

M5219L, P, FP

DUAL LOW-NOISE OPERATIONAL AMPLIFIERS(DUAL POWER SUPPLY TYPE)

DESCRIPTION

The M5219 is a semiconductor integrated circuit designed for a preamplifier in audio equipment of stereo and cassette tape decks.

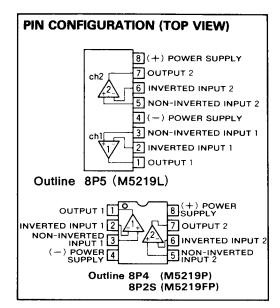
Two low-noise operational amplifier circuits displaying internal phase-compensated high gain and low distortion are contained in a 8-pin SIP, DIP or FP, suitable for application as an equalizer and tone control amplifier of stereo equipment and cassette tape decks.

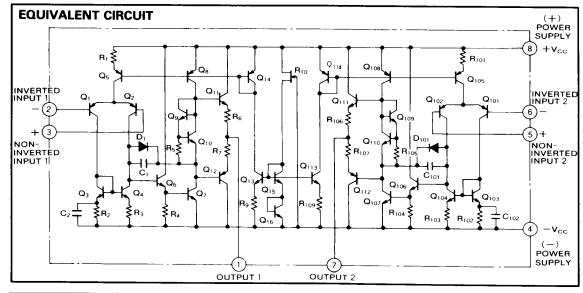
The unit can also be used as a general-purpose amplifier in portable equipment such as a stereo cassette tape recorder of a single power supply type as it operates at a low supply voltage.

FEATURES

- Low noise ········ V_{NI}=0.9 μVrms typ.(Rg=2.2kΩ, RIAA) S/N=77dB typ. (Shorted input, IHF-A network) (RIAA, PHONO=2.5mVrms)

- High slew rate $SR = 6.5V/\mu s(typ.)$
- High load current, high power dissipation

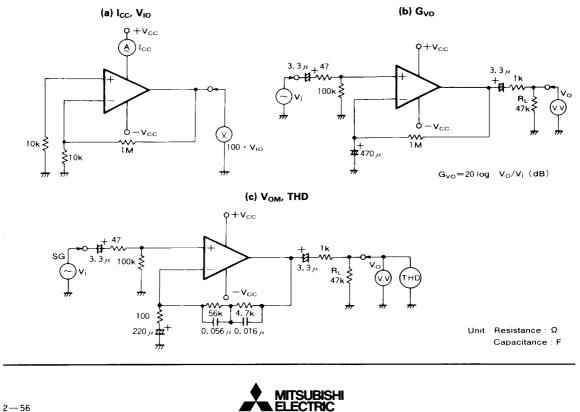

 $P_{d}=625$ mW(DIP), $P_{d}=440$ mW(SP)


APPLICATION

General-purpose preamplifier in stereo equipment, tape decks and radio stereo cassette recorders.

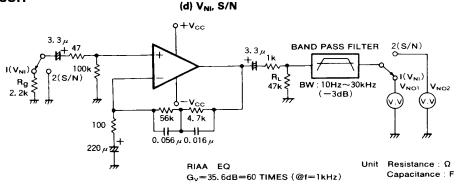
RECOMMENDED OPERATING CONDITIONS

Supply voltage range $\pm 2\sim \pm 22.5V$ Rated supply voltage $\pm 22.5V$


ABSOLUTE MAXIMUM RATINGS ($\tau_a=25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions Ratings	Unit
Vcc	Supply voltage	±25(50)	V
ILP	Load current	±50	mA
Vid	Differential input voltage	±30	V
Vic	Common input voltage	±22.5V	V
Pd	Power dissipation	800(SIP)/625(DIP)/440(FP)	mW
Kθ	Thermal derating	$T_a \ge 25^{\circ}C$ 8(SIP)/6.25(DIP)/4.4(FP)	m₩/℃
Topr	Ambient temperature	-20~+75	°C
Tstg	Storage temperature	-55~+125	°C

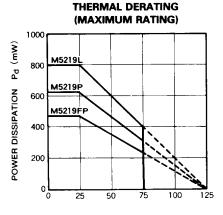
ELECTRICAL CHARACTERISTICS $(\tau_a=25^{\circ}C, v_{cc}=\pm22.5v)$


Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Unit
Icc	Circuit current	V _{in} =0		3.5	7.0	mA
Vio	Input offset voltage	R _s ≦10kΩ		0.5	6.0	mV
I _{IB}	Input bias current			0.3		μA
Gvo	Open loop voltage gain	$f=100Hz, R_{L}=47k\Omega, C_{NF}=470 \mu F$	90	110		dB
Vom	Maximum output voltage	$f=1kHz, THD=0.1\%, R_L=47k\Omega, RIAA$	12.5	14.0		Vrms
THD	Total harmonic distortion	$f=1kHz, V_0=5Vrms, R_L=47k\Omega, RIAA$		0.001	0.03	%
VNI	Input referred noise voltage	$R_g=2.2k\Omega$, $BW=10Hz\sim30kHz$, RIAA		0.9	1.8	μVrms
S/N	Signal-to-noise ratio	Shorted input (Rg=47Ω), IHF-A network		77		dB
		PHONO=2.5mVrms, RIAA				

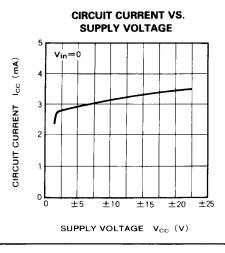
TEST CIRCUITS

This Material Copyrighted By Its Respective Manufacturer

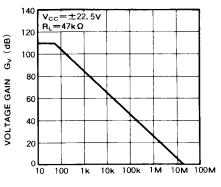
TEST CIRCUIT

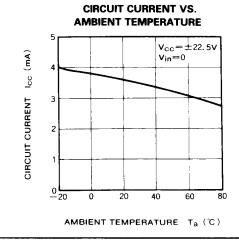


1. $V_{NI} = V_{NO1} / 60(\mu Vrms)$


2. $S/N=20 \log(2.5 mVrms/(V_{NO2}/60))$ (dB)

An AC voltmeter V.V with a built-in IHF-A network filter should be used for measuring the S/N ratio.

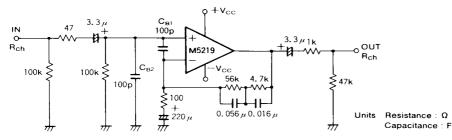



AMBIENT TEMPERATURE T_a (°C)

VOLTAGE GAIN VS. FREQUENCY RESPONSE

FREQUENCY f (Hz)

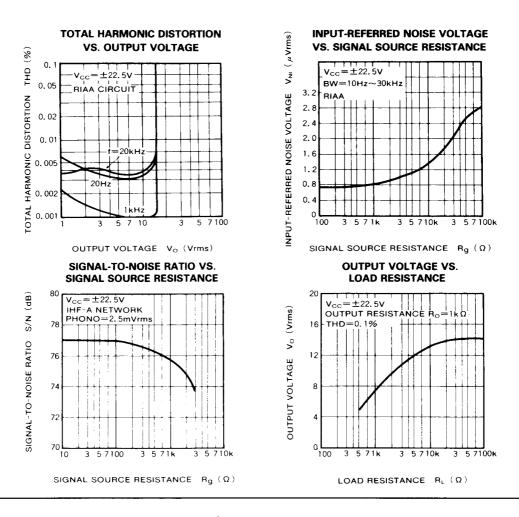
conditions

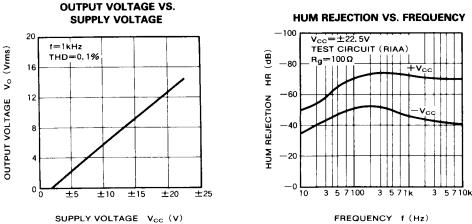

Lch circuit constants are identical to those of Rch

C_{B1}, C_{B2} : Capacitors for buzz prevention, use if required.

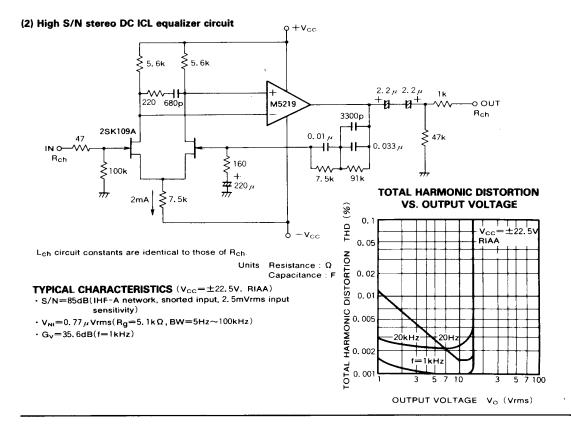
 $R_{\rm O}$: Resistor used to prevent parasitic oscillation for capacitive loads and current limiting with shorted and other abnormal load

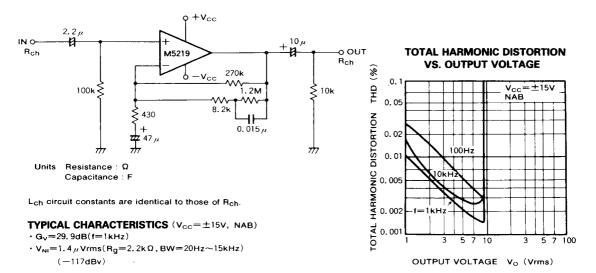
APPLICATION EXAMPLES



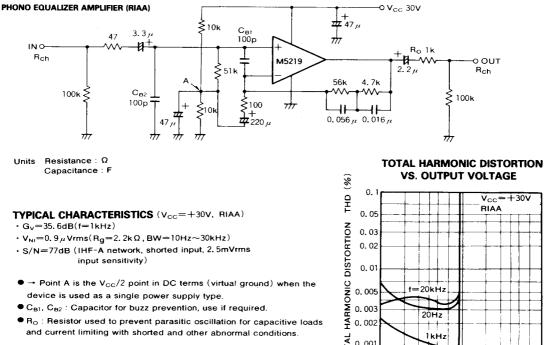

TYPICAL CHARACTERISTICS ($v_{cc} = \pm 22.5v$, RIAA)

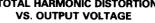
 \cdot G_v=35.6dB(f=1kHz)

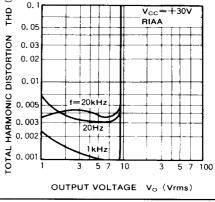

- $\cdot V_{NI}=0.9 \mu Vrms(R_g=2.2 k\Omega, BW=10 Hz \sim 30 kHz)$
- S/N=77dB(IHF-A network, shorted input, 2.5mVrms input sensitivity)
- THD=0.001%(f=1kHz, V_0 =5Vrms)



FREQUENCY f (Hz)




(3) Tape deck equalizer amplifier circuit



(4) Typical single power supply application

2 - 60

