Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Abstract

General Description The MAX6501-MAX6504 low-cost, fully integrated temperature switches assert a logic signal when their die temperature crosses a factory-programmed threshold. Operating from $\mathrm{a}+2.7 \mathrm{~V}$ to +5.5 V supply, these devices feature two on-chip, temperature-dependent voltage references and a comparator. They are available with factory-trimmed temperature trip thresholds from $-45^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments, and are accurate to $\pm 0.5^{\circ} \mathrm{C}$ (typ) or $\pm 6^{\circ} \mathrm{C}$ (max). These devices require no external components and typically consume 30رA supply current. Hysteresis is pin-selectable at $+2^{\circ} \mathrm{C}$ or $+10^{\circ} \mathrm{C}$. The MAX6501/MAX6503 have an active-low, open-drain output intended to interface with a microprocessor ($\mu \mathrm{P}$) reset input. The MAX6502/MAX6504 have an activehigh, push-pull output intended to directly drive fancontrol logic. The MAX6501/MAX6502 are offered with hot-temperature thresholds $\left(+35^{\circ} \mathrm{C}\right.$ to $\left.+115^{\circ} \mathrm{C}\right)$, asserting when the temperature is above the threshold. The MAX6503/MAX6504 are offered with cold-temperature thresholds $\left(-45^{\circ} \mathrm{C}\right.$ to $\left.+15^{\circ} \mathrm{C}\right)$, asserting when the temperature is below the threshold. The MAX6501-MAX6504 are offered in eight standard temperature versions; contact the factory for pricing and availability of nonstandard temperature versions. They are available in 5-pin SOT23 and 7-pin TO-220 packages.

Typical Operating Circuit

[^0]- $\pm 0.5^{\circ} \mathrm{C}$ (typical) Threshold Accuracy Over Full Temperature Range
- No External Components Required
- Low Cost
- 30 AA Supply Current
- Factory-Programmed Thresholds from $-45^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ Increments
- Open-Drain Output (MAX6501/MAX6503) Push-Pull Output (MAX6502/MAX6504)
- Pin-Selectable $+2^{\circ} \mathrm{C}$ or $+10^{\circ} \mathrm{C}$ Hysteresis
- SOT23-5 and TO220-7 Packages

Ordering Information

PART*	TEMP. RANGE	PIN-PACKAGE
MAX6501UK___-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23-5
MAX6501CM__-_-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	7 TO-220-7
MAX6502UK__-_-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23-5
MAX6502CM__-_-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	7 TO-220-7
MAX6503UK__-_-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{SOT} 23-5$
MAX6503CM__-_-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	7 TO-220-7
MAX6504UK__-_-	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23-5
MAX6504CM__-_-T	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	7 TO-220-7

*These parts are offered in eight standard temperature versions with a minimum order of 2,500 pieces. To complete the suffix information, add P or N for positive or negative trip temperature, and select an available trip point in degrees centigrade. For example, the MAX6501UKP065-T describes a MAX6501 in a SOT23-5 package with a $+65^{\circ} \mathrm{C}$ threshold. Contact the factory for pricing and availability of nonstandard temperature versions (minimum order 10,000 pieces).

Applications

$\mu \mathrm{P}$ Temperature Monitoring in High-Speed
Computers
Temperature Control
Temperature Alarms

Fan Control
\dagger Patents Pending

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

ABSOLUTE MAXIMUM RATINGS

Supply Volt	V to +7 V
TOVER (MAX6501).	-0.3V to +7 V
TOVER (MAX6502)	-0.3V to (Vcc + 0.3V)
TUNDER (MAX6503)	-0.3 V to +7 V
TUNDER (MAX6504) ..	-0.3V to (VCc + 0.3V)
All Other Pins.	-0.3V to (Vcc + 0.3V)
Input Current (all pins)	20mA

Output Current (all pins) ... 20 mA
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right.$)
5-Pin SOT23-5 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 571 mW
Operating Temperature Range $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range................................. $+305^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)..................

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to +5.5 V , RPULL-UP $=100 \mathrm{k} \Omega$ (MAX6501/MAX6503 only), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC		2.7		5.5	V
Supply Current	IcC			30	85	$\mu \mathrm{A}$
Temperature Threshold Accuracy (Note 2)	$\Delta \mathrm{T}$ TH	$-45^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$	-6	± 0.5	6	${ }^{\circ} \mathrm{C}$
		$-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$	-4	± 0.5	4	
		$+35^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	-4	± 0.5	4	
		$+75^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$	-6	± 0.5	6	
Temperature Threshold Hysteresis	THYST	HYST = GND	2			${ }^{\circ} \mathrm{C}$
		HYST $=$ VCC		10		
HYST Input Threshold (Note 3)	V_{IH}		$0.8 \times \mathrm{V}$			V
	VIL		$0.2 \times \mathrm{VCC}$			
Output Voltage High	VOH	$\begin{aligned} & \text { ISOURCE }=500 \mu \mathrm{~A}, \mathrm{VCC}>2.7 \mathrm{~V} \\ & \text { (MAX6502/MAX6504 only) } \end{aligned}$	$0.8 \times$			V
		$\begin{aligned} & \text { ISOURCE }=800 \mu \mathrm{~A}, \mathrm{VCC}>4.5 \mathrm{~V} \\ & \text { (MAX6502/MAX6504 only) } \end{aligned}$	VCC -			
Output Voltage Low	VOL	ISINK $=1.2 \mathrm{~mA}, \mathrm{VCC}>2.7 \mathrm{~V}$			0.3	V
		ISINK $=3.2 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}>4.5 \mathrm{~V}$			0.4	
Open-Drain Output Leakage Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TUNDER}}=5.5 \mathrm{~V}(\mathrm{MAX} 6503), \\ & \mathrm{V}_{\mathrm{TOVER}}=5.5 \mathrm{~V}(\mathrm{MAX} 6501) \end{aligned}$		10		nA

Note 1: 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: The MAX6501-MAX6504 are available with internal, factory-programmed temperature trip thresholds from $-45^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$ in $+10^{\circ} \mathrm{C}$ increments (see Selector Guide).
Note 3: Guaranteed by design.

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Typical Operating Characteristics

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Pin Description

PIN				NAME	
MAX6501	MAX6502	MAX6503	MAX6504		

General Description

The MAX6501-MAX6504 fully integrated temperature switches incorporate two temperature-dependent references and a comparator. One reference exhibits a positive temperature coefficient and the other a negative temperature coefficient (Figure 1). The temperature at which the two reference voltages are equal determines the temperature trip point. Pin-selectable $+2^{\circ} \mathrm{C}$ or $+10^{\circ} \mathrm{C}$ hysteresis keeps the output from oscillating when the die temperature approaches the threshold temperature. The MAX6501/MAX6503 have an activelow, open-drain output structure that can only sink current. The MAX6502/MAX6504 have an active-high, push-pull output structure that can sink or source current. The internal power-on reset circuit guarantees the output is at $\mathrm{T}_{\mathrm{TH}}=+25^{\circ} \mathrm{C}$ state at start-up for $50 \mu \mathrm{~s}$.
The MAX6501-MAX6504 are available with factorypreset temperature thresholds from $-45^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments. Table 1 lists the available temperature threshold ranges. The MAX6501/MAX6503 outputs are intended to interface with a microprocessor ($\mu \mathrm{P}$) reset input (Figure 2). The MAX6502/MAX6504 outputs are intended for applications such as driving a fan control (Figure 3).

Table 1. Factory-Programmed Threshold Range

PART	THRESHOLD (TTH) RANGE
MAX6501	$+35^{\circ} \mathrm{C}<\mathrm{T}_{\text {TH }}<+115^{\circ} \mathrm{C}$
MAX6502	$+35^{\circ} \mathrm{C}<\mathrm{T}_{\text {TH }}<+115^{\circ} \mathrm{C}$
MAX6503	$-45^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{TH}}<+15^{\circ} \mathrm{C}$
MAX6504	$-45^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{TH}}<+15^{\circ} \mathrm{C}$

Hysteresis Input
The HYST pin is a CMOS-compatible input that selects hysteresis at either a high level $\left(+10^{\circ} \mathrm{C}\right.$ for $\left.\mathrm{HYST}=\mathrm{Vcc}\right)$ or a low level $\left(+2^{\circ} \mathrm{C}\right.$ for HYST $=$ GND $)$. Hysteresis prevents the output from oscillating when the temperature approaches the trip point. The HYST pin should not float. Drive HYST close to ground or VCC. Other input voltages cause increased supply current. The actual amount of hysteresis depends on the part's programmed trip threshold. (See the Typical Operating Characteristics graphs.)

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

MAX6501-MAX6504

Figure 1. Block and Functional Diagrams

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Figure 2. Microprocessor Alarm/Reset

Applications Information

Thermal Considerations

The MAX6501-MAX6504 supply current is typically $30 \mu \mathrm{~A}$. When used to drive high-impedance loads, the devices dissipate negligible power. Therefore, the die temperature is essentially the same as the package temperature. The key to accurate temperature monitoring is good thermal contact between the MAX6501MAX6504 package and the device being monitored. In some applications, the SOT23-5 package may be small enough to fit underneath a socketed $\mu \mathrm{P}$, allowing the device to monitor the μ P's temperature directly. The TO-220 package can monitor the temperature of a heat sink directly, and presents the lower thermal resistance of the two packages. Use the monitor's output to reset the $\mu \mathrm{P}$, assert an interrupt, or trigger an external alarm.
Accurate temperature monitoring depends on the thermal resistance between the device being monitored and the MAX6501-MAX6504 die. Heat flows in and out of plastic packages, primarily through the leads. Pin 2 of the SOT23-5 package provides the lowest thermal resistance to the die. Short, wide copper traces leading to the temperature monitor ensure that heat transfers quickly and reliably.
The rise in die temperature due to self-heating is given by the following formula:

$$
\Delta \mathrm{T}_{\mathrm{J}}=\text { PDISSIPATION } \times \theta_{\mathrm{JA}}
$$

where PdIssipation is the power dissipated by the MAX6501-MAX6504, and θ_{JA} is the package's thermal resistance.
The typical thermal resistance is $140^{\circ} \mathrm{C} / \mathrm{W}$ for the SOT23-5 package and $75^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-220 package. To limit the effects of self-heating, minimize the output currents. For example, if the MAX6501 or MAX6503 sink 1mA, the output voltage is guaranteed to be less than 0.3 V . Therefore, an additional 0.3 mW of

Figure 3. Overtemperature Fan Control
power is dissipated within the IC. This corresponds to a $0.042^{\circ} \mathrm{C}$ shift in the die temperature in the SOT23-5.

Temperature-Window Alarm

The MAX6501-MAX6504 temperature switch outputs assert when the die temperature is outside the factoryprogrammed range. Combining the outputs of two devices creates an over/undertemperature alarm. The MAX6501/MAX6503 and the MAX6502/MAX6504 are designed to form two complementary pairs, each containing one cold trip-point output and one hot trip-point output. The assertion of either output alerts the system to an out-of-range temperature. The MAX6502/MAX6504 push/pull output stages can be ORed to produce a thermal out-of-range alarm. More favorably, a MAX6501/ MAX6503 can be directly wire-ORed with a single external resistor to accomplish the same task (Figure 4).
The temperature window alarms shown in Figure 4 can be used to accurately determine when a device's temperature falls out of the $-5^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range. The ther-mal-overrange signal can be used to assert a thermal shutdown, power-up, recalibration, or other temperaturedependent function.

Low-Cost, Fail-Safe Temperature Monitor

 In high-performance/high-reliability applications, multiple temperature monitoring is important. The high-level integration and low cost of the MAX6501-MAX6504 facilitate the use of multiple temperature monitors to increase system reliability. Figure 5's application uses two MAX6502s with different temperature thresholds to ensure that fault conditions that can overheat the monitored device cause no permanent damage. The first temperature monitor activates the fan when the die temperature exceeds $+45^{\circ} \mathrm{C}$. The second MAX6502 triggers a system shutdown if the die temperature reaches $+75^{\circ} \mathrm{C}$. The second temperature monitor's output asserts when a wide variety of destructive fault conditions occur, including latchups, short circuits, and cooling-system failures.
Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Figure 4. Temperature-Window Alarms
Table 2. Device Marking Codes for SOT23-5 Package

DEVICE	CODE	MINIMUM ORDER
MAX6501UKP035	ABZF	10 k
MAX6501UKP045	ABZR	2.5 k
MAX6501UKP055	ACFW	2.5 k
MAX6501UKP065	ABZS	2.5 k
MAX6501UKP075	ACFV	2.5 k
MAX6501UKP085	ACDP	2.5 k
MAX6501UKP095	ABZT	2.5 k
MAX6501UKP105	ACFU	10 k
MAX6501UKP115	ACAG	2.5 k
MAX6502UKP035	ABZG	10 k
MAX6502UKP045	ABZU	2.5 k
MAX6502UKP055	ACGC	2.5 k
MAX6502UKP065	ABZV	2.5 k
MAX6502UKP075	ACGB	2.5 k
MAX6502UKP085	ACGA	2.5 k
MAX6502UKP095	ABZW	2.5 k

DEVICE	CODE	MINIMUM ORDER
MAX6502UKP105	ACFZ	10 k
MAX6502UKP115	ACFY	2.5 k
MAX6503UKN045	ADIZ	10 k
MAX6503UKN035	ACAQ	10 k
MAX6503UKN025	ACAP	10 k
MAX6503UKN015	ACFX	2.5 k
MAX6503UKN005	ACAN	10 k
MAX6503UKP005	ABZX	2.5 k
MAX6503UKP015	ACAM	10 k
MAX6504UKN045	ACAX	10 k
MAX6504UKN035	ACAW	10 k
MAX6504UKN025	ACAV	10 k
MAX6504UKN015	ACGD	2.5 k
MAX6504UKN005	ACAT	10 k
MAX6504UKP005	ABZY	2.5 k
MAX6504UKP015	ADKE	10 k

Low-Cost, +2.7V to +5.5V, Micropower
 Temperature Switches in SOT23 and TO-220

PART		MAX6501	MAX6502	MAX6503	MAX6504
OUTPUT STAGE		OpenDrain	Push-Pull	OpenDrain	Push-Pull
TRIP TEMP THRESHOLD		Hot	Hot	Cold	Cold
	-45			\checkmark	\checkmark
	-35			\checkmark	\checkmark
	-25			\checkmark	\checkmark
	-15			\checkmark	\checkmark
	-5			\checkmark	\checkmark
	+5			\checkmark	\checkmark
	+15			\checkmark	\checkmark
	+35	\checkmark	\checkmark		
	+45	\checkmark	\checkmark		
	+55	\checkmark	\checkmark		
	+65	\checkmark	\checkmark		
	+75	\checkmark	\checkmark		
	+85	\checkmark	\checkmark		
	+95	\checkmark	\checkmark		
	+105	\checkmark	\checkmark		
	+115	\checkmark	\checkmark		

Chip Information
TRANSISTOR COUNT: 237
SUBSTRATE CONNECTED TO GND

Low-Cost, +2.7V to +5.5V, Micropower Temperature Switches in SOT23 and TO-220

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]: Selector Guide and Pin Configurations appear at end of data sheet.

