			
K4G323222A-QC/L50	200MHz			
K4G323222A-QC/L7C	133MHz@CL2	LVTTL	100 TQFP	
K4G323222A-QC/L60	166MHz			
K4G323222A-QC/L70	143MHz			

CMOS SGRAM

PIN CONFIGURATION (TOP VIEW)

*PQFP (Height = 3.0mmMAX) TQFP (Height = 1.2mmMAX)

PIN CONFIGURATION DESCRIPTION

PIN	NAME	INPUT FUNCTION
CLK	System Clock	Active on the positive going edge to sample all inputs.
CS	Chip Select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQMi
CKE	Clock Enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one clock + tss prior to new command. Disable input buffers for power down in standby.
A0 ~ A10	Address	Row / Column addresses are multiplexed on the same pins. Row address : RA0 ~ RA10, Column address : CA0 ~ CA7
BA	Bank Select Address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row Address Strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column Address Strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\text{CAS}}$ low. Enables column access.
WE	Write Enable	Enables write operation and Row precharge.
DQMi	Data Input/Output Mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.(Byte Masking)
DQi	Data Input/Output	Data inputs/outputs are multiplexed on the same pins.
DSF	Define Special Function	Enables write per bit, block write and special mode register set.
VDD/VSS	Power Supply /Ground	Power Supply : +3.3V±0.3V/Ground
Vddq/Vssq	Data Output Power /Ground	Provide isolated Power/Ground to DQs for improved noise immunity.
N.C	No Connection	

CMOS SGRAM

ABSOLUTE MAXIMUM RATINGS(Voltage referenced to Vss)

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 4.6	V
Storage temperature	Tstg	-55 ~ +150	°C
Power dissipation	PD	1	W
Short circuit current	los	50	mA

Note : Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V)

Parameter	Symbol	Min	Тур	Max	Unit	Note					
Supply voltage	Vdd, Vddq	3.0	3.3	3.6	V	5					
Input high voltage	Vін	2.0	3.0	Vddq+0.3	V	1					
Input low voltage	VIL	-0.3	0	0.8	V	2					
Output high voltage	Vон	2.4	-	-	V	Юн = -2mA					
Output low voltage	Vol	-	-	0.4	V	IOL = 2mA					
Input leakage current	Iц	-10	-	10	uA	3					
Output leakage current	Ilo	-10	-	10	uA	4					
Output Loading Condition	see figure 1										

Note : 1. VIH (max) = 5.6V AC. The overshoot voltage duration is \leq 3ns.

2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.

3. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include HI-Z output leakage for all bi-directional buffers with Tri-State outputs.

4. Dout is disabled, $0V \le VOUT \le VDD$.

5. The VDD condition of K4G323222A-45/50/7C/60 is 3.135V~3.6V.

CAPACITANCE (VDD/VDDQ = 3.3V, TA = 23°C, f = 1MHz)

Pin	Symbol	Min	Мах	Unit
Clock	CCLK	-	4.0	pF
$\overline{RAS}, \overline{CAS}, \overline{WE}, \overline{CS}, CKE, DQMi, DSF$	CIN	-	4.0	pF
Address	CADD	-	4.0	pF
DQi	Соит	-	5.0	pF

DECOUPLING CAPACITANCE GUIDE LINE

Recommended decoupling capacitance added to power line at board.

Parameter	Symbol	Value	Unit
Decoupling Capacitance between VDD and VSS	CDC1	0.1 + 0.01	uF
Decoupling Capacitance between VDDQ and VSSQ	CDC2	0.1 + 0.01	uF

Note : 1. VDD and VDDQ pins are separated each other.

All VDD pins are connected in chip. All VDDQ pins are connected in chip.

2. Vss and Vssq pins are separated each other

All Vss pins are connected in chip. All Vssq pins are connected in chip.

Rev. 1.2 (Aug. 2000)

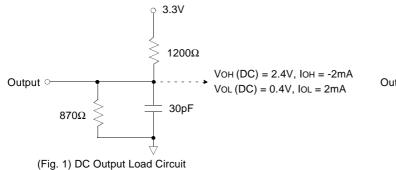
CMOS SGRAM

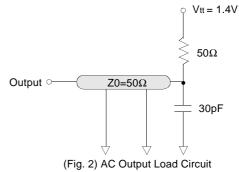
DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to 70°C, VIH(min)/VIL(max)=2.0V/0.8V)

Parameter	Symbol	Test Condition	CAS			Speed	1		Unit	Note
Farameter	Symbol	Test Condition	Latency	-45	-50	-7C	-60	-70	Unit	Note
Operating Current	loor	Burst Length =1	3	220	200	-	180	160	mA	2
(One Bank Active)	ICC1	$tRC \ge tRC(min), tCC \ge tCC(min), I_0 = 0mA$	2	150	150	200	150	150	mΑ	2
Precharge Standby Current	ICC2P	CKE ≤ VIL(max), tCC = 15ns				2			mA	
in power-down mode	ICC2PS	CKE & CLK \leq VIL(max), tcc = ∞				2			ΠA	
Precharge Standby Current	ICC2N					30			mA	
in non power-down mode	ICC2NS	$CKE \ge VIH(min), CLK \le VIL(max), tCC = \sim$ Input signals are stable	0			15			mA	
Active Standby Current	ІссзР	CKE \leq VIL(max), tCC = 15ns2CKE \leq CLK \leq VIL(max), tCC = ∞ 2CKE \geq VIH(min), $\overline{CS} \geq$ VIH(min), tCC = 15ns Input signals are changed one time during 30ns30CKE \geq VIH(min), CLK \leq VIL(max), tCC = ∞ 15Input signals are stable15CKE \leq VIL(max), tCC = 15ns4CKE \leq VIL(max), tCC = ∞ 4CKE \leq VIL(max), tCC = ∞ 50Input signals are changed one time during 30ns50CKE \geq VIH(min), CLK \leq VIL(max), tCC = ∞ 30Input signals are changed one time during 30ns50CKE \geq VIH(min), CLK \leq VIL(max), tCC = ∞ 30Input signals are stable310Io = 0 mA, Page Burst3All bank Activated, tCCD = tCCD(min)332602402200						mA		
in power-down mode	ICC3PS	CKE \leq VIL(max), tCC = ∞				4				
Active Standby Current in non power-down mode	ICC3N	CKE \leq VIL(max), tcc = ∞ 4 CKE \geq VIH(min), $\overline{CS} \geq$ VIH(min), tcc = 15ns 50 Input signals are changed one time during 30ns m					m 4			
(One Bank Active)	ICC3NS		0			30			mA	
Operating Current	ICC4		3	310	290	-	260	230	mA	2
(Burst Mode)	1004	All bank Activated, tCCD = tCCD(min)	2	160	160	290	160	160		2
Refresh Current	ICC5	$t_{PC} > t_{PC}(min)$	3	260	240	-	220	200	mA	3
	1005		2	190	190	240	190	190		5
Self Refresh Current	ICC6	CKE < 0.2V				2			mA	4
				450					5	
Operating Current (One Bank Block Write)	ICC7	tcc≥tcc(min), lo=0mA, tвwc(min)		250	230	230	200	170	mA	

Note: 1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.


- 2. Measured with outputs open. Addresses are changed only one time during tcc(min).
- 3. Refresh period is 32ms. Addresses are changed only one time during tcc(min).
- 4. K4G323222A-C*
- 5. K4G323222A-L* : Low Power version



CMOS SGRAM

AC OPERATING TEST CONDITIONS (VDD = 3.3V±0.3V, TA = 0 to 70°C)

Parameter	Value	Unit
Input levels (Vih/Vil)	2.4 / 0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf =1 / 1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

Note: 1. The VDD condition of K4G323222A-45/50/7C/60 is 3.135V~3.6V.

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Demonster		Cumb al					Ver	sion					L Insit	Note
Parameter		Symbol	-45		-{	-50		-7C		60	-7	70	Unit	Note
CAS Latency		CL	3	2	3	2	-	2	3	2	3	2	CLK	
CLK cycle time		tCC(min)	4.5	10	5	10	-	7.5	6	10	7	10	ns	
Row active to row active of	Row active to row active delay tRRD(min)						:	2					CLK	1
RAS to CAS delay		tRCD(min)	4	2	3	2	-	2	3	2	3	2	CLK	1
Row precharge time		tRP(min)	4	2	3	2	-	2	3	2	3	2	CLK	1
Row active time		tRAS(min)	9	5	8	5	-	6	7	5	7	5	CLK	1
Row active time	tRAS(max)		100							us				
Row cycle time		tRC(min)	(min) 13 7 11 7 - 8 10 7				7	10	7	CLK	1			
Last data in to row precha	arge	tRDL(min)	2									CLK	2,5	
Last data in to new col.ad	dress delay	tCDL(min)	1									CLK	2	
Last data in to burst stop		tBDL(min)						1					CLK	2
Col. address to col. addre	ess delay	tCCD(min)						1					CLK	
Block Write data-in to PR	E command	tBPL(min)					:	2					CLK	
Block write cycle time	Block write cycle time tBWC(min)							1					CLK	3
Mode Register Set cycle time tMRS(min)			1									CLK		
Number of valid output CAS Latency=3			2										4	
data	CAS Lat	ency=2						1					ea	4

Note : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. Refer to the following ns-unit based AC table.

CMOS SGRAM

Parameter	Symbol	Version									
Parameter	Symbol	-45	-50	-7C	-60	-70	Unit				
Row active to row active delay	tRRD(min)	9	10	15	12	14	ns				
RAS to CAS delay	tRCD(min)	18	15	15	18	20	ns				
Row precharge time	tRP(min)	18	15	15	18	20	ns				
Dow optive time	tRAS(min)	40.5	40	45	42	49	ns				
Row active time	tRAS(max)		100								
Row cycle time	tRC(min)	58.5	55	60	60	70	ns				

2. Minimum delay is required to complete write.

3. This parameter means minimum CAS to CAS delay at block write cycle only.

4. In case of row precharge interrupt, auto precharge and read burst stop.

5. For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design

Para	meter	Symbol	-4	45	-{	50	-7	'C	-6	60	-7	0	Unit	Note
1 414		Cymbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	onne	Note
CLK cycle time	CAS Latency=3	tcc	4.5	1000	5	5 1000	-	- 1000	6	1000	7	1000	ns	1
	CAS Latency=2	100	10	1000	10	1000	7.5	1000	10	1000	10	1000	115	'
CLK to valid	CAS Latency=3	tsac	-	4	-	4.5	-	-	-	5.5	-	5.5	ns	1, 2
output delay	CAS Latency=2	10AC	-	6	-	6	-	6	-	6	-	6	113	1, 2
Output data hold	time	toн	2	-	2	-	2	-	2	-	2	-	ns	2
CLK high pulse	CAS Latency=3	tсн	1.75	-	2	-	-	-	2.5	-	3	-	ns	3
width	CAS Latency=2	ICH	3	-	3	-	2	-	3	-	3	-	115	J
CLK low	CAS Latency=3		1.75	-	2	-	-	-	2.5	-	3	-	ns	3
pulse width	CAS Latency=2	tCL	3	-	3	-	2	-	3	-	3	-	115	5
Input setup time	CAS Latency=3	tss	1.2	-	1.5	-	-	-	1.5	-	1.75	-	ns	3
input setup time	CAS Latency=2	155	2.5	-	2.5	-	1.5	-	2.5	-	2.5	-	115	5
Input hold time		tsн	1	-	1	-	1	-	1	-	1	-	ns	3
CLK to output in L	.ow-Z	tsLz	1	-	1	-	1	-	1	-	1	-	ns	2
CLK to output	CAS latency=3	tsHz	-	4	-	4.5	-	-	-	5.5	-	5.5	ns	_
in Hi-Z	CAS latency=2	ISHZ	-	6	-	6	-	6	-	6	-	6	115	

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Note: 1. Parameters depend on programmed CAS latency.

2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf)=1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

CMOS SGRAM

SIMPLIFIED TRUTH TABLE

	COMMAND		CKEn-1	CKEn	CS	RAS	CAS	WE	DSF	DQM	ва	A 8	A10,A9,A7~A0	Note
Register	Mode Registe	er Set	н	х	1				L	х		0	P CODE	1, 2
	Special Mode	Register Set	п	X	L	L	L	L	н	~		U	PCODE	1,2,7
Refresh	Auto Refresh		Н	Н	L	L	L	н	L	х			х	3
		Entry		L	L	L	L	п	Ŀ	^			^	3
	Self Refresh	Exit	L	н	L	Н	н	Н	х	х			х	3
			L	п	Н	Х	Х	Х	^	^			^	3
Bank Active	Write Per Bit	Disable	н	х	L	L	Н	н	L	х	v		Row Address	4, 5
& Row Addr.	Write Per Bit	Enable		^	L	L	п	п	Н		v	ſ	tow Address	4,5,9
Read &	Auto Prechar	ge Disable		Ň						X		L	Column	4
Column Address	Auto Prechar	ge Enable	H	Х	L	н	L	Н	L	Х	V	Н	Address (A0~A7)	4, 6
Write &	Auto Prechar	ge Disable										L	Column	4, 5
Column Address	Auto Prechar	ge Enable	H	Х	L	Н	L	L	L	Х	V	H Address (A0~A7)		4,5,6,9
Block Write	Auto Prechar	ge Disable									L		Column	4, 5
& Column	Auto Prechar	ge Enable	H	Х	L	Н	L	L	Н	Х	V	н	Address (A0~A7)	4,5,6,9
Burst Stop			Н	Х	L	н	Н	L	L	Х			Х	7
Development	Bank Selectio	on		X						V	V	L	v	
Precharge	Both Banks		Н	х	L	L	Н	L	L	Х	Х	н	X	
		Entry	н	L	L	н	Н	Н	х	х				
Clock Suspe Active Powe		Linuy		L	Н	Х	Х	Х	^	^			Х	
		Exit	L	Н	Х	х	Х	Х	х	Х				
		Entry	Н	L	L	н	н	Н	х	х				
Precharge P	ower Down	Entry		L	Н	х	х	Х	~	~			х	
Mode		Exit	L	н	L	V	V	V	V	х			~	
		EXit	_		Н	Х	Х	Х	Х	~				
DQM			Н			Х		1	1	V			Х	8
No Operation	n Command		н	х	L	н	Н	н	х	х			Х	
					Н	Х	Х	Х						

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

Note : 1. OP Code : Operand Code

A0 ~ A10, BA : Program keys. (@MRS)

A5, A6 : LMR or LCR select. (@SMRS)

Color register exists only one per DQi which both banks share.

So dose Mask Register.

Color or mask is loaded into chip through DQ pin.

2. MRS can be issued only at both banks precharge state.

SMRS can be issued only if DQ's are idle.

A new command can be issued at the next clock of MRS/SMRS.

SIMPLIFIED TRUTH TABLE

- 3. Auto refresh functions as same as CBR refresh of DRAM. The automatical precharge without Row precharge command is meant by "Auto". Auto/Self refresh can be issued only at both precharge state. 4. BA : Bank select address. If "Low" at read, (block) write, Row active and precharge, bank A is selected. If "High" at read, (block) write, Row active and precharge, bank B is selected. If A8 is "High" at Row precharge, BA is ignored and both banks are selected. 5. It is determined at Row active cycle. whether Normal/Block write operates in write per bit mode or not. For A bank write, at A bank Row active, for B bank write, at B bank Row active. Terminology : Write per bit =I/O mask (Block) Write with write per bit mode=Masked(Block) Write 6. During burst read or write with auto precharge, new read/(block) write command cannot be issued. Another bank read/(block) write command can be issued at tRP after the end of burst. 7. Burst stop command is valid only at full page burst length. 8. DQM sampled at positive going edge of a CLK. masks the data-in at the very CLK(Write DQM latency is 0) but makes Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)
- Graphic features added to SDRAM's original features.
 If DSF is tied to low, graphic functions are disabled and chip operates as a 32M SDRAM with 32 DQ's.

SGRAM vs SDRAM

Function	M	RS	Bank	Active	W	rite
DSF	L	Н	L	Н	L	н
SGRAM Function	MRS	SMRS	Bank Active with Write per bit Disable	Bank Active with Write per bit Enable	Normal Write	Block Write

If DSF is low, SGRAM functionality is identical to SDRAM functionality.

SGRAM can be used as an unified memory by the appropriate DSF control --> SGRAM=Graphic Memory + Main Memory

CMOS SGRAM

MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with MRS

Address	ВА	A10	Аэ	A8	A 7	A6	A 5	A 4	Аз	A2	A 1	Ao
Function	RF	⁼U	W.B.L	Т	M	С	AS Latend	су	BT	В	urst Lengt	th
	(Not	e 1)	(Note 2)									

		Test Mode		С	AS La	itency	E	Surst Type			E	urst Length	
A 8	A 7	Туре	A6	A 5	A 4	Latency	Аз	Туре	A 2	A 1	Ao	BT=0	BT=1
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential	0	0	0	1	Reserved
0	1	Vendor	0	0	1	-	1	Interleave	0	0	1	2	Reserved
1	0	Use Only	0	1	0	2			0	1	0	4	4
1	1	Only	0	1	1	3			0	1	1	8	8
	Writ	e Burst Length	1	0	0	Reserved			1	0	0	Reserved	Reserved
A9		Length	1	0	1	Reserved			1	0	1	Reserved	Reserved
0		Burst	1	1	0	Reserved			1	1	0	Reserved	Reserved
1		Single Bit	1	1	1	Reserved			1	1	1	256(Full)	Reserved

(Note 3)

Special Mode Register Programmed with SMRS

Address	BA	A10	Аэ	A8	A 7	A6	A 5	A 4	Аз	A2	A 1	Ao
Function			Х			LC	LM			Х		
					/							

			<u> </u>
Lo	oad Color	Lo	oad Mask
A6	Function	A5	Function
0	Disable	0	Disable
1	Enable	1	Enable
			(Note 4)

POWER UP SEQUENCE

SGRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.

- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.

4. Issue 2 or more auto-refresh commands.

- 5. Issue a mode register set command to initialize the mode register.
- cf.) Sequence of 4 & 5 may be changed.

The device is now ready for normal operation.

Note : 1. RFU(Reserved for Future Use) should stay "0" during MRS cycle.

2. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.

3. The full column burst(256bit) is available only at Sequential mode of burst type.

4. If LC and LM both high(1), data of mask and color register will be unknown.

SAMSUNG ELECTRONICS

- 11

CMOS SGRAM

BURST SEQUENCE (BURST LENGTH = 4)

Initial a	address		Sogu	ential			Intor	leave	
A 1	Ao		Sequ	ential			inter	leave	
0	0	0	1	2	3	0	1	2	3
0	1	1	2	3	0	1	0	3	2
1	0	2	3	0	1	2	3	0	1
1	1	3	0	1	2	3	2	1	0

BURST SEQUENCE (BURST LENGTH = 8)

Initi	al addı	ess				Sogu	ential							Intor	leave			
A 2	A 1	A0				Jequ	ential							inter	leave			
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

PIXEL to DQ MAPPING(at BLOCK WRITE)

Colu	mn ado	dress	3 Byte	2 Byte	1 Byte	0 Byte
A 2	A 1	A0	I/O31 - I/O24	I/O23 - I/O16	I/O15 - I/O8	I/O7 - I/O0
0	0	0	DQ24	DQ16	DQ8	DQ0
0	0	1	DQ25	DQ17	DQ9	DQ1
0	1	0	DQ26	DQ18	DQ10	DQ2
0	1	1	DQ27	DQ19	DQ11	DQ3
1	0	0	DQ28	DQ20	DQ12	DQ4
1	0	1	DQ29	DQ21	DQ13	DQ₅
1	1	0	DQ30	DQ22	DQ14	DQ6
1	1	1	DQ31	DQ23	DQ15	DQ7

DEVICE OPERATIONS

CLOCK (CLK)

The clock input is used as the reference for all SGRAM operations. All operations are synchronized to the positive going edge of the clock. The clock transitions must be monotonic between VIL and VIH. During operation with CKE high all inputs are assumed to be in a valid state (low or high) for the duration of set-up and hold time around positive edge of the clock for proper functionality and Icc specifications.

CLOCK ENABLE (CKE)

The clock enable(CKE) gates the clock onto SGRAM. If CKE goes low synchronously with clock (set-up and hold time are the same as other inputs), the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. All other inputs are ignored from the next clock cycle after CKE goes low. When both banks are in the idle state and CKE goes low synchronously with clock, the SGRAM enters the power down mode from the next clock cycle. The SGRAM remains in the power down mode ignoring the other inputs as long as CKE remains low. The power down exit is synchronous as the internal clock is suspended. When CKE goes high at least "tss + 1CLOCK" before the high going edge of the clock, then the SGRAM becomes active from the same clock edge accepting all the input commands.

BANK SELECT (BA)

This SGRAM is organized as two independent banks of 524,288 words x 32 bits memory arrays. The BA inputs is latched at the time of assertion of RAS and CAS to select the bank to be used for the operation. When BA is asserted low, bank A is selected. When BA is asserted high, bank B is selected. The bank select BA is latched at bank activate, read, write mode register set and precharge operations.

ADDRESS INPUT (Ao ~ A1o)

The 19 address bits required to decode the 524,288 word locations are multiplexed into 11 address input pins(Ao~A10). The 11 bit row address is latched along with RAS and BA during bank activate command. The 8 bit column address is latched along with CAS, WE and BA during read or write command.

NOP and DEVICE DESELECT

When \overline{RAS} , \overline{CAS} and \overline{WE} are high, the SGRAM performs no operation (NOP). NOP does not initiate any new operation, but is needed to complete operations which require more than single clock cycle like bank activate, burst read, auto refresh, etc. The device deselect is also a NOP and is entered by asserting \overline{CS} high. \overline{CS} high disables the command decoder so that \overline{RAS} , \overline{CAS} , \overline{WE} , DSF and all the address inputs are ignored.

POWER-UP

SGRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

- 1. Power must be applied to both CKE and DQM inputs to pull them high and other pins are NOP condition at the inputs before or along with VDD(and VDDQ) supply.
- The clock signal must also be asserted at the same time. 2. After VDD reaches the desired voltage, a minimum pause of
- 200 microseconds is required with inputs in NOP condition. 3. Both banks must be precharged now.
- 4. Perform a minimum of 2 Auto refresh cycles to stabilize the internal circuitry.
- Perform a MODE REGISTER SET cycle to program the CAS latency, burst length and burst type as the default value of mode register is undefined.

At the end of one clock cycle from the mode register set cycle, the device is ready for operation.

When the above sequence is used for Power-up, all the outputs will be in high impedance state. The high impedance of outputs is not guaranteed in any other power-up sequence.

cf.) Sequence of 4 & 5 may be changed.

MODE REGISTER SET (MRS)

The mode register stores the data for controlling the various operating modes of SGRAM. It programs the CAS latency, addressing mode, burst length, test mode and various vendor specific options to make SGRAM useful for variety of different applications. The default value of the mode register is not defined, therefore the mode register must be written after power up to operate the SGRAM. The mode register is written by asserting low on CS, RAS, CAS, WE and DSF (The SGRAM should be in active mode with CKE already high prior to writing the mode register). The state of address pins A0 ~ A10 and BA in the same cycle as CS, RAS, CAS, WE and DSF going low is the data written in the mode register. One clock cycle is required to complete the write in the mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as long as both banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length field uses A0 ~ A2, burst type uses A3, addressing mode uses A4 ~ A6, A7 ~ A8, A10 and BA are used for vendor specific options or test mode. And the write burst length is programmed using A9. A7 ~ A8, A10 and BA must be set to low for normal SGRAM operation. Refer to table for specific codes for various burst length, addressing modes and CAS latencies.

DEVICE OPERATIONS

BANK ACTIVATE

The bank activate command is used to select a random row in an idle bank. By asserting low on RAS and CS with desired row and bank addresses, a row access is initiated. The read or write operation can occur after a time delay of tRCD(min) from the time of bank activation. tRCD(min) is an internal timing parameter of SGRAM, therefore it is dependent on operating clock frequency. The minimum number of clock cycles required between bank activate and read or write command should be calculated by dividing tRCD(min) with cycle time of the clock and then rounding off the result to the next higher integer. The SGRAM has two internal banks on the same chip and shares part of the internal circuitry to reduce chip area, therefore it restricts the activation of both banks immediately. Also the noise generated during sensing of each bank of SGRAM is high requiring some time for power supplies to recover before the other bank can be sensed reliably. tRRD(min) specifies the minimum time required between activating different banks. The number of clock cycles required between different bank activation must be calculated similar to tRCD specification. The minimum time required for the bank to be active to initiate sensing and restoring the complete row of dynamic cells is determined by tRAS(min) specification before a precharge command to that active bank can be asserted. The maximum time any bank can be in the active state is determined by tRAS(max). The number of cycles for both tRAS(min) and tRAS(max) can be calculated similar to tRCD specification.

BURST READ

The burst read command is used to access burst of data on consecutive clock cycles from an active row in an active bank. The burst read command is issued by asserting low on CS and CAS with WE being high on the positive edge of the clock. The bank must be active for at least tRCD(min) before the burst read command is issued. The first output appears CAS latency number of clock cycles after the issue of burst read command. The burst length, burst sequence and latency from the burst read command is determined by the mode register which is already programmed. The burst read can be initiated on any column address of the active row. The address wraps around if the initial address does not start from a boundary such that number of outputs from each I/O are equal to the burst length programmed in the mode register. The output goes into high-impedance at the end of the burst, unless a new burst read was initiated to keep the data output gapless. The burst read can be terminated by issuing another burst read or burst write in the same bank or the other active bank or a precharge command to the same bank. The burst stop command is valid only at full page burst length where the output does not go into high impedance at the end of burst and the burst is wrapped around ..

BURST WRITE

The burst write command is similar to burst read command, and is used to write data into the SGRAM on consecutive clock

cycles in adjacent addresses depending on burst length and burst sequence. By asserting low on CS, CAS and WE with valid column address, a write burst is initiated. The data inputs are provided for the initial address in the same clock cycle as the burst write command. The input buffer is deselected at the end of the burst length, even though the internal writing may not have been completed yet. The writing can not complete to burst length. The burst write can be terminated by issuing a burst read and DQM for blocking data inputs or burst write in the same or the other active bank. The burst stop command is valid only at full page burst length where the writing continues at the end of burst and the burst is wrapped around. The write burst can also be terminated by using DQM for blocking data and precharging

the bank "tRDL" after the last data input to be written into the

DQM OPERATION

active row. See DQM OPERATION also.

The DQM is used to mask input and output operations. It works similar to \overline{OE} during read operation and inhibits writing during write operation. The read latency is two cycles from DQM and zero cycle for write, which means DQM masking occurs two cycles later in the read cycle and occurs in the same cycle during write cycle. DQM operation is synchronous with the clock, therefore the masking occurs for a complete cycle. The DQM signal is important during burst interrupts of write with read or precharge in the SGRAM. Due to asynchronous nature of the internal write, the DQM operation is critical to avoid unwanted or incomplete writes when the complete burst write is not required. DQM is also used for device selection, byte selection and bus control in a memory system. DQM0 controls DQ0 to DQ7, DQM1 controls DQ8 to DQ15, DQM2 controls DQ16 to DQ23, DQM3 controls DQ24 to DQ31. DQM masks the DQ's by a byte regardless that the corresponding DQ's are in a state of WPB masking or Pixel masking. Please refer to DQM timing diagram also.

PRECHARGE

The precharge operation is performed on an active bank by asserting low on CS, RAS, WE and A8/AP with valid BA of the bank to be precharged. The precharge command can be asserted anytime after tRAS(min) is satisfied from the bank activate command in the desired bank. "tRP" is defined as the minimum time required to precharge a bank. The minimum number of clock cycles required to complete row precharge is calculated by dividing "tRP" with clock cycle time and rounding up to the next higher integer. Care should be taken to make sure that burst write is completed or DQM is used to inhibit writing before precharge command is asserted. The maximum time any bank can be active is specified by tRAS(max). Therefore, each bank has to be precharged within tRAS(max) from the bank activate command. At the end of precharge, the bank enters the idle state and is ready to be activated again.

DEVICE OPERATIONS (Continued)

Entry to Power Down, Auto refresh, Self refresh and Mode register Set etc. is possible only when both banks are in idle state.

AUTO PRECHARGE

The precharge operation can also be performed by using auto precharge. The SGRAM internally generates the timing to satisfy tRAS(min) and "tRP" for the programmed burst length and CAS latency. The auto precharge command is issued at the same time as burst read or burst write by asserting high on A8/AP. If burst read or burst write command is issued with low on A8/AP, the bank is left active until a new command is asserted. Once auto precharge command is given, no new commands are possible to that particular bank until the bank achieves idle state.

BOTH BANKS PRECHARGE

Both banks can be precharged at the same time by using Precharge all command. Asserting low on \overline{CS} , \overline{RAS} , and \overline{WE} with high on A8/AP after both banks have satisfied tRAS(min) requirement, performs precharge on both banks. At the end of tRP after performing precharge all, both banks are in idle state.

AUTO REFRESH

The storage cells of SGRAM need to be refreshed every 32ms to maintain data. An auto refresh cycle accomplishes refresh of a single row of storage cells. The internal counter increments automatically on every auto refresh cycle to refresh all the rows. An auto refresh command is issued by asserting low on CS, RAS and \overline{CAS} with high on CKE and \overline{WE} . The auto refresh command can only be asserted with both banks being in idle state and the device is not in power down mode (CKE is high in the previous cycle). The time required to complete the auto refresh operation is specified by "tRC(min)". The minimum number of clock cycles required can be calculated by driving "tRC" with clock cycle time and them rounding up to the next higher integer. The auto refresh command must be followed by NOP's until the auto refresh operation is completed. Both banks will be in the idle state at the end of auto refresh operation. The auto refresh is the preferred refresh mode when the SGRAM is being used for normal data transactions. The auto refresh cycle can be performed once in 15.6us or a burst of 2048 auto refresh cycles once in 32ms.

SELF REFRESH

The self refresh is another refresh mode available in the SGRAM. The self refresh is the preferred refresh mode for data retention and low power operation of SGRAM. In self refresh mode, the SGRAM disables the internal clock and all the input buffers except CKE. The refresh addressing and timing are internally generated to reduce power consumption.

The self refresh mode is entered from all banks idle state by asserting low on \overline{CS} , \overline{RAS} , \overline{CAS} and CKE with high on \overline{WE} . Once the self refresh mode is entered, only CKE state being low matters, all the other inputs including the clock are ignored in order to remain in the self refresh mode.

The self refresh is exited by restarting the external clock and then asserting high on CKE. This must be followed by NOP's for a minimum time of "tRC" before the SGRAM reaches idle state to begin normal operation. If the system uses burst auto refresh during normal operation, it is recommended to use burst 2048 auto refresh cycles immediately after exiting self refresh.

DEFINE SPECIAL FUNCTION(DSF)

The DSF controls the graphic applications of SGRAM. If DSF is tied to low, SGRAM functions as 512K x 32 x2 Bank SDRAM. SGRAM can be used as an unified memory by the appropriate DSF command. All the graphic function modes can be entered only by setting DSF high when issuing commands which otherwise would be normal SDRAM commands. SDRAM functions such as RAS Active, Write, and WCBR change to SGRAM functions such as RAS Active with WPB, Block Write and SWCBR respectively. See the section below for the graphic functions that DSF controls.

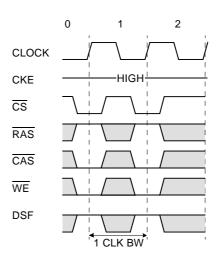
SPECIAL MODE REGISTER SET(SMRS)

There are two kinds of special mode registers in SGRAM.One is color register and the other is mask register. Those usage will be explained in the "WRITE PER BIT" and "BLOCK WRITE" sections. When A₅ and DSF goes high in the same cycle as \overline{CS} , RAS, CAS and WE going low, Load Mask Register(LMR) process is executed and the mask registers are filled with the masks for associated DQ's through DQ pins. And when A6 and DSF goes high in the same cycle as CS, RAS, CAS and WE going low, Load Color Register(LCR) process is executed and the color register is filled with color data for associated DQ's through the DQ pins. If both A5 and A6 are high at SMRS, data of mask and color cycle are required to complete the write in the mask register and the color register at LMR and LCR respectively. A new command can be issued in the next clock of LMR or LCR. SMRS, compared with MRS, can be issued at the active state under the condition that DQ's are idle. As in write operation, SMRS accepts the data needed through DQ pins. Therefore bus contention must be avoided. The more detailed materials can be obtained by referring corresponding timing diagram.

DEVICE OPERATIONS (Continued)

WRITE PER BIT

Write per bit(i.e. I/O mask mode) for SGRAM is a function that selectively masks bits of data being written to the devices. The mask is stored in an internal register and applied to each bit of data written when the mask is enabled. Bank active command with DSF=High enables write per bit for associated bank. Bank active command with DSF=Low disables write per bit for the associated bank. The mask used for write per bit operations is stored in the mask register accessed by SWCBR(Special Mode Register Set Command). When a mask bit=1, the associated data bit is written when a write command is executed and write per bit has been enabled for the bank being written. When a mask bit=0, the associated data bit is unaltered when a write command is executed and the write per bit has been enabled for the bank being written. No additional timing conditions are required for write per bit operations. Write per bit writes can be either single write, burst writes or block writes. DQM masking is the same for write per bit and non-WPB write.


BLOCK WRITE

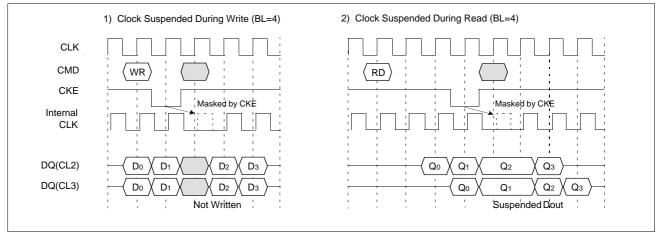
Block write is a feature allowing the simultaneous writing of consecutive 8 columns of data within a RAM device during a single access cycle. During block write the data to be written comes from an internal "color" register and DQ I/O pins are used for independent column selection. The block of column to be written is aligned on 8 column boundaries and is defined by the column address with the 3 LSB's ignored. Write command with DSF=1 enables block write for the associated bank. A write command with DSF=0 enables normal write for the associated bank. The block width is 8 column where column="n" bits for by "n" part. The color register is the same width as the data port of the chip.It is written via a SWCBR where data present on the DQ pin is to be coupled into the internal color register. The color register provides the data masked by the DQ column select, WPB mask(If enabled), and DQM byte mask. Column data masking(Pixel masking) is provided on an individual column basis for each byte of data. The column mask is driven on the DQ pins during a block write command. The DQ column mask function is segmented on a per bit basis(i.e. DQ[0:7] provides the column mask for data bits[0:7], DQ[8:15] provides the column mask for data bits[8:15], DQ0 masks column[0] for data bits[0:7], DQ9 masks column [1] for data bits [8:15], etc). Block writes are always non-burst, independent of the burst length that has been programmed into the mode register. Back to back block writes are allowed provided that the specified block write cycle time(tBWC) is satisfied. If write per bit was enabled by the bank active command with DSF=1, then write per bit masking of the color register data is enabled.

If write per bit was disabled by a bank active command with DSF=0, the write per bit masking of the color register data is disabled. DQM masking provides independent data byte masking during block write exactly the same as it does during normal write operations, except that the control is extended to the consecutive 8 columns of the block write.

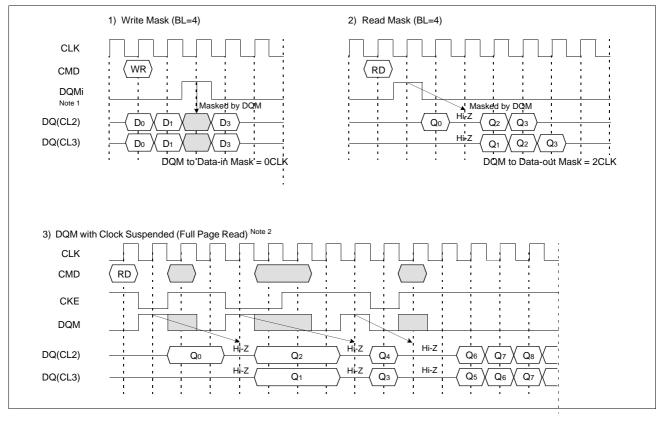
CMOS SGRAM

Timing Diagram to Illustrate tBWC

CMOS SGRAM


SUMMARY OF 4M Byte SGRAM BASIC FEATURES AND BENEFITS

Features	512K x 32 x 2 SGRAM	Benefits
Interface	Synchronous	Better interaction between memory and system without wait-state of asynchronous DRAM. High speed vertical and horizontal drawing. High operating frequency allows performance gain for SCROLL, FILL, and BitBLT.
Bank	2 ea	Pseudo-infinite row length by on-chip interleaving operation. Hidden row activation and precharge.
Page Depth / 1 Row	256 bit	High speed vertical and horizontal drawing.
Total Page Depth	2048 bytes	High speed vertical and horizontal drawing.
Burst Length(Read)	1, 2, 4, 8 Full Page	Programmable burst of 1, 2, ,4, 8 and full page transfer per column addresses.
Burst Length(Write)	1, 2, 4, 8 Full Page	Programmable burst of 1, 2, ,4, 8 and full page transfer per column addresses.
	BRSW	Switch to burst length of 1 at write without MRS.
Burst Type	Sequential & Interleave	Compatible with Intel and Motorola CPU based system.
CAS Latency	2, 3	Programmable CAS latency.
Block Write	8 Columns	High speed FILL, CLEAR, Text with color registers. Maximum 32 byte data transfers(e.g. for 8bpp : 32 pixels) with plane and byte masking functions.
Color Register	1 ea.	A and B bank share.
Mask Register	1 ea.	Write-per-bit capability(bit plane masking). A and B banks share.
	DQM0-3	Byte masking(pixel masking for 8bpp system) for data-out/in
Mask function	Write per bit	Each bit of the mask register directly controls a corresponding bit plane.
	Pixel Mask at Block Write	Byte masking(pixel masking for 8bpp system) for color by DQi

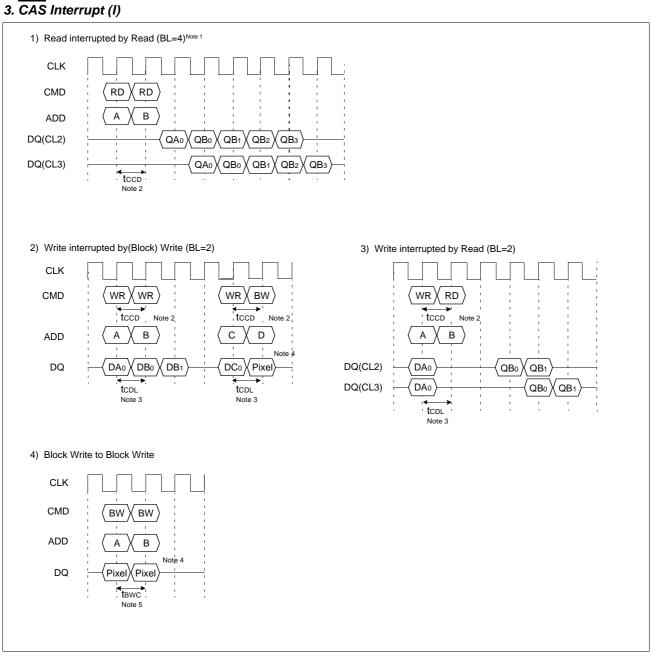

CMOS SGRAM

BASIC FEATURE AND FUNCTION DESCRIPTIONS 1. CLOCK Suspend

Note : CKE to CLK disable/enable=1 clock

2. DQM Operation

*Note: 1. There are 4 DQMi(i=0~3).


Each DQMi masks 8 DQi's.(1 Byte, 1 Pixel for 8 bpp)

2. DQM makes data out Hi-Z after 2 clocks which should masked by CKE " L".

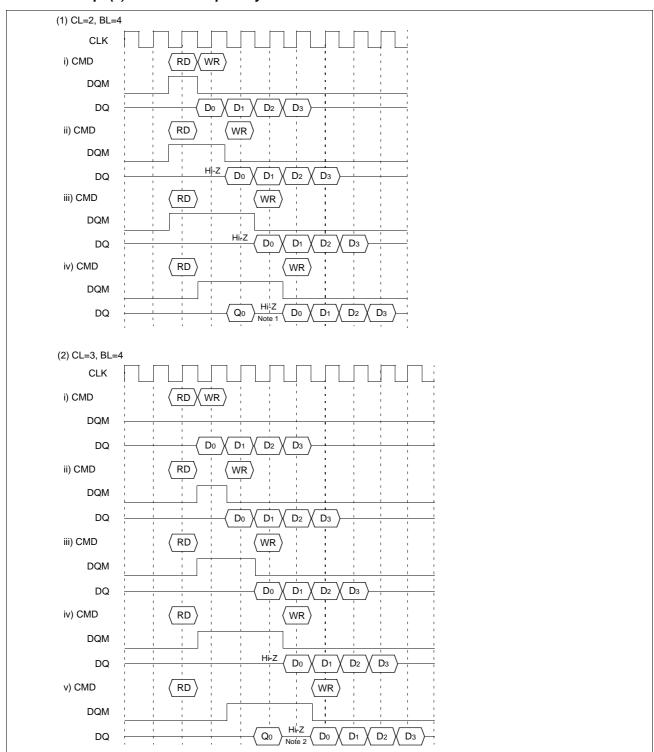
Rev. 1.2 (Aug. 2000)

CMOS SGRAM

*Note: 1. By "Interrupt", It is possible to stop burst read/write by external command before the end of burst. By "CAS Interrupt", to stop burst read/write by CAS access ; read, write and block write.

2. tccd : \overline{CAS} to \overline{CAS} delay. (=1CLK)

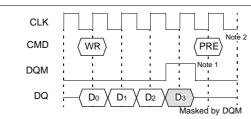
3. tcDL : Last data in to new column address delay. (=1CLK)


4. Pixel :Pixel mask.

5. tBWC : Block write minimum cycle time.

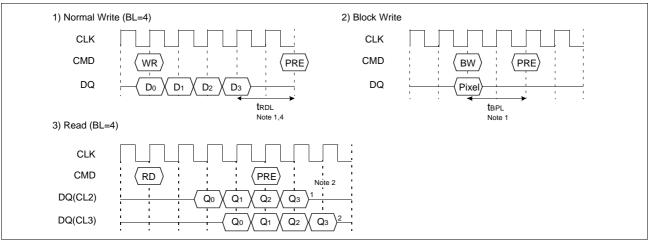
Rev. 1.2 (Aug. 2000)

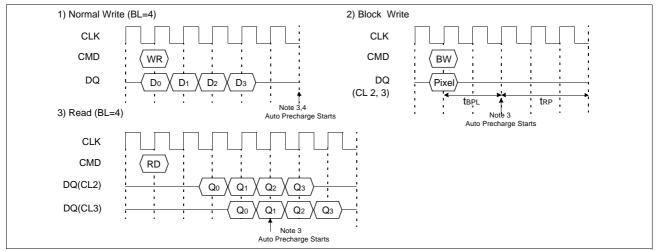
CMOS SGRAM


4. CAS Interrupt (II) : Read Interrupted by Write & DQM

*Note: 1. To prevent bus contention, there should be at least one gap between data in and data out. 2. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.

CMOS SGRAM


5. Write Interrupted by Precharge & DQM


*Note: 1. To inhibit invalid write, DQM should be issued.

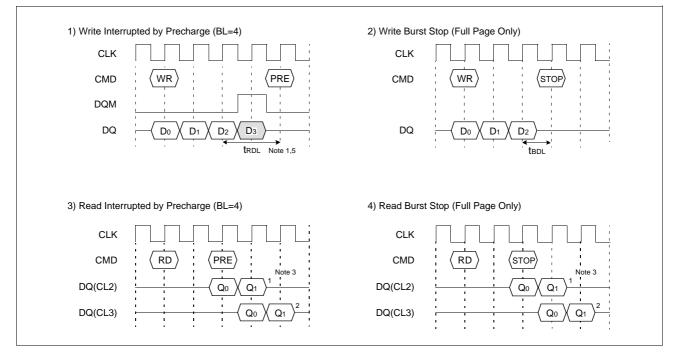
This precharge command and burst write command should be of the same bank, otherwise it is not precharge interrupt but only another bank precharge of dual banks operation.

6. Precharge

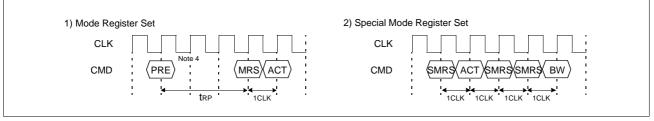
7. Auto Precharge

*Note :1. tBPL : Block write data-in to PRE command delay

2. Number of valid output data after Row Precharge : 1, 2 for CAS Latency =2, 3 respectively.


3. The row active command of the precharge bank can be issued after tRP from this point. The new read/write command of other activated bank can be issued from this point. At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.

4. For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design



CMOS SGRAM

8. Burst Stop & Precharge Interrupt

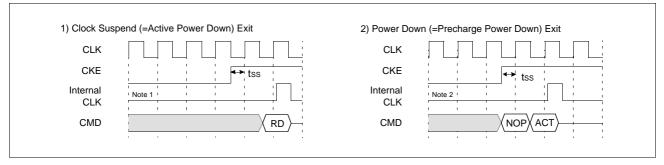
9. MRS & SMRS

*Note: 1. tRDL: 2 CLK, Last Data in to Row Precharge.

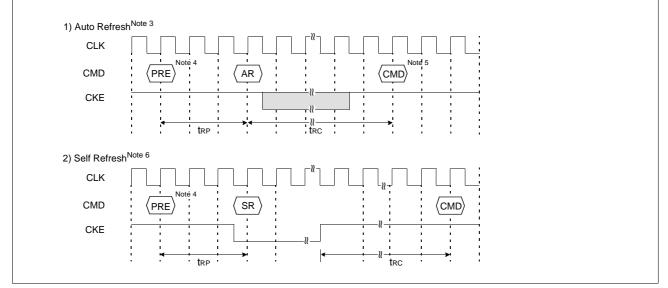
2. tBDL : 1 CLK, Last Data in to Burst Stop Delay.

3. Number of valid output data after Row precharge or burst stop : 1, 2 for CAS latency= 2, 3 respectiviely.

4. PRE : Both banks precharge if necessary.


MRS can be issued only at all bank precharge state.

5. For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design



CMOS SGRAM

10. Clock Suspend Exit & Power Down Exit

11. Auto Refresh & Self Refresh

*Note: 1. Active power down : one or more bank active state.

- 2. Precharge power down : both bank precharge state.
- The auto refresh is the same as CBR refresh of conventional DRAM. No precharge commands are required after Auto Refresh command. During tRC from auto refresh command, any other command can not be accepted.
- 4. Before executing auto/self refresh command, both banks must be idle state.
- 5. (S)MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.

6. During self refresh mode, refresh interval and refresh operation are performed internally. After self refresh entry, self refresh mode is kept while CKE is LOW.

During self refresh mode, all inputs expect CKE will be don't cared, and outputs will be in Hi-Z state.

During tRC from self refresh exit command, any other command can not be accepted.

Before/After self refresh mode, burst auto refresh cycle (2K cycles) is recommended.

CMOS SGRAM

12. About Burst Type Control

Basic	Sequential Counting	At MRS A ₃ = "0". See the BURST SEQUENCE TABLE. (BL=4,8) BL=1, 2, 4, 8 and full page wrap around.
MODE	Interleave Counting	At MRS A ₃ = "1". See the BURST SEQUENCE TABLE. (BL=4,8) BL=4, 8. At BL=1, 2 Interleave Counting = Sequential Counting
Pseudo- MODE	Pseudo- Decrement Sequential Counting	At MRS A ₃ = "1".(See to Interleave Counting Mode) Starting Address LSB 3 bits A ₀₋₂ should be "000" or "111".@BL=8. if LSB="000" : Increment Counting. if LSB="111" : Decrement Counting. For Example,(Assume Addresses except LSB 3 bits are all 0, BL=8) @ write, LSB="000", Accessed Column in order 0-1-2-3-4-5-6-7 @ read, LSB="111", Accessed Column in order 7-6-5-4-3-2-1-0 At BL=4, same applications are possible. As above example, at Interleave Counting mode, by confining starting address to some values, <i>Pseudo</i> -Decrement Counting Mode can be realized. See the BURST SEQUENCE TABLE carefully.
	Pseudo- Binary Counting	At MRS A ₃ = "0".(See to Sequential Counting Mode) A ₀₋₂ = "111".(See to Full Page Mode) Using Full Page Mode and Burst Stop Command, Binary Counting Mode can be realized. @ Sequential Counting, Accessed Column in order 3-4-5-6-7-1-2-3(BL=8) @ <i>Pseudo</i> -Binary Counting, Accessed Column in order 3-4-5-6-7-8-9-10(Burst Stop command) Note. The next column address of 256 is 0.
Random MODE	Random column Access tccd = 1 CLK	Every cycle Read/Write Command with random column address can realize Random Column Access. That is similar to Extended Data Out (EDO) Operation of conventional DRAM.

13. About Burst Length Control

	aret zengar eena er	
	1	At MRS A _{2,1,0} = "000". At auto precharge, tRAS should not be violated.
Basic	2	At MRS A _{2,1,0} = "001". At auto precharge, tras should not be violated.
MODE	4	At MRS A _{2,1,0} = "010".
	8	At MRS A _{2,1,0} = "011".
	Full Page	At MRS A _{2,1,0} = "111". <u>Wrap</u> around mode(Infinite burst length)should be stopped by burst stop, RAS interrupt or CAS interrupt.
Special	BRSW	At MRS $A_9 = "1"$. Read burst =1, 2, 4, 8, full page/write Burst =1 At auto precharge of write, tras should not be violated.
MODE	Block Write	8 Column Block Write. LSB A0-2 are ignored. Burst length=1. tBwc should not be violated. At auto precharge, tRAS should not be violated.
Random MODE	Burst Stop	tBDL= 1, Valid DQ after burst stop is 1, 2 for CL=2, 3 respectively Using burst stop command, it is possible only at full page burst length.
Interrupt MODE	RAS Interrupt (Interrupted by Precharge)	Before the end of burst, Row precharge command of the same bank stops read/write burst with Row precharge. tRDL= 2 with DQM, valid DQ after burst stop is 1, 2 for CL= 2, 3 respectively During read/write burst with auto precharge, RAS interrupt cannot be issued.
WODE	CAS Interrupt	Before the end of burst, new read/write stops read/write burst and starts new read/write burst or block write. During read/write burst with auto precharge, CAS interrupt can not be issued.

14. Mask Functions

tasking : By Mask at Write Per Bit Mode, the selected bit planes keep the original data. bit plane 0.3, 2, 9, 15, 22, 24, and 31 keep the original value. STEP		ek at Write	Per Bit Mode the se	lected hit planes keep	the original data	
- SMRS(LMR):Load mask[3:0]="0111, 1110, 1011, 1111, 0111, 0111, 0110" - Row Active with DSF "H":Write Per Bit Mode Enable - Perform Normal Write: ILLUSTRATION VO(=DQ) 31 24 23 16 15 8 7 0 External Data-in 1111111 111111 0000000 000000000 DQMi= DQMi= DQMi=0 DQMi=0 DQMi=0 DQMi=0 DQMi= 0 DQMi= 0 DQMi=0 DQMi=0 DQMi=0 International Constraints (Constraint) (Constra	<u>it plane 0. 3. 7</u>			• •	the original data.	
- Row Active with DSF "H" "Write Per Bit Mode Enable Perform Normal Write. ILLUSTRATION VO(=DQ) 31 24 23 16 15 8 7 0 External Data-in 1111111 1111111 0 000000 DQMi DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 DQMs=0 Note 1 0 111111 0 1011110 1 01110 10 1110 10			•	0		
- Perform Normal Write. ILLUSTRATION VO(=DQ) 31 24 23 16 15 8 7 0 External Data-in 11111111 1111111 0 000000 000000000 DQMi DQMs=0 DQM2=0 DQM1=0 DQM0=1 Mask Register 011111111 0 10111111 0 01110110 Before Write 0000000 0 000000 0 111111111 1 01111111					1, 0111, 0110"	
ILLUSTRATION VO(=DQ) 31 24 23 16 15 8 7 0 External Data-in 11111111 11111111 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 11111111 101111101 011111111 111111111 111111111 111111111 111111111 111111111 1111111111 1111111111 111111111 1111111111 1111111111 11111111111 11111111111 111111111111 111111111111111111111111111111111111			H : Write Per Bit Mode	Enable		
External Data-in 11111111 1111111 0000000 0000000 DQMi DQMs=0 DQMr=0 DQMo=1 Mask Register 01111110 10111110 01111110 0111010 Before Write 0000000 0000000 1111111 1111111 After Write 01111110 10111111 1000010 11111111 Note 1 01111110 10111111 10000010 11111111 After Write 011111110 101111111 10000010 11111111 Note 1 Note 1 Note 1 Note 1 Note 1						
External Data-in 11111111 1111111 0000000 0000000 DQMi DQMs=0 DQMr=0 DQMo=1 Mask Register 01111110 10111110 01111110 0111010 Before Write 0000000 0000000 1111111 1111111 After Write 01111110 10111111 1000010 11111111 Note 1 01111110 10111111 10000010 11111111 After Write 011111110 101111111 10000010 11111111 Note 1 Note 1 Note 1 Note 1 Note 1	I/O(-F		31 24	23 16	15 8	7 0
DQMi DQMs=0 DQMz=0 DQMi=0 DQMo=1 Mask Register 0.11111110 1.0111111 0.1111110 0.111010 Before Write 0.00000 0.00000 1.111111 1.111111 1.111111 After Write 0.11111110 1.01111111 1.0000010 1.1111111 After Write 0.11111110 1.01111111 1.0000010 1.1111111 Note 1 Note 1 Note 1 Note 1 kWrite masking : By Pixel Data issued through DQ pin, the selected pixels keep the original data. See PIXEL 7.0 Q MAPPING TABLE. Pixel 0.4.9.13.18.22.27 and 31 keep the original white color. Assume 8bpp. Minite = '0000,0000''. Red=''1010,0011''. Green = ''1110,0001''. Yellow = ''0000,1111''. Blue = ''100,0011'' Step 5 SMRS(LCR) : Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = ''100,0011, 1110,001,0000,0111''. Step 5 - SMRS(LCR) : Load color(for 8bp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = ''100,0011, 1110,001,0001,0000,011''. Outime DQ: Color2, color2, color3, color2, color3, color2, color3, and the DQ: Color2, color3, and the DQ: Color3, and the DQ: Color2, color3, and the DQ: Color2, color3, and the DQ: Color2, col						
Mask Register 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Before Write 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 After Write 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Before Write 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
After Write 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 Note 1 After Write Market Base of the original white color. Assume 8bpp. White 2 2.27 and 31 keep the original white color. Assume 8bpp. White = "0000,0000", Red="1010,0011", Green = "1110,0001", Yellow = "0000,1111", Blue = "1100,0011" SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = "100,0011, 1110, 0001, 0000, 1111, 1010, 0011" SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = "100,0011, 1110, 0001, 0000, 1111, 1010, 0011" - SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = "100,0011, 1110, 0001, 0000, 1111, 1010, 0011" - SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green Color1=Wite DQ= Before 0 DQMa=0 DQMa=0 DQMi= DQMa=0 DQMi= DQMa=0 DQMi=0 DQMi=0 DQMio <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Write masking : By Pixel Data issued through DQ pin, the selected pixels keep the original data. See PIXEL TO DQ MAPPING TABLE. Pixel 0. 4. 9. 13. 18. 22. 27 and 31 keep the original white color. Assume 8bpp, White = '0000,0000'', Red=''1010,0011'', Green = ''1110,0001'', Yellow = ''0000,1111'', Blue = ''1100,0011'' STEP - SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = ''1100,0011, 1110, 0000, 1111, 1010, 0011'' - Row Active with DSF "L": I/O Mask by Write Pa Bit Mode Disable - Block write with DQ[31-0] = '0111, 0111, 1011, 1101, 1110, 1110' ILUUSTRATION I/Q(=DQ) 31 24 23 16 15 8 7 0 DQMi DQMa=0 DQM1=0 DQM0=1 Color2-Red Color2-Red 000 White DQ2=H White DQ1=H White DQ0=L White DQ1=H White DQ2=L Before 001 White DQ2=H White DQ1=H White DQ2=H White DQ1=H White DQ2=H Nite 010 White DQ2=H White DQ1=L White DQ2=H White DQ2=H White DQ2=H White DQ2=H White DQ1=	After V	Vrite	01111110	10111111		11111111
masking : By Pixel Data issued through DQ pin, the selected pixels keep the original data. See PIXEL TO DQ MAPPING TABLE. Pixel 0. 4. 9. 13. 18. 22. 27 and 31 keep the original white color. Assume 8bpp, White = "0000,0000", Red="1010,0011", Green = "1110,0001", Yellow = "0000,1111", Blue = "1100,0011" STEP - SMRS(LCR) :Load color(for 8bpp, through x32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red) = "1100,0011, 1110, 0001, 0000, 0000, 1111, 1010, 0011" - Row Active with DSF "L" : I/O Mask by Write Per Bit Mode Disable - Block write with DQ[31-0] = "0111, 0111, 1011, 1101, 1101, 1101, 1110" ILUUSTRATION I/O(=DQ) 31 24 23 16 15 8 7 0 DQMi DQMa=0 DQM1=0 DQM0=1 Color0=Red 00 White DQ2=H White DQ1=L DQM1=0 DQM0=1 Color Register Color3=Blue Color2=Green Color1=Yellow Color0=Red 00 White DQ2=H White DQ1=H White DQ0=L White DQ1=H Block 010 White DQ2=H White DQ1=H White DQ2=H 010 White DQ2=H White DQ1=H White DQ2=H White DQ3=H 4 <						Note 1
ILLUSTRATION I/O(=DQ) 31 24 23 16 15 8 7 0 DQMi DQM3=0 DQM2=0 DQM1=0 DQM0=1 Color Register Color3=Blue Color2=Green Color1=Yellow Color0=Red 000 White DQ2=H White DQ16=H White DQ3=L White DQ1=H Before 001 White DQ25=H White DQ17=H White DQ3=L White DQ2=H Block 010 White DQ25=H White DQ18=L White DQ10=H White DQ2=H 010 White DQ27=L White DQ19=H White DQ11=H White DQ3=H 02 100 White DQ29=H White DQ20=H White DQ13=L White DQ4=L (Pixel data) 101 White DQ30=H White DQ23=H White DQ13=L White DQ5=H 111 White DQ30=H White DQ23=H White DQ15=H White DQ7=H 001 Blue Green Yellow White 011 Blue Green Yellow White					00, 1111, 1010, 0011"	
DQMiDQM3=0DQM2=0DQM1=0DQM0=1Color RegisterColor3=BlueColor2=GreenColor1=YellowColor0=Red000White DQ2=HWhite DQ16=HWhite DQ8=HWhite DQ0=L001White DQ25=HWhite DQ17=HWhite DQ9=LWhite DQ1=HBlock Write & A010White DQ26=HWhite DQ18=LWhite DQ10=HWhite DQ2=H011White DQ27=LWhite DQ19=HWhite DQ11=HWhite DQ3=H010White DQ28=HWhite DQ20=HWhite DQ11=HWhite DQ3=H011White DQ29=HWhite DQ21=HWhite DQ13=LWhite DQ5=H110White DQ30=HWhite DQ23=HWhite DQ15=HWhite DQ7=H000BlueGreenYellowWhite010BlueGreenYellowWhite011WhiteGreenYellowWhite010BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite101BlueGreenYellowWhite		rith DQ[31-	0] = "0111, 0111, 101		110, 1110"	
Color RegisterColor3=BlueColor2=GreenColor1=YellowColor0=RedBefore Block Write001White DQ24=HWhite DQ16=HWhite DQ3=HWhite DQ0=L001White DQ25=HWhite DQ17=HWhite DQ9=LWhite DQ1=H010White DQ26=HWhite DQ19=HWhite DQ10=HWhite DQ2=H011White DQ27=LWhite DQ19=HWhite DQ11=HWhite DQ3=H02100White DQ28=HWhite DQ20=HWhite DQ12=H101White DQ29=HWhite DQ21=HWhite DQ13=LWhite DQ5=H110White DQ30=HWhite DQ22=LWhite DQ14=HWhite DQ6=H111White DQ31=LWhite DQ23=HWhite DQ15=HWhite DQ7=H001BlueGreenYellowWhite010BlueGreenYellowWhite011WhiteGreenYellowWhite011BlueGreenYellowWhite	LLUSTRATIO	•	0] = "0111, 0111, 101		110, 1110"	
Before Block Write Block Write A Refore Block Write A Write No000White DQ24=HWhite DQ16=HWhite DQ9=LWhite DQ1=H001White DQ25=HWhite DQ17=HWhite DQ10=HWhite DQ2=H010White DQ26=HWhite DQ19=HWhite DQ10=HWhite DQ3=H011White DQ27=LWhite DQ19=HWhite DQ12=HWhite DQ3=H010White DQ28=HWhite DQ20=HWhite DQ13=LWhite DQ4=L101White DQ29=HWhite DQ21=HWhite DQ13=LWhite DQ5=H110White DQ30=HWhite DQ22=LWhite DQ14=HWhite DQ6=H111White DQ31=LWhite DQ23=HWhite DQ15=HWhite DQ7=H000BlueGreenYellowWhite010BlueGreenYellowWhite011WhiteGreenYellowWhite011BlueGreenYellowWhite	[N -	• • •	1, 1011, 1101, 1101, 1		7 0
Before Block Write001White DQ25=HWhite DQ17=HWhite DQ9=LWhite DQ1=H010White DQ26=HWhite DQ18=LWhite DQ10=HWhite DQ2=H011White DQ27=LWhite DQ19=HWhite DQ11=HWhite DQ3=H010White DQ28=HWhite DQ20=HWhite DQ12=HWhite DQ4=L(Pixel data)101White DQ29=HWhite DQ21=HWhite DQ13=L110White DQ30=HWhite DQ22=LWhite DQ14=HWhite DQ6=H111White DQ31=LWhite DQ23=HWhite DQ15=HWhite DQ7=H000BlueGreenYellowWhite010BlueGreenYellowWhite011WhiteGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite	I/O(=E	DQ)	31 24	1, 1011, 1101, 1101, 1 23 16	15 8	
Block Write010White DQ26=HWhite DQ18=LWhite DQ10=HWhite DQ2=H011White DQ27=LWhite DQ19=HWhite DQ11=HWhite DQ3=H011White DQ28=HWhite DQ20=HWhite DQ12=HWhite DQ4=L011White DQ29=HWhite DQ21=HWhite DQ13=LWhite DQ5=H101White DQ30=HWhite DQ22=LWhite DQ14=HWhite DQ6=H111White DQ31=LWhite DQ23=HWhite DQ15=HWhite DQ7=H000BlueGreenYellowWhite010BlueGreenYellowWhite011WhiteGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite011BlueGreenYellowWhite <td>I/O(=E DQN</td> <td>DQ) Mi</td> <td>31 24 DQM3=0</td> <td>1, 1011, 1101, 1101, 1 23 16 DQM2=0</td> <td>15 8 DQM1=0</td> <td>DQM0=1</td>	I/O(=E DQN	DQ) Mi	31 24 DQM3=0	1, 1011, 1101, 1101, 1 23 16 DQM2=0	15 8 DQM1=0	DQM0=1
Write & 010 Write DQ25=11 Write DQ15=L Write DQ15=11 Write DQ2=11 011 White DQ27=L White DQ19=H White DQ11=H White DQ3=H DQ (Pixel data) 100 White DQ29=H White DQ20=H White DQ13=L White DQ3=H 110 White DQ30=H White DQ22=L White DQ14=H White DQ6=H 111 White DQ31=L White DQ23=H White DQ15=H White DQ7=H 000 Blue Green Yellow White 011 White Green Yellow White 010 Blue Green Yellow White 011 White Green Yellow White 010 Blue Green Yellow White 101 Blue Green Yellow White	I/O(=E DQN	DQ) Mi eqister	31 24 DQM3=0 Color3=Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green	15 8 DQM1=0 Color1=Yellow	DQM0=1 Color0=Red
& 011 White DQ27=L White DQ19=H White DQ11=H White DQ3=H DQ (Pixel data) 100 White DQ28=H White DQ20=H White DQ12=H White DQ4=L 101 White DQ29=H White DQ21=H White DQ13=L White DQ5=H 110 White DQ30=H White DQ22=L White DQ15=H White DQ7=H 111 White DQ31=L White DQ23=H White DQ15=H White DQ7=H 000 Blue Green Yellow White 010 Blue Green Yellow White 011 White Green Yellow White 010 Blue Green Yellow White 011 White Green Yellow White 100 Blue Green Yellow White 101 Blue Green Yellow White	I/O(=E DQN Color Re Before	DQ) Mi eqister 000	31 24 DQM3=0 Color3=Blue White DQ24=H	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H	15 8 DQM1=0 Color1=Yellow White DQ8=H	DQM0=1 Color0=Red White DQ0=L
(Pixel data)101White DQ29=HWhite DQ21=HWhite DQ13=LWhite DQ5=H110White DQ30=HWhite DQ22=LWhite DQ14=HWhite DQ6=H111White DQ31=LWhite DQ23=HWhite DQ15=HWhite DQ7=H000BlueGreenYellowWhite001BlueGreenWhiteWhite010BlueWhiteYellowWhite011WhiteGreenYellowWhite100BlueGreenYellowWhite101BlueGreenYellowWhite101BlueGreenYellowWhite	I/O(=E DQM Color Re Before Block	DQ) Mi eqister 000 001 010	31 24 DQM3=0	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L	DQM0=1 Color0=Red White DQ0=L White DQ1=H
data) 101 White DQ30=H White DQ22=L White DQ14=H White DQ6=H 110 White DQ31=L White DQ23=H White DQ15=H White DQ7=H 111 White DQ31=L White DQ23=H White DQ15=H White DQ7=H 000 Blue Green Yellow White 001 Blue Green Yellow White 010 Blue Green Yellow White 011 White Green Yellow White 100 Blue Green Yellow White 101 Blue Green Yellow White	I/O(=E DQM Color Re Before Block Write	DQ) Mi egister 000 001 010 011	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ18=L White DQ19=H	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H
After Block 000 Blue Green Yellow White 011 White Green Yellow White 010 Blue Green Yellow White 010 Blue Green Yellow White 010 Blue Green Yellow White 101 Blue Green Yellow White	I/O(=E DQM Color Re Before Block Write & DQ	DQ) Mi egister 000 001 010 011 100	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ18=L White DQ19=H White DQ20=H	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L
After Block Write000BlueGreenYellowWhite001BlueGreenWhiteWhiteWhite010BlueWhiteYellowWhite011WhiteGreenYellowWhite100BlueGreenYellowWhite101BlueGreenYellowWhite	I/O(=E DQM Color Re Before Block Write & DQ (Pixel	DQ) Mi egister 000 001 010 011 100 101	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H White DQ29=H	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ18=L White DQ19=H White DQ20=H White DQ21=H	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H
After Block Write001BlueGreenWhiteWhite010BlueWhiteYellowWhite011WhiteGreenYellowWhite100BlueGreenYellowWhite101BlueGreenYellowWhite	I/O(=E DQM Color Re Before Block Write & DQ (Pixel	DQ) Mi egister 000 001 010 011 100 101 110	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ29=H White DQ30=H	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ21=H White DQ22=L	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ6=H
After Block Write010BlueWhiteYellowWhite011WhiteGreenYellowWhite100BlueGreenYellowWhite101BlueGreenWhiteWhite	I/O(=E DQM Color Re Before Block Write & DQ (Pixel	DQ) Mi egister 000 001 010 011 100 101 110 111	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ29=H White DQ30=H White DQ31=L	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ16=H White DQ19=H White DQ20=H White DQ21=H White DQ22=L White DQ23=H	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ6=H White DQ7=H
After Block 011 White Green Yellow White Write 100 Blue Green Yellow White 101 Blue Green White White	I/O(=E DQM Color Re Before Block Write & DQ (Pixel	DQ) Mi egister 000 001 010 011 100 101 101 111 000	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H White DQ29=H White DQ30=H White DQ31=L Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ18=L White DQ19=H White DQ20=H White DQ21=H White DQ22=L White DQ23=H Green	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H Yellow	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ6=H White DQ7=H White
Block Write 100 Blue Green Yellow White 101 Blue Green White White	I/O(=E DQM Color Re Before Block Write & DQ (Pixel	DQ) Mi eqister 000 001 010 011 100 101 110 111 000 001	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H White DQ29=H White DQ30=H White DQ31=L Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ21=H White DQ22=L White DQ23=H Green Green	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ14=H White DQ15=H Yellow White	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ7=H White DQ7=H White White
101 Blue Green White White	I/O(=E DQM Color Re Block Write & DQ (Pixel data)	DQ) Mi egister 000 001 010 011 100 101 111 000 001 010 010	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ28=H White DQ29=H White DQ30=H White DQ31=L Blue Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ20=H White DQ22=L White DQ23=H Green Green White	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H Yellow White Yellow	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ6=H White DQ7=H White White White
	I/O(=E DQM Color Re Block Write & DQ (Pixel data) After Block	DQ) Mi egister 000 001 010 011 100 101 110 111 000 001 010 011 010	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ28=H White DQ29=H White DQ30=H White DQ31=L Blue Blue Blue White	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ21=H White DQ22=L White DQ23=H Green Green	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H Yellow Yellow Yellow	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ5=H White DQ7=H White White White White
TTO DIG VITILE TENOW VITILE	I/O(=E DQM Color Re Block Write & DQ (Pixel data) After Block	DQ) Mi egister 000 001 010 011 100 101 110 111 000 001 010 011 100 011 100	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H White DQ29=H White DQ30=H White DQ31=L Blue Blue Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ20=H White DQ22=L White DQ23=H Green Green Green Green	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H Yellow Yellow Yellow Yellow	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ5=H White DQ7=H White White White White White
111 White Green Yellow White	I/O(=E DQM Color Re Block Write & DQ (Pixel data) After Block	DQ) Mi eqister 000 001 010 011 100 101 110 111 000 0011 100 101 110 111 000 0011 1010 0111 100 101	31 24 DQM3=0 Color3=Blue White DQ24=H White DQ25=H White DQ26=H White DQ27=L White DQ28=H White DQ30=H White DQ31=L Blue Blue Blue Blue Blue Blue Blue	1, 1011, 1101, 1101, 1 23 16 DQM2=0 Color2=Green White DQ16=H White DQ17=H White DQ19=H White DQ20=H White DQ21=H White DQ22=L White DQ23=H Green Green Green Green Green	15 8 DQM1=0 Color1=Yellow White DQ8=H White DQ9=L White DQ10=H White DQ11=H White DQ12=H White DQ13=L White DQ14=H White DQ15=H Yellow Yellow Yellow White	DQM0=1 Color0=Red White DQ0=L White DQ1=H White DQ2=H White DQ3=H White DQ4=L White DQ5=H White DQ5=H White DQ7=H White DQ7=H White White White White White

*Note: 1. DQM byte masking.
2. At normal write, ONE column is selected among columns decorded by A2-0(000-111). At block write, instead of ignored address A2-0, DQ0-31 control each pixel.

(Continued)

Pixel and I/O masking : By Mask at Write Per Bit Mode, the selected bit planes keep the original data. By Pixel Data issued through DQ pin, the selected pixels keep the original data. See PIXEL TO DQ MAPPING TABLE.

Assume 8bpp,

White = "0000,0000", Red="1010,0011", Green ="1110,0001", Yellow ="0000,1111", Blue ="1100,0011"

i) STEP

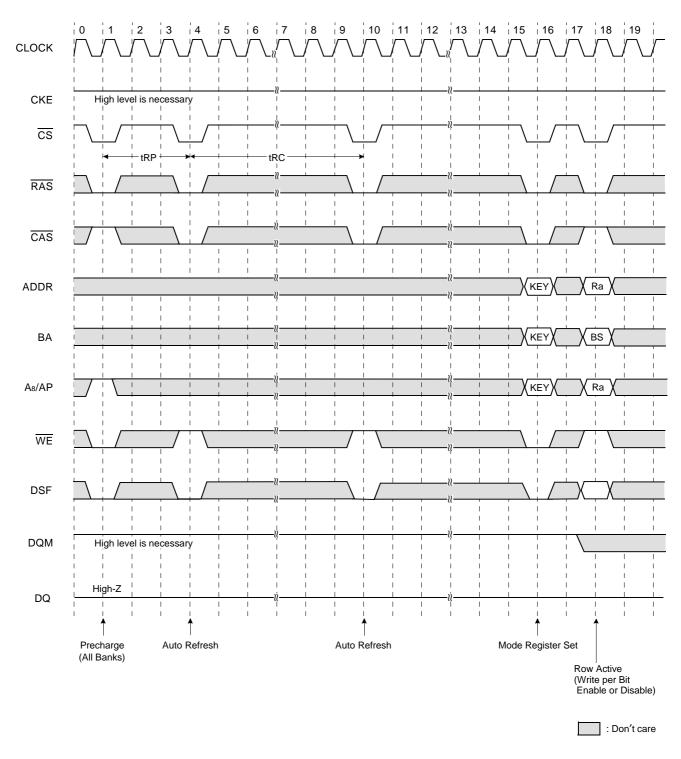
- SMRS(LCR) : Load color(for 8bpp, through x 32 DQ color0-3 are loaded into color registers) Load(color3, color2, color1, color0) = (Blue, Green, Yellow, Red)
 - = "1100,0011,1110,0001,0000,1111,1010,0011"
- SMRS(LMR): Load mask. Mask[31-0] ="1111,1111,1101,101,0100,0010,0111,0110"
 --> Byte 3 : No I/O Masking ; Byte 2 : I/O Masking ; Byte 1 : I/O and Pixel Masking ; Byte 0 : DQM Byte Masking
 Row Active with DSF "H" : I/O Mask by Write Per Bit Mode Enable
- Block Write with DQ[31-0] = "0111,0111,1111,0101,0101,1110,1110" (Pixel Mask)

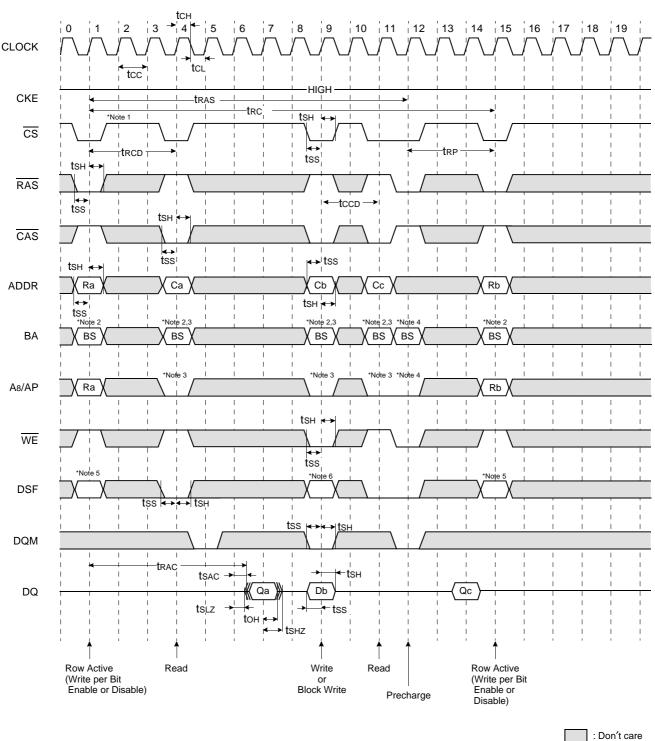
i) ILLUSTRATION

I/O(=D	Q)	31	24	23	16	15	8	7	0	
Color Register		Blu 1 1 0 0 (-	Gre 1 1 1 0 0		Yel 0 0 0 0		Re 1010		
DQN	1i	DQM3=0		DQM2=0		DQM1=0		DQM0=1		
Mask Re	gister	1111 [.]	11111111		11011101		01000010		01110110	
Before V	Vrite	Yellow 0 0 0 0 1 1 1 1		Yellow 0 0 0 0 1 1 1 1		Green 1 1 1 0 0 0 0 1		White 0 0 0 0 0 0 0 0 0		
After Write		Blue 1 1 0 0 0 0 1 1		Blue 1 1 0 0 0 0 1 1		Red 10100011		White 0 0 0 0 0 0 0 0 0		
		•			r.				Note	
I/O(=D	Q)	31	24	23	16	15	8	7	0	
DQN	1i	DQM3=0		DQM2=0		DQM1=0		DQM0=1		
Color Re	gister	Color3:	=Blue	Color2=Green		Color1=Yellow		Color0=Red		
	000	Yellow D	Q24=H	Yellow D)Q16=H	Green	DQ8=H	White [DQ0=L	
Before	001	Yellow DQ25=H		Yellow DQ17=H		Green DQ9=L		White DQ1=H		
Block Write	010	Yellow DQ26=H		Yellow DQ18=H		Green DQ10=H		White DQ2=H		
&	011	Yellow D	Q27=L	Yellow D)Q19=H	Green I	DQ11=L	White D)Q3=H	
DQ	100	Yellow DQ28=H		Yellow D)Q20=H	Green D	DQ12=H	White [DQ4=L	
(Pixel	101	Yellow DQ29=H		Yellow D)Q21=H	Green I	DQ13=L	White [)Q5=H	
data)	110	Yellow D	Q30=H	Yellow D)Q22=H	Green D	DQ14=H	White I	DQ6=H	
	111	Yellow D	Q31=L	Yellow D)Q23=H	Green I	DQ15=L	White I)Q7=H	
	000	Blu	e	Blu	le	Re	ed	Wh	ite	
	001	Blue		Blue		Green		White		
After	010	Blue		Blue		Red		White		
Block	011	Yellow		Blue		Green		White		
Write	100	Blue		Blue		Red		White		
	101	Blue		Blue		Green		White		
	110	Blue		Blue		Red		White		
	111	Yelle	wc	Blu	16	Gre	en	Wh		
	Note 2	Ļ		Ļ		,		1	Note 1	

*Note : 1. DQM byte masking.

2. At normal write, ONE column is selected among columns decorded by A2-0(000-111).


At block write, instead of ignored address A2-0, DQ0-31 control each pixel.


CMOS SGRAM

CMOS SGRAM

Power On Sequence & Auto Refresh

CMOS SGRAM

Single Bit Read-Write-Read Cycle(Same Page) @CAS Latency=3, Burst Length=1

*Note : 1. All input can be don't care when $\overline{\text{CS}}$ is high at the CLK high going edge. 2. Bank active & read/write are controlled by BA.

BA	Active & Read/Write		
0	Bank A		
1	Bank B		

3. Enable and disable auto precharge function are controlled by A8/AP in read/write command.

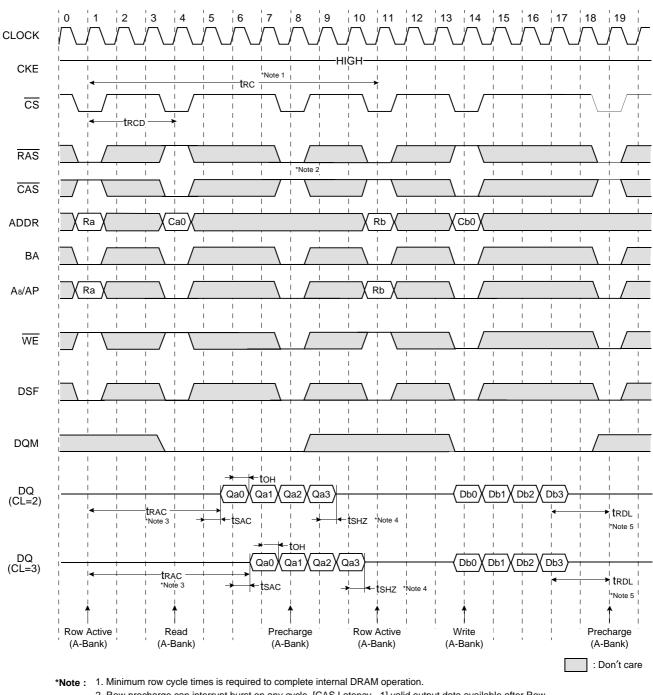
A8/AP	BA	Operation		
0	0 Disable auto precharge, leave bank A active at end of I			
0	1	Disable auto precharge, leave bank B active at end of burst.		
1	0	Enable auto precharge, precharge bank A at end of burst.		
	1	Enable auto precharge, precharge bank B at end of burst.		

4. A8/AP and BA control bank precharge when precharge command is asserted.

A8/AP	BA	Precharge
0	0	Bank A
0	1	Bank B
1	Х	Both Bank

5. Enable and disable Write-per Bit function are controlled by DSF in Row Active command.

BA	DSF	Operation		
0	L	Bank A row active, disable write per bit function for bank A		
U	Н	Bank A row active, enable write per bit function for bank A		
1	L	Bank B row active, disable write per bit function for bank B		
	Н	Bank B row active, enable write per bit function for bank B		


6. Block write/normal write is controlled by DSF.

DSF	Operation	Minimum cycle time		
L	Normal write	tccD		
Н	Block write	tвwc		

CMOS SGRAM

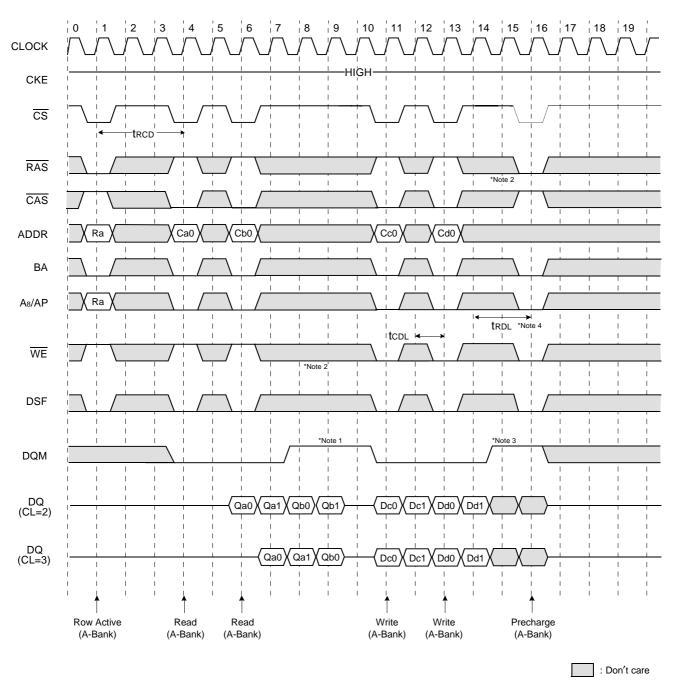
Read & Write Cycle at Same Bank @Burst Length=4

2. Row precharge can interrupt burst on any cycle. [CAS Latency - 1] valid output data available after Row enters precharge. Last valid output will be Hi-Z after tSHZ from the clcok.

3. Access time from Row address. tcc *(tRcD + CAS latency - 1) + tSAC

4. Ouput will be Hi-Z after the end of burst. (1, 2, 4, & 8). At Full page bit burst, burst is wrap-around.

5. For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design


SAMSUNG ELECTRONICS

- 30

Rev. 1.2 (Aug. 2000)

CMOS SGRAM

Page Read & Write Cycle at Same Bank @Burst Length=4

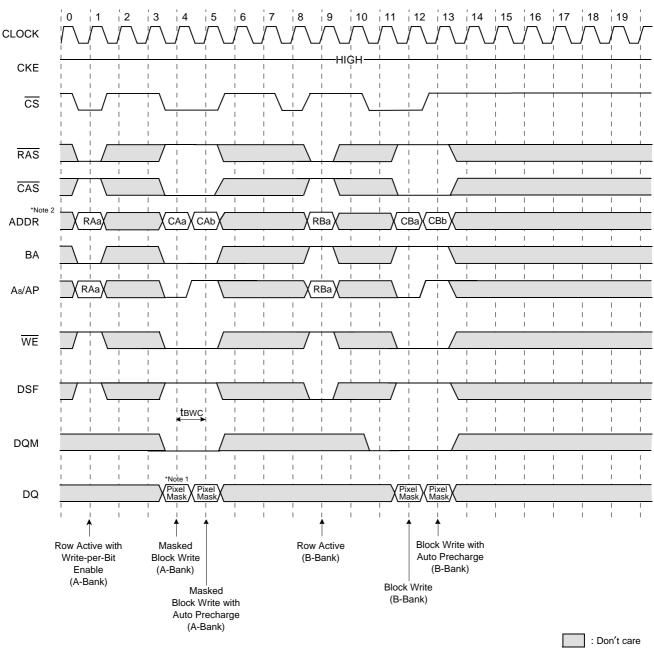
*Note: 1. To write data before burst read ends, DQM should be asserted three cycle prior to write command to avoid bus contention.

2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.

3. DQM should mask invalid input data on precharge command cycle when asserting precharge

before end of burst. Input data after Row precharge cycle will be masked internally.

4. For -60/70 devices, tRDL can be programmed as 1CLK if Auto-Precharge is not used in the design

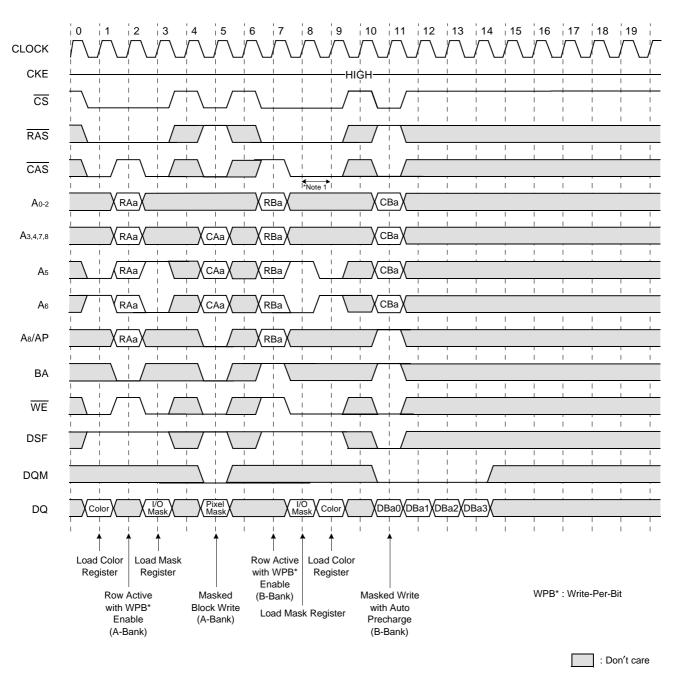

SAMSUNG ELECTRONICS

- 31

Rev. 1.2 (Aug. 2000)

CMOS SGRAM

Block Write cycle(with Auto Precharge)



*Note: 1. Column Mask(DQi=L : Mask, DQi=H :Non Mask) 2. At Block Write, CA0-2 are ignored.

CMOS SGRAM

SMRS and Block/Normal Write @ Burst Length=4

*Note : 1. At the next clock of special mode set command, new command is possible.

CMOS SGRAM

2 ¦ 3 4 8 9 10 11 12 13 14 15 16 17 18 19 0 1 5 6 7 CLOCK ніĠн CKE *Note CS RAS I *Note 2 CAS RAa CAa 🖁 RBb CBb CBd ADDR CAc CAe ΒA RAa RBb A8/AP WE DSF LOW DQM DQ (CL=2) QAa0 XQAa1 XQAa2 XQAa3 XQBb0 XQBb1 XQBb2 XQBb3 XQAc0 XQAc1 XQBd0 XQBd1 XQAe0 XQAe1 DQ (CL=3) QAa0XQAa1XQAa2XQAa3XQBb0XQBb1XQBb2XQBb3XQAc0XQAc1XQBd0XQBd1XQAe0XQAe1 Row Active Row Active Read Read Read Read Precharge (A-Bank) (B-Bank) (B-Bank) (A-Bank) (B-Bank) (A-Bank) (A-Bank) Read (A-Bank) : Don't care

Page Read Cycle at Different Bank @Burst Length=4

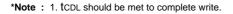
*Note: 1. \overline{CS} can be don't care when \overline{RAS} , \overline{CAS} and \overline{WE} are high at the clock high going edge.

2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.

CMOS SGRAM

10 11 12 13 1 ¦ 2 3 9 14 15 16 17 18 19 0 4 5 6 7 8 CLOCK HIĠH CKE CS RAS CAS ADDR (RAa Key CAa 🛛 RBb CBb CAc CBd ΒA RAa RBb A8/AP tCDL WE DSF DQM DQ DAa0XDAa1XDAa2XDAa3XDBb0XDBb1XDBb2XDBb3XDAc0XDAc1XDAc2XDAc3XDBd0XDBd1X DBd2 DBd3 Mask Write Write with auto Load Mask Row Active Masked Write (B-Bank) (B-Bank) Precharge Register with auto precharge (B-Bank) Row Active with Masked Write (A-Bank) Write-Per-Bit (A-Bank) enable (A-Bank)

Page Write Cycle at Different Bank @Burst Length=4


: Don't care

CMOS SGRAM

2 ¦1 ¦ 3 10 11 12 13 14 15 16 17 18 19 0 4 5 6 7 8 9 CLOCK HIĠH CKE CS RAS CAS RAa CAa RBb CBb RAc CAc ADDR ΒA RAa RBb RAc A8/AP tCDL *Note WE 1 ī ī. 1 1 i. ī DSF DQM DQ (CL=2) DBb0 DBb1 DBb2 DBb3 QAc0 QAa0 QAa1XQAa2XQAa3 QAc1XQAc2 DQ (CL=3) DBb0 DBb1 DBb2 DBb3 QAa0XQAa1XQAa2XQAa3 QAc0 QAc1 Row Active Read Precharge Write Read (A-Bank) (A-Bank) (A-Bank) (B-Bank) (A-Bank) Row Active Row Active (B-Bank) (A-Bank)

Read & Write Cycle at Different Bank @Burst Length=4

: Don't care

Rev. 1.2 (Aug. 2000)

Γ

Read & Write Cycle with Auto Precharge I @Burst Length=4

CMOS SGRAM

3 6 8 10 11 12 13 14 15 16 17 18 19 1 2 5 7 9 0 4 CLOCK HIGH CKE CS RAS I CAS RAa RBb CAa CBb ADDR ΒA A8/AP RAa RBb WE i. DSF DQMi DQ (CL=2) QAa0XQAa1 QAa2XQAa3 DBb0 DBb1 DBb2 DBb3 DQ (CL=3) QAa0XQAa1XQAa2 QAa3 DBb0 DBb1 DBb2 DBb3 Row Active Read with Auto Precharge Write with Auto Precharge Auto Precharge (A-Bank) Start Point Auto Precharge Start Point (A-Bank) (B-Bank) (A-Bank) (B-Bank) Row Active (B-Bank) : Don't care

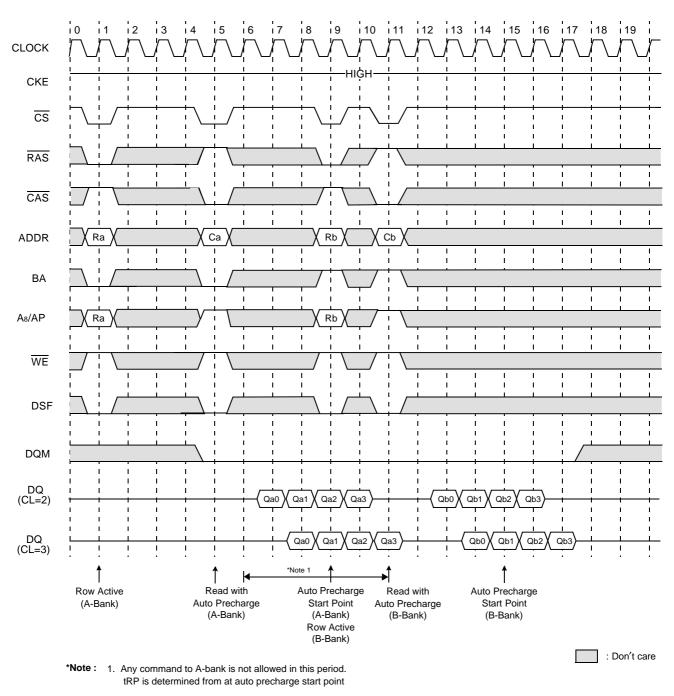
*Note: 1. tRCD should be controlled to meet minimum tRAS before internal precharge start. (In the case of Burst Length=1 & 2, BRSW mode and Block write)

CMOS SGRAM

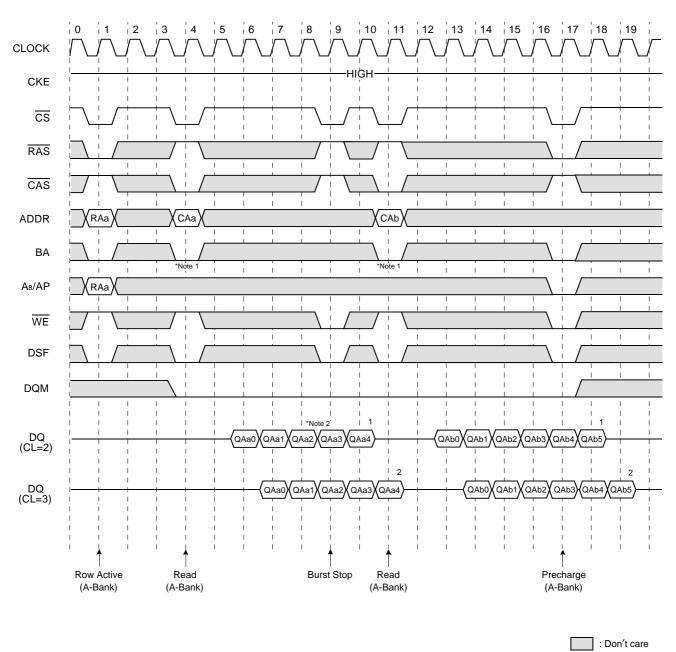
0 i 3 4 5 6 17 . 18 . 9 10 11 12 13 14 15 16 17 18 19 i 1 i 2 CLOCK HIĠH CKE CS RAS CAS 1 1 Т 1 Т Т 1 Т Rb Са Са Cb Ra ADDR Ra 1 1 I t ΒA A8/AP Ra Rb Ra 1 1 1 WE DSF DQM DQ (CL=2) Qa0 Qa1 Qb0 Qb1 Qb2 Qb3 Da0 Da1 DQ Qa0 Qa1 Qb0 Qb1 Qb2 Qb3 Da0 Da1 (CL=3) Read with Read without Auto Write with Row Active Precharge Row Active precharge(B-Bank) Auto Precharge (A-Bank) Auto Pre (A-Bank) (B-Bank) Auto Precharge (A-Bank) charge Start Point (A-Bank) (A-Bank)*Note 1 Row Active (B-Bank) : Don't care

Read & Write Cycle with Auto Precharge II @Burst Length=4

*Note: 1. When Read(Write) command with auto precharge is issued at A-Bank after A and B Bank activation.


- if Read(Write) command without auto precharge is issued at B-Bank before A Bank auto precharge starts, A Bank auto precharge will start at B Bank read command input point .

- any command can not be issued at A Bank during tRP after A Bank auto precharge starts.

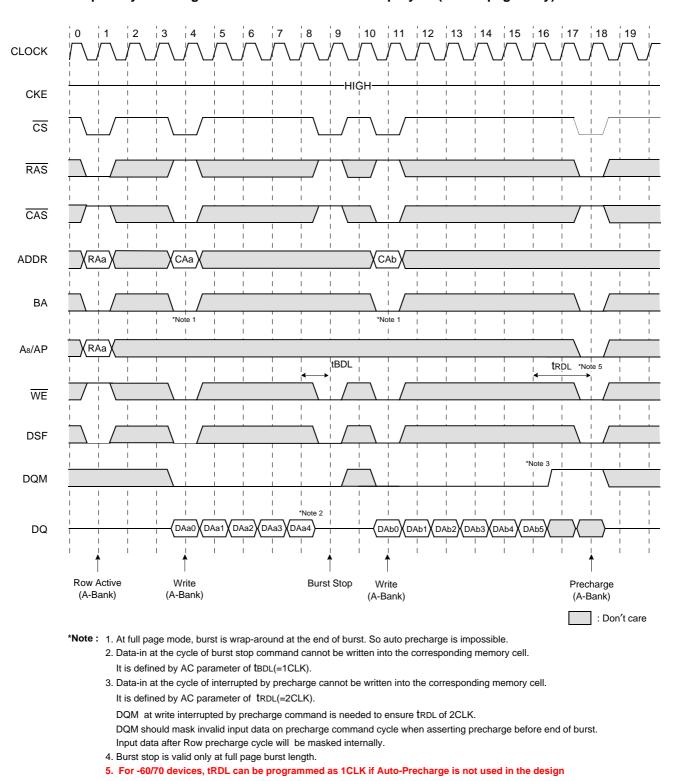

CMOS SGRAM

Read & Write Cycle with Auto Precharge III @Burst Length=4

CMOS SGRAM

Read Interrupted by Precharge Command & Read Burst Stop Cycle (@Full page Only)

*Note: 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.


 About the valid DQ's after burst stop, it is same as the case of RAS interrupt. Both cases are illustrated above timing diagram. See the label 1, 2 on them. But at burst write, Burst stop and RAS interrupt should be compared carefully. Refer the timing diagram of "Full page write burst stop cycle".

- 40

CMOS SGRAM

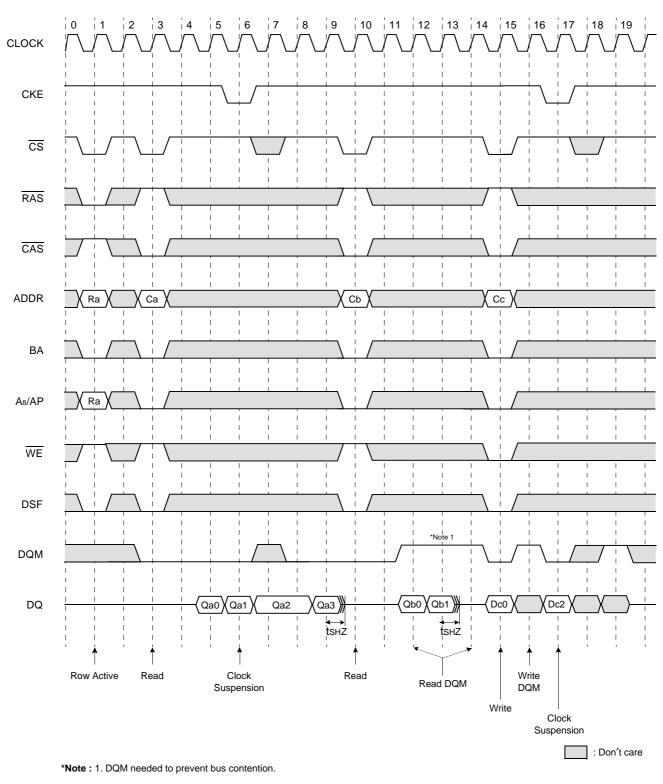
Rev. 1.2 (Aug. 2000)

Write Interrupted by Precharge Command & Write Burst Stop Cycle (@ Full page Only)

SAMSUNG

ELECTRONICS

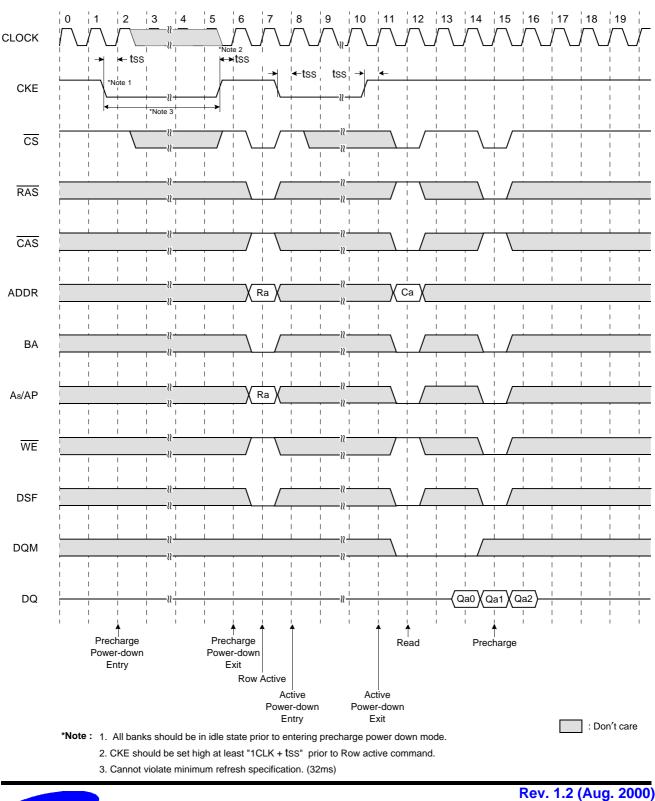
CMOS SGRAM


10 11 12 13 14 15 0 2 3 4 5 6 7 8 9 16 17 18 19 <u>1</u> CLOCK *Note HIGH CKE CS RAS *Note 2 CAS RAa CAa RBbXCAb RACCBC CAd ADDR ΒA RAa RBb RAc A8/AP WE Ì. 1 I Т DSF DQMi DQ (CL=2) QAb0 QAb1 QAd0XQAd1 DAa0 DBc0 DQ QAb1 QAd0XQAd1 DAa0 QAb0 DBc0 (CL=3) Row Active Row Active Row Active Read Precharge (A-Bank) (B-Bank) (A-Bank) (A-Bank) (A-Bank) Write Write with (A-Bank) Auto Precharge Read with (B-Bank) Auto Precharge (A-Bank) : Don't care

Burst Read Single bit Write Cycle @Burst Length=2, BRSW

- *Note: 1. BRSW mode is enabled by setting A9 "High" at MRS (Mode Register Set).
 - At the BRSW Mode, the burst length at write is fixed to "1" regardless of programed burst length.
 - 2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated. Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command, the next cycle starts the precharge.
 - 3. WPB function is also possible at BRSW mode.

CMOS SGRAM



Clock suspension & DQM operation cycle @CAS Latency=2, Burst Length=4

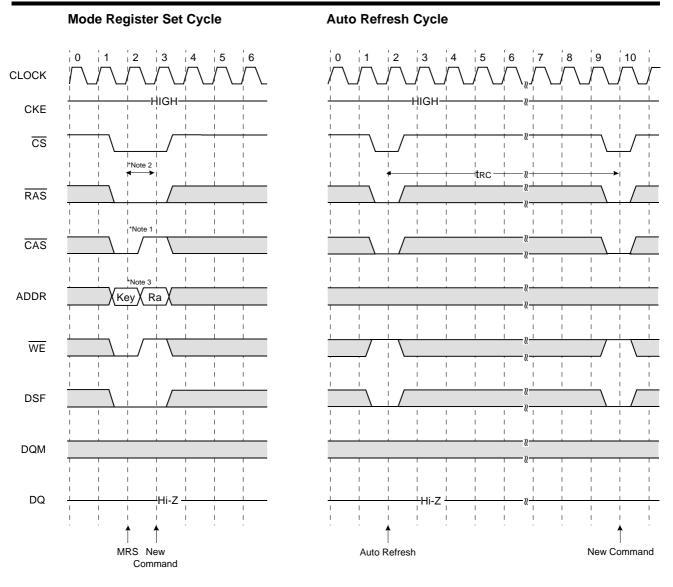
SAMSUNG

ELECTRONICS

CMOS SGRAM

Active/Precharge Power Down Mode @CAS Lantency=2, Burst Length=4

SAMSUNG ELECTRONICS


CMOS SGRAM

Self Refresh Entry & Exit Cycle

CKE CKE CK	CLOCK			3	4	<u>5</u> 	6	7	8 	9 		11	12	¦ 13 / +tRCm	/\	15	16 		18	19 	[
RAS ADR ADR ADR ADR BA AVAP VE DSF CAS Self Refersh Entry Self Refersh Entr	CKE		¦ €			 	 *N *I	lote 3	 	 			+→tss 	,	*N(bte 6 	 	 			
CAS ADDR A Point 7 ADDR A A A BA A A A WE A A A DSF A A A DGM A A A DSF A A A DCM A A A OCM A A	CS					<u> </u>	 	 	1			 	 *Note 5 	 	2 <mark>1</mark>			 	 		
ADDR BA BA As/AP WE DSF DGM C DC DC DC DC DC DC DC DC DC	RAS	 *Note 7		 	 	- <u>1</u> -11-11-11-11-11-11-11-11-11-11-11-11-1	 	 	 	 	 	 	 	 ≀		 *Nc	bte 7	 	 		
BA AdAP WE DSF DGM DQM Constructions and the standard of the system clock can be don't care except for CKE. 3. The device remains in self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device enters self refresh mode as long as CKE stays "Low". c) Once the device refresh mode as long as CKE stays "Low". c) Once the device refresh mode as long as CKE stays "Low". c) Once the device refresh mode as long as CKE stays "Low". c) Starts from high. 3. Minimum TRC is required before returning CKE high. 5. Starts from high. 3. Minimum TRC is required after CKE going high to complete self refresh exit. 7. Cycle of burst autor offresh is required before self refresh exit. 7. The device return of refresh required before self refresh exit. 7. Starts from high.	CAS							 	 	 	 	 	 	 ₩	 			 			
As/AP WE DSF DSF DQ M DQ M C DQ M C C Self Refresh Entry Self Refresh Exit Auto Refresh Self Refresh Exit Auto Refresh C C Self Refresh Exit C Self Refresh Exit Self Refresh Exit C Self Refresh Exit Self Refresh Exit C Self Refresh Exit Self Refresh Exit C Self Refresh Exit Self	ADDR		 	 	 	<u> </u>	 	 	 	 	 	 	1 1 1	<u> </u> - 10	 	 	 	 	 		1
WE Image: Construction of the system of	BA		 	 	 	 	 	 	 	 	 	 	 	 ₩	 -	 	 	 			
DSF DQM DQM DQ DQ I Self Refresh Entry Self Refresh Exit Auto Refresh I Self Refresh I Self	A8/AP					¦ └── 꾆- ·── 꾒-	1		1					<u> </u> 	 	 	 -	 			
DSF DQM DQ DQ DQ DQ DQ DQ HI-Z Self Refresh Entry Self Refresh Exit Auto Refresh Note: TO ENTER SELF REFRESH MODE 1. CS, RAS & CAS with CKE should be low at the same clock cycle. 2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. 3. The dvice remains in self refresh mode as long as CKE stays "Low". cl. Once the device enters self refresh mode as long as CKE stays "Low". cl. Once the device enters self refresh mode as long as CKE stays "Low". cl. Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh. TO EXIT SELF REFRESH MODE 9. System clock restart and be stable before returning CKE high. 2. CS starts from high. 9. Minimum tRC is required after CKE going high to complete self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit. 7. X cycle of burst auto refresh is required before self refresh exit.	WE					 								¦ ₩		 		 			1
DQM DQ Hi-Z Self Refresh Entry Self Refresh Exit Auto Refresh *Note : TO ENTER SELF REFRESH MODE 1. CS, RAS & CAS with CKE should be low at the same clock cycle. 2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. 3. The device remains in self refresh mode, minimum tRAS is required before exit from self refresh. TO EXIT SELF REFRESH MODE 4. System clock restart and be stable before returning CKE high. 5. CS starts from high. 6. Minimum tRC is required after CKE going high to complete self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh exit. 7. 2K cycle of burst auto refresh.	DSF			 		« 	 	 	 	 			 	¦			· · ·	 			
DQ HI-Z Self Refresh Entry Self Refresh Exit Auto Refresh *Note: TO ENTER SELF REFRESH MODE 1. CS, RAS & CAS with CKE should be low at the same clock cycle. 2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. 3. The device remains in self refresh mode as long as CKE stays "Low". c1.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh. TO EXIT SELF REFRESH MODE 4. System clock restart and be stable before returning CKE high. 5. CS starts from high. 6. Minimum tRC is required after CKE going high to complete self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst refresh.	ром						 	 	 	 				<u> </u> ≀	 		 	 			
 Self Refresh Entry Self Refresh Exit Auto Refresh *Note: TO ENTER SELF REFRESH MODE GS, RAS & CAS with CKE should be low at the same clock cycle. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. The device remains in self refresh mode as long as CKE stays "Low". once the device enters self refresh mode, minimum tRAs is required before exit from self refresh. TO EXIT SELF REFRESH MODE System clock restart and be stable before returning CKE high. CS starts from high. Minimum tRC is required after CKE going high to complete self refresh exit. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst refresh. 				 	 		 	 	 	 			, 	 ¦ ¦	, 	 	 	 	, , , , , , , , , , , , , , , , , , ,		
 CS, RAS & CAS with CKE should be low at the same clock cycle. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. The device remains in self refresh mode as long as CKE stays "Low". once the device enters self refresh mode, minimum tRAS is required before exit from self refresh. TO EXIT SELF REFRESH MODE 4. System clock restart and be stable before returning CKE high. 5. CS starts from high. 6. Minimum tRC is required after CKE going high to complete self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst refresh.	DQ			-		<u> </u>	1	1				Hi-Z - Self R	tefresh E	⊥ Exit		Auto F	Refresh	 			
 4. System clock restart and be stable before returning CKE high. 5. CS starts from high. 6. Minimum tRC is required after CKE going high to complete self refresh exit. 7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst refresh. 		1. (2. /	CS, RA After 1 The dev	S & C/ clock c vice rei	AS with cycle, all mains ir	CKE : the ir	should nputs in refresh	be low cluding mode	g the sy as long	stem o as Ck	clock ca KE stay	an be o 's "Lov	v".				fresh.] : Don	't care	
Rev. 1.2 (Aug. 200		4. <u>9</u> 5. (6. 7. 2	<u>Sy</u> stem CS star Vinimu 2K cycl	clock ts from m tRC e of bu	restart high. is requir irst auto	and b red af	e stabl ter CKE sh is re	E going	ı high to	o comp	olete se	elf refre	esh exit. nd after s	self refr	esh exi						

SAMSUNG **ELECTRONICS**

CMOS SGRAM

: Don't care

* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.

MODE REGISTER SET CYCLE

- *Note: 1. CS, RAS, CAS, & WE activation and DSF of low at the same clock cycle with address key will set internal mode register.
 - 2. Minimum 1 clock cycles should be met before new RAS activation.
 - 3. Please refer to Mode Register Set table.

CMOS SGRAM

FUNCTION TRUTH TABLE(TABLE 1)

Current State	cs	RAS	CAS	WE	DSF	ВА	ADDR	ACTION	NOTE
	Н	Х	Х	Х	Х	Х	Х	NOP	
	L	Н	н	Н	х	Х	Х	NOP	
	L	Н	н	L	х	Х	Х	ILLEGAL	2
	L	Н	L	Х	Х	BA	CA	ILLEGAL	2
	L	L	Н	Н	L	BA	RA	Row Active ; Latch Row Address ; Non-IO Mask	
IDLE	L	L	Н	Н	Н	BA	RA	Row Active ; Latch Row Address ; IO Mask	
	L	L	Н	L	L	BA	PA	NOP	4
	L	L	Н	L	Н	Х	Х	ILLEGAL	
	L	L	L	Н	L	Х	Х	Auto Refresh or Self Refresh	5
	L	L	L	Н	Н	Х	Х	ILLEGAL	
	L	L	L	L	L		Code	Mode Register Access	5
	L	L	L	L	Н		Code	Special Mode Register Access	6
	Н	Х	Х	Х	Х	Х	Х	NOP	
	L	Н	Н	Н	Х	Х	Х	NOP	
	L	Н	Н	L	Х	Х	Х	ILLEGAL	2
	L	Н	L	Н	L	BA	CA,AP	Begin Read ; Latch CA ; Determine AP	
	L	Н	L	Н	Н	Х	Х	ILLEGAL	
Row Active	L	Н	L	L	L	BA	CA,AP	Begin Write ;Latch CA ; Determine AP	-
	L	Н	L	L	Н	BA	CA,AP	Block Write ;Latch CA ; Determine AP	
	L	L	Н	Н	Х	BA	RA	ILLEGAL	2
	L	L	Н	L	L	BA	PA	Precharge	
	L	L	Н	L	Н	Х	Х	ILLEGAL	
	L	L	L	Н	Х	Х	Х	ILLEGAL	
	L	L	L	L	L	Х	Х	ILLEGAL	
	L	L	L	L	Н		Code	Special Mode Register Access	6
	Н	Х	Х	Х	Х	Х	Х	NOP(Continue Burst to End> Row Active)	
	L	Н	Н	Н	Х	Х	Х	NOP(Continue Burst to End> Row Active)	
	L	Н	Н	L	L	Х	Х	Term burst> Row active	
	L	Н	Н	L	Н	Х	Х	ILLEGAL	
	L	Н	L	Н	L	BA	CA,AP	Term burst ; Begin Read ; Latch CA ; Determine AP	3
Read	L	Н	L	Н	Н	Х	Х	ILLEGAL	
	L	Н	L	L	L	BA	CA,AP	Term burst ; Begin Write ; Latch CA ; Determine AP	3
	L	Н	L	L	Н	BA	CA.AP	Term burst ; Block Write ; Latch CA ; Determine AP	3
	L	L	Н	Н	Х	BA	RA	ILLEGAL	2
	L	L	Н	L	L	BA	PA	Term Burst ; Precharge timing for Reads	3
	L	L	Н	L	Н	Х	Х	ILLEGAL	
	L	L	L	Х	Х	Х	Х	ILLEGAL	
	Н	Х	Х	Х	Х	Х	Х	NOP(Continue Burst to End> Row Active)	
	L	Н	Н	Н	Х	Х	Х	NOP(Continue Burst to End> Row Active)	
	L	Н	Н	L	L	Х	Х	Term burst> Row active	
Write	L	Н	Н	L	Н	Х	Х	ILLEGAL	
	L	Н	L	Н	L	BA	CA,AP	Term burst ; Begin Read ; Latch CA ; Determine AP	3
	L	Н	L	Н	Н	Х	Х	ILLEGAL	
	L	Н	L	L	L	BA	CA,AP	Term burst ; Begin Write ; Latch CA ; Determine AP	3
	L	Н	L	L	Н	BA	CA,AP	Term burst ; Block Write ; Latch CA ; Determine AP	3

CMOS SGRAM

FUNCTION TRUTH TABLE(TABLE 1, Continued)

Current State	cs	RAS	CAS	WE	DSF	ВА	ADDR	ACTION	NOTE
	L	L	Н	Н	Х	BA	RA	ILLEGAL	2
Write	L	L	н	L	L	BA	PA	Term Burst : Precharge timing for Writes	3
WIIIC	L	L	н	L	н	х	х	ILLEGAL	
	L	L	L	Х	х	х	х	ILLEGAL	
	н	х	х	Х	х	Х	Х	NOP(Continue Burst to End> Precharge)	
	L	н	н	Н	х	Х	Х	NOP(Continue Burst to End> Precharge)	
Read with	L	н	н	L	Х	Х	Х	ILLEGAL	
Auto	L	н	L	Н	Х	BA	CA,AP	ILLEGAL	2
Precharge	L	н	L	L	х	BA	CA,AP	ILLEGAL	2
	L	L	н	Х	Х	BA	RA,PA	ILLEGAL	
	L	L	L	Х	Х	Х	Х	ILLEGAL	2
	н	х	х	Х	х	Х	Х	NOP(Continue Burst to End> Precharge)	
	L	н	н	Н	х	Х	Х	NOP(Continue Burst to End> Precharge)	
Write with	L	н	Н	L	Х	Х	х	ILLEGAL	
Auto	L	н	L	Н	х	BA	CA,AP	ILLEGAL	2
Precharge	L	Н	L	L	х	BA	CA,AP	ILLEGAL	2
	L	L	н	х	х	BA	RA,PA	ILLEGAL	
	L	L	L	х	х	х	х	ILLEGAL	2
	н	х	х	Х	х	х	Х	NOP> Idle after tRP	
	L	н	н	Н	х	х	х	NOP> Idle after tRP	
	L	Н	Н	L	х	х	х	ILLEGAL	
Precharging	L	н	L	Х	х	BA	CA,AP	ILLEGAL	2
	L	L	н	н	х	BA	RA	ILLEGAL	2
	L	L	н	L	х	BA	PA	NOP> Idle after tRP	2
	L	L	L	Х	х	х	Х	ILLEGAL	4
	н	Х	х	Х	Х	Х	Х	NOP> Row Active after tBWC	
	L	н	н	Н	х	х	Х	NOP> Row Active after tBWC	
Block	L	н	н	L	Х	Х	Х	ILLEGAL	
Write	L	н	L	х	х	BA	CA,AP	ILLEGAL	2
Recovering	L	L	н	Н	х	BA	RA	ILLEGAL	2
	L	L	н	L	Х	BA	PA	Term Block Write : Precharge timing for Block Write	2
	L	L	L	х	Х	Х	Х	ILLEGAL	2
	н	х	х	Х	х	Х	Х	NOP> Row Active after tRCD	
	L	н	н	Н	х	Х	Х	NOP> Row Active after tRCD	
D	L	н	н	L	х	х	Х	ILLEGAL	
Row Activating	L	н	L	х	Х	BA	CA,AP	ILLEGAL	2
, iouvating	L	L	Н	Н	Х	BA	RA	ILLEGAL	2
	L	L	Н	L	Х	BA	PA	ILLEGAL	2
	L	L	L	Х	Х	Х	х	ILLEGAL	2
	н	Х	Х	Х	Х	Х	Х	NOP> Idle after tRC	
	L	Н	Н	Х	Х	Х	Х	NOP> Idle after tRC	
Refreshing	L	Н	L	Х	Х	Х	Х	ILLEGAL	
	L	L	Н	Х	Х	Х	х	ILLEGAL	
	L	L	L	X	X	X	X	ILLEGAL	

CMOS SGRAM

FUNCTION TRUTH TABLE (TABLE 1, Continued)

ABBREVIATIONS

RA = Row Address(A0~A10) NOP = No Operation Command BA = Bank Address CA = Column Address(A₀~A₇) PA = Precharge All(A8) AP = Auto Precharge(A8)

*Note: 1. All entries assume that CKE was active(High) during the preceding clock cycle and the current clock cycle.

2. Illegal to bank in specified state ; Function may be legal in the bank indicated by BA, depending on the state of that bank.

3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.

4. NOP to bank precharging or in idle state. May precharge bank indicated by BA(and PA).

5. Illegal if any banks is not idle.

6. Legal only if all banks are in idle or row active state.

Current State	CKE n-1	CKE n	CS	RAS	CAS	WE	DSF	ADDR	ACTION	NOTE
	Н	х	Х	х	Х	Х	Х	Х	INVALID	
	L	н	н	х	х	х	х	Х	Exit Self Refresh> ABI after tRC	7
Self	L	н	L	н	н	н	х	Х	Exit Self Refresh> ABI after tRC	7
Refresh	L	н	L	н	н	L	Х	Х	ILLEGAL	
	L	н	L	н	L	х	х	Х	ILLEGAL	
	L	н	L	L	Х	х	Х	Х	ILLEGAL	
	L	L	Х	х	х	х	х	Х	NOP(Maintain Self Refresh)	
	Н	Х	Х	х	х	х	х	Х	INVALID	
Both	L	н	н	х	Х	Х	Х	Х	Exit Power Down> ABI	8
Bank	L	н	L	н	н	н	х	Х	Exit Power Down> ABI	8
Precharge	L	Н	L	н	н	L	х	Х	ILLEGAL	
Power Down	L	н	L	н	L	х	х	Х	ILLEGAL	
Down	L	н	L	L	х	х	х	Х	ILLEGAL	
	L	L	Х	х	Х	Х	Х	Х	NOP(Maintain Power Down Mode)	
	Н	н	Х	х	х	х	х	Х	Refer to Table 1	
	Н	L	н	х	х	х	х	Х	Enter Power Down	9
	Н	L	L	н	н	н	х	Х	Enter Power Down	9
All	Н	L	L	н	н	L	Х	Х	ILLEGAL	
All Banks	Н	L	L	Н	L	х	Х	Х	ILLEGAL	
Idle	Н	L	L	L	н	н	L	RA	Row (& Bank) Active	
	Н	L	L	L	L	н	L	Х	Enter Self Refresh	9
	Н	L	L	L	L	L	L	OP Code	Mode Register Access	
	Н	L	L	L	L	L	н	OP Code	Special Mode Register Access	
	L	L	Х	х	х	х	х	Х	NOP	
Any State	н	н	Х	х	Х	Х	Х	Х	Refer to Operations in Table 1	
other than	н	L	Х	х	х	Х	х	Х	Begin Clock Suspend next cycle	10
Listed	L	Н	Х	х	Х	Х	Х	Х	Exit Clock Suspend next cycle	10
Above	L	L	Х	х	х	Х	Х	Х	Maintain clock Suspend	

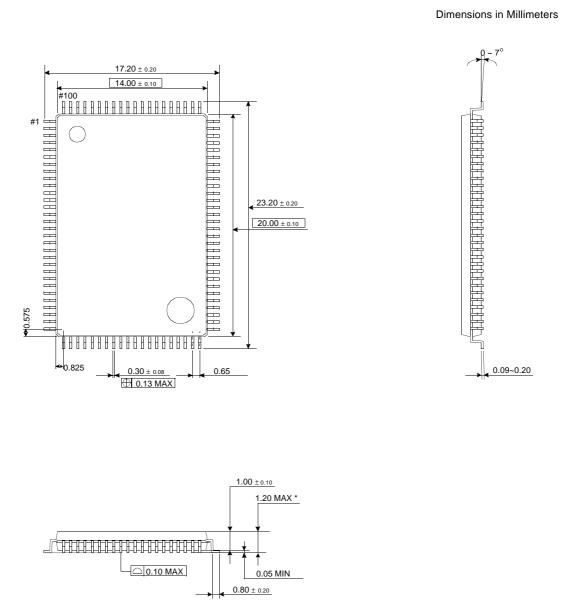
FUNCTION TRUTH TABLE for CKE(TABLE 2)

ABBREVIATIONS : ABI = All Banks Idle

*Note: 7. After CKE's low to high transition to exist self refresh mode. And a time of tRC(min) has to be elapse after CKE's low to high transition to issue a new command.

8. CKE low to high transition is asynchronous as if restarts internal clock.

A minimum setup time "tss + one clock" must be satisfied before any command other than exit.


9. Power-down and self refresh can be entered only from the all banks idle state.

10. Must be a legal command.

CMOS SGRAM

PACKAGE DIMENSIONS (TQFP)

* All Package Dimensions of PQFP & TQFP are same except Height.

- PQFP (Height = 3.0mmMAX)
 TQFP (Height = 1.2mmMAX)

