Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

General Description

The MAX1180 is a 3.3 V , dual 10-bit, analog-to-digital converter (ADC) featuring fully-differential wideband track-and-hold (T/H) inputs, driving two pipelined, ninestage ADCs. The MAX1180 is optimized for low-power, high-dynamic performance applications in imaging, instrumentation, and digital communication applications. The MAX1180 operates from a single 2.7 V to 3.6 V supply, consuming only 413 mW , while delivering a typical signal-to-noise ratio (SNR) of 58.5 dB at an input frequency of 20 MHz and a sampling rate of 105 Msps . The T/H driven input stages incorporate $400 \mathrm{MHz}(-3 \mathrm{~dB})$ input amplifiers. The converters may also be operated with single-ended inputs. In addition to low operating power, the MAX1180 features a 2.8 mA sleep mode, as well as a $1 \mu \mathrm{~A}$ power-down mode to conserve power during idle periods.
An internal 2.048 V precision bandgap reference sets the full-scale range of the ADC. A flexible reference structure allows the use of the internal or external reference, if desired for applications requiring increased accuracy or a different input voltage range.
The MAX1180 features parallel, CMOS-compatible three-state outputs. The digital output format is set to two's complement or straight offset binary through a single control pin. The device provides for a separate output power supply of 1.7 V to 3.6 V for flexible interfacing. The MAX1180 is available in a $7 \mathrm{~mm} \times 7 \mathrm{~mm}, 48$-pin TQFP package, and is specified for the extended industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.
Pin-compatible higher and lower speed versions of the MAX1180 are also available. Please refer to the MAX1181 data sheet for 80Msps, the MAX1182 data sheet for 65Msps, the MAX1183 data sheet for 40 Msps , and the MAX1184 data sheet for 20Msps. In addition to these speed grades, this family includes a 20Msps multiplexed output version (MAX1185), for which digital data is presented time-interleaved on a single, parallel 10-bit output port.

Applications
High Resolution Imaging
I/Q Channel Digitization
Multichannel IF Undersampling
Instrumentation
Video Application

Functional Diagram appears at end of data sheet.

- Single 3.3V Operation
- Excellent Dynamic Performance 58.5 dB SNR at $\mathrm{fIN}=20 \mathrm{MHz}$ 72dB SFDR at $\mathrm{fin}=20 \mathrm{MHz}$
- SNR Flat within 1 dB for $\mathrm{fin}=20 \mathrm{MHz}$ to 100 MHz
- Low Power

125mA (Normal Operation)
2.8mA (Sleep Mode)
$1 \mu \mathrm{~A}$ (Shutdown Mode)

- 0.02dB Gain and 0.25° Phase Matching (typ)
- Wide ± 1 Vp-p Differential Analog Input Voltage Range
- 400MHz, -3dB Input Bandwidth
- On-Chip 2.048V Precision Bandgap Reference
- User-Selectable Output Format-Two's Complement or Offset Binary
- 48-Pin TQFP Package with Exposed Pad for Improved Thermal Dissipation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1180ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP-EP*
MAX1180ECM +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP-EP*

+Denotes a lead-free and RoHS-compliant package. *EP = Exposed paddle.

Pin Configuration

NOTE: THE PIN 1 INDICATOR FOR LEAD-FREE PACKAGES IS REPLACED BY A "+" SIGN.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

ABSOLUTE MAXIMUM RATINGS

$V_{D D}, V_{D D}$ to GND
-0.3 V to +3.6 V
OGND to GND..-0.3V to +0.3V
INA+, INA-, INB+, INB- to GND
CLK.... .-0.3 V to V_{DD}
REFIN, REFOUT, REFP, REFN, CLK,
COM to GND \qquad-0.3V to (VDD $+0.3 \mathrm{~V})$
OE, PD, SLEEP, T/B, D9A-D0A,
D9B-D0B to OGND
D9A-D0A,
................-0.3V to (OVDD +0.3 V)

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
48-Pin TQFP-EP (derate $30.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 2430 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} D \mathrm{D}=2.5 \mathrm{~V} ; 0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to COM), $\mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}$ at digital outputs (Note 1), fCLK $=105.263 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC ACCURACY						
Resolution			10			Bits
Integral Nonlinearity	INL	$\mathrm{fin}^{\text {I }}=7.47 \mathrm{MHz}$		± 0.75	± 2.5	LSB
Differential Nonlinearity	DNL	fiN $=7.47 \mathrm{MHz}$, no missing codes guaranteed	-1.0	± 0.4	+1.5	LSB
Offset Error			-1.8		+1.8	\% FS
Gain Error				0	± 2	\% FS
ANALOG INPUT						
Differential Input Voltage Range	VIIFF	Differential or single-ended inputs		± 1.0		V
Common-Mode Input Voltage Range	$\mathrm{V}_{\text {CM }}$			$\begin{gathered} V_{D D} / \\ 2 \pm 0.5 \end{gathered}$		V
Input Resistance	RIN	Switched capacitor load		20		$\mathrm{k} \Omega$
Input Capacitance	CIN			5		pF
CONVERSION RATE						
Maximum Clock Frequency	fCLK		105			MHz
Data Latency				5		Clock Cycles
DYNAMIC CHARACTERISTICS						
Signal-to-Noise Ratio (Note 3)	SNR	finA or $\mathrm{B}=7.47 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		59		dB
		fina or $\mathrm{B}=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	55	58.5		
		find or $B=50.078 \mathrm{MHz}$		58		
Signal-to-Noise and Distortion (Note 3)	SINAD	$\mathrm{f}_{\text {INA }}$ or $\mathrm{B}=7.47 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		58.2		dB
		fina or $B=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	54.7	58.1		
		find or $B=50.078 \mathrm{MHz}$		57.6		
Spurious-Free Dynamic Range (Note 3)	SFDR	finA or $B=7.47 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		72		dBc
		finA or $\mathrm{B}=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	60	72		
		finA or $B=50.078 \mathrm{MHz}$		70		
Total Harmonic Distortion (First Four Harmonics) (Note 3)	THD	finA or $\mathrm{B}=7.47 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-71		dBc
		fina or $\mathrm{B}=20 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-70	-59	
		finA or $B=50.078 \mathrm{MHz}$		-69		

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OV} \mathrm{DD}=2.5 \mathrm{~V} ; 0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{VIN}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to COM), $\mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}$ at digital outputs (Note 1), $\mathrm{f} C \mathrm{LK}=105.263 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to TMAX, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Third-Harmonic Distortion (Note 3)	HD3	finA or $\mathrm{B}=7.47 \mathrm{MHz}$		-75		dBc
		finA or B $=20 \mathrm{MHz}$		-75		
		find or $B=50.078 \mathrm{MHz}$		-73		
Intermodulation Distortion	IMD	finA or $\mathrm{B}=38.055 \mathrm{MHz}$ at -6.5 dBFS finA or $B=42.926 \mathrm{MHz}$ at -6.5 dBFS (Note 4)		-74		dBc
Small-Signal Bandwidth		Input at -20dBFS, differential inputs		500		MHz
Full-Power Bandwidth	FPBW	Input at -0.5dBFS, differential inputs		400		MHz
Aperture Delay	$t_{\text {AD }}$			1		ns
Aperture Jitter	t_{AJ}			2		psRMS
Overdrive Recovery Time		For $1.5 \times$ full-scale input		2		ns
Differential Gain				± 1		\%
Differential Phase				± 0.25		degrees
Output Noise		INA $+=$ INA $-=$ INB $+=$ INB $-=$ COM		0.2		LSBRMS
INTERNAL REFERENCE						
Reference Output Voltage	REFOUT			$\begin{aligned} & 2.048 \\ & \pm 3 \% \end{aligned}$		V
Reference Temperature Coefficient	TCref			60		ppm/ ${ }^{\circ} \mathrm{C}$
Load Regulation				1.25		$\mathrm{mV} / \mathrm{mA}$
BUFFERED EXTERNAL REFERENCE (VREFIN = 2.048V)						
REFIN Input Voltage	VREFIN			2.048		V
Positive Reference Output Voltage	$V_{\text {REFP }}$			2.162		V
Negative Reference Output Voltage	$V_{\text {REF }}$			1.138		V
Differential Reference Output Voltage Range	$\Delta V_{\text {REF }}$	$\Delta \mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REF }}$	0.95	1.024	1.10	V
REFIN Resistance	RREFIN			>50		$\mathrm{M} \Omega$
Maximum REFP, COM Source Current	IsOURCE			5		mA
Maximum REFP, COM Sink Current	ISINK			-250		$\mu \mathrm{A}$
Maximum REFN Source Current	IsOURCE			250		$\mu \mathrm{A}$
Maximum REFN Sink Current	ISINK			-5		mA

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, O V_{D D}=2.5 \mathrm{~V} ; 0.1 \mu \mathrm{~F}\right.$ and $1.0 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{VP-P}$ (differential with respect to COM), $\mathrm{CL}=10 \mathrm{pF}$ at digital outputs (Note 1), fCLK $=105.263 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{TMIN}_{\mathrm{MI}}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
UNBUFFERED EXTERNAL REFERENCE (VREFIN = AGND, reference voltage applied to REFP, REFN, and COM)						
REFP, REFN Input Resistance	RREFP, Rrefn	Measured between REFP and COM and REFN and COM		4		k Ω
Differential Reference Input Voltage Range	$\Delta V_{\text {REF }}$	$\Delta \mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {RefP }}-\mathrm{V}_{\text {REF }}$		$\begin{aligned} & 1.024 \\ & \pm 10 \% \end{aligned}$		V
COM Input Voltage Range	VCOM			$\begin{gathered} V_{D D} / 2 \\ \pm 10 \% \end{gathered}$		V
REFP Input Voltage	$V_{\text {REFP }}$			VCOM^{+} $\Delta V_{\text {REF }} / 2$		V
REFN Input Voltage	Vrefn			$V_{C O M}-$ $\Delta \mathrm{V}_{\text {REF }} / 2$		V
DIGITAL INPUTS (CLK, PD, $\overline{\mathrm{OE}}$, SLEEP, T/B)						
Input High Threshold	V_{IH}	CLK	$\begin{aligned} & 0.8 x \\ & V_{D D} \end{aligned}$			V
		PD, $\overline{O E}$, SLEEP, T/B	$\begin{aligned} & 0.8 \times \\ & \text { OVDD } \end{aligned}$			
Input Low Threshold	VIL	CLK			$\begin{aligned} & 0.2 x \\ & V_{D D} \end{aligned}$	V
		PD, $\overline{O E}$, SLEEP, $/$ /B			$\begin{aligned} & 0.2 x \\ & O V_{D D} \end{aligned}$	
Input Hysteresis	V HYST			0.1		V
Input Leakage	IIH	$\mathrm{V}_{\mathrm{IH}}=O \mathrm{~V}_{\text {DD }}$ or $\mathrm{V}_{\mathrm{DD}}(\mathrm{CLK})$			± 5	$\mu \mathrm{A}$
	I/L	$\mathrm{V}_{\text {IL }}=0$			± 5	
Input Capacitance	CIN			5		pF
DIGITAL OUTPUTS (D9A-D0A, D9B-D0B)						
Output-Voltage Low	VoL	ISINK $=-200 \mu \mathrm{~A}$			0.2	V
Output-Voltage High	VOH	ISOURCE $=200 \mu \mathrm{~A}$	$\begin{aligned} & \text { OVDD } \\ & -0.2 \end{aligned}$			V
Three-State Leakage Current	ILEAK	$\overline{\mathrm{OE}}=0 V_{\text {DD }}$			± 10	$\mu \mathrm{A}$
Three-State Output Capacitance	Cout	$\overline{\mathrm{OE}}=0 V_{D D}$		5		pF
POWER REQUIREMENTS						
Analog Supply Voltage Range	VDD		2.7	3.3	3.6	V
Output Supply Voltage Range	OVDD		1.7	2.5	3.6	V
Analog Supply Current	IvDD	Operating, finA or $\mathrm{B}=20 \mathrm{MHz}$ at -0.5 dBFS		125	156	mA
		Sleep mode		2.8		
		Shutdown, clock idle, $\mathrm{PD}=\overline{\mathrm{OE}}=\mathrm{OV}$ DD		1	15	$\mu \mathrm{A}$

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, O V_{D D}=2.5 \mathrm{~V} ; 0.1 \mu \mathrm{~F}\right.$ and $1.0 \mu \mathrm{~F}$ capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a $10 \mathrm{k} \Omega$ resistor, $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (differential with respect to COM), $\mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF}$ at digital outputs (Note 1), fCLK $=105.263 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $T_{\text {MAX }}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Output Supply Current	IovDd	Operating, $C_{L}=15 \mathrm{pF}$, finA or $B=20 \mathrm{MHz}$ at -0.5dBFS	15		mA
		Sleep mode	100		$\mu \mathrm{A}$
		Shutdown, clock idle, $\mathrm{PD}=\overline{\mathrm{OE}}=\mathrm{OV}$ DD	2	10	
Power Dissipation	PDISS	Operating, finA or $\mathrm{B}=20 \mathrm{MHz}$ at -0.5 dBFS	413	511	mW
		Sleep mode	9.2		$\mu \mathrm{W}$
		Shutdown, clock idle, PD $=\overline{\mathrm{OE}}=\mathrm{OV}$ DD	3	50	
Power-Supply Rejection Ratio	PSRR	Offset	± 0.2		mV / V
		Gain	± 0.1		\%/V
TIMING CHARACTERISTICS					
CLK Rise to Output Data Valid	tDO	Figure 3 (Note 5)	5	8	ns
Output Enable Time	tenable	Figure 4	10		ns
Output Disable Time	tDISABLE	Figure 4	1.5		ns
CLK Pulse-Width High	tch	Figure 3, clock period: 9.5ns	$\begin{aligned} & 4.75 \\ & \pm 1.5 \end{aligned}$		ns
CLK Pulse-Width Low	tcL	Figure 3, clock period: 9.5ns	$\begin{aligned} & 4.75 \\ & \pm 1.5 \end{aligned}$		ns
Wake-Up Time (Note 6)	twake	Wakeup from sleep mode	0.18		$\mu \mathrm{S}$
		Wakeup from shutdown	1.5		
CHANNEL-TO-CHANNEL MATCHING					
Crosstalk		finA or $\mathrm{B}=20 \mathrm{MHz}$ at -0.5 dBFS	-70		dB
Gain Matching		finA or $B=20 \mathrm{MHz}$ at -0.5 dBFS	0.02	± 0.2	dB
Phase Matching		finA or $\mathrm{B}=20 \mathrm{MHz}$ at -0.5 dBFS	0.25		degrees

Note 1: Equivalent dynamic performance is obtainable over full OV ${ }_{D D}$ range with reduced CL.
Note 2: Specifications at $\geq+25^{\circ} \mathrm{C}$ are guaranteed by production test and $<+25^{\circ} \mathrm{C}$ are guaranteed by design and characterization.
Note 3: SNR, SINAD, THD, SFDR, and HD3 are based on an analog input voltage of -0.5 dBFS , referenced to a 1.024 V full-scale input voltage range.
Note 4: Intermodulation distortion is the total power of the intermodulation products relative to the individual carrier. This number is 6 dB or better, if referenced to the two-tone envelope.
Note 5: Digital outputs settle to $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$. Parameter guaranteed by design.
Note 6: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Typical Operating Characteristics
$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}\right.$ DD $=2.5 \mathrm{~V}$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{CL}}=105.0006 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}} \approx 10 \mathrm{pF} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Typical Operating Characteristics (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.5 \mathrm{~V}\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{CLK}}=105.0006 \mathrm{MHz}, \mathrm{CL}_{\mathrm{L}} \approx 10 \mathrm{pF} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SMALL-SIGNAL INPUT BANDWIDTH vs. ANALOG INPUT FREQUENCY, SINGLE-ENDED

TOTAL HARMONIC DISTORTION vs
ANALOG INPUT POWER (fiN = 20.0849474MHz)

SPURIOUS-FREE DYNAMIC RANGE vs. ANALOG INPUT FREQUENCY

SIGNAL-TO-NOISE RATIO vs.
ANALOG INPUT POWER ($\mathbf{(I N}=\mathbf{2 0 . 0 8 4 9 4 7} \mathbf{M H z}$)

SPURIOUS-FREE DYNAMIC RANGE vs.
ANALOG INPUT POWER ((fin $=\mathbf{2 0 . 0 8 4 9 4 7 4 M H z) ~}$

FULL-POWER INPUT BANDWIDTH vs. ANALOG INPUT FREQUENCY, SINGLE-ENDED

SIGNAL-TO-NOISE AND DISTORTION vs. ANALOG INPUT POWER ($\mathbf{f} \mathrm{IN}=\mathbf{2 0 . 0 8 4 9 4 7 M H z}$)

INTEGRAL NONLINEARITY
(BEST ENDPOINT FIT)

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.5 \mathrm{~V}\right.$, internal reference, differential input at -0.5 dBFS , $\mathrm{f}_{\mathrm{CL}} \mathrm{K}=105.0006 \mathrm{MHz}, C_{L} \approx 10 \mathrm{pF} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SNR/SINAD, -THD/SFDR
vs. CLOCK DUTY CYCLE

ANALOG SUPPLY CURRENT vs. TEMPERATURE

GAIN ERROR vs. TEMPERATURE, EXTERNAL REFERENCE (VREFIN = 2.048V)

ANALOG POWER-DOWN CURRENT vs. ANALOG POWER SUPPLY

INTERNAL REFERENCE VOLTAGE

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Typical Operating Characteristics (continued)

$\left(V_{D D}=3.3 \mathrm{~V}, \mathrm{OV}_{\mathrm{DD}}=2.5 \mathrm{~V}\right.$, internal reference, differential input at $-0.5 \mathrm{dBFS}, \mathrm{f}_{\mathrm{CLK}}=105.0006 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}} \approx 10 \mathrm{pF} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	COM	Common-Mode Voltage Input/Output. Bypass to GND with a $\geq 0.1 \mu$ F capacitor.
$2,6,11,14,15$	VDD	Analog Supply Voltage. Bypass each supply pin to GND with a $0.1 \mu \mathrm{~F}$ capacitor. The analog supply accepts a 2.7V to 3.6V input range.
$3,7,10,13,16$	GND	Analog Ground
4	INA+	Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.
5	INA-	Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.
8	INB-	Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.
9	INB+	Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.
12	CLK	Converter Clock Input
17	T/B	T/B selects the ADC digital output format. High: Two's complement. Low: Straight offset binary.
18	SLEEP	Sleep Mode Input. High: Deactivates the two ADCs, but leaves the reference bias circuit active. Low: Normal operation.
19	PD	Power-Down Input. High: Power-down mode Low: Normal operation
20	OE	Output Enable Input. High: Digital outputs disabled Low: Digital outputs enabled

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Pin Description (continued)

PIN	NAME	FUNCTION
21	D9B	Three-State Digital Output, Bit 9 (MSB), Channel B
22	D8B	Three-State Digital Output, Bit 8, Channel B
23	D7B	Three-State Digital Output, Bit 7, Channel B
24	D6B	Three-State Digital Output, Bit 6, Channel B
25	D5B	Three-State Digital Output, Bit 5, Channel B
26	D4B	Three-State Digital Output, Bit 4, Channel B
27	D3B	Three-State Digital Output, Bit 3, Channel B
28	D2B	Three-State Digital Output, Bit 2, Channel B
29	D1B	Three-State Digital Output, Bit 1, Channel B
30	DOB	Three-State Digital Output, Bit 0 (LSB), Channel B
31, 34	OGND	Output Driver Ground
32,33	OV ${ }_{\text {DD }}$	Output Driver Supply Voltage. Bypass each supply pin to OGND with a $0.1 \mu \mathrm{~F}$ capacitor. The output driver supply accepts a 1.7 V to 3.6 V input range.
35	DOA	Three-State Digital Output, Bit 0 (LSB), Channel A
36	D1A	Three-State Digital Output, Bit 1, Channel A
37	D2A	Three-State Digital Output, Bit 2, Channel A
38	D3A	Three-State Digital Output, Bit 3, Channel A
39	D4A	Three-State Digital Output, Bit 4, Channel A
40	D5A	Three-State Digital Output, Bit 5, Channel A
41	D6A	Three-State Digital Output, Bit 6, Channel A
42	D7A	Three-State Digital Output, Bit 7, Channel A
43	D8A	Three-State Digital Output, Bit 8, Channel A
44	D9A	Three-State Digital Output, Bit 9 (MSB), Channel A
45	REFOUT	Internal Reference Voltage Output. May be connected to REFIN through a resistor or a resistor divider.
46	REFIN	Reference Input. $\mathrm{V}_{\text {REFIN }}=2 \times\left(\mathrm{V}_{\text {REFP }}-\mathrm{V}_{\text {REFN }}\right)$. Bypass to GND with a $>1 \mathrm{nF}$ capacitor.
47	REFP	Positive Reference Input/Output. Conversion range is $\pm\left(V_{\text {REFP }}-V_{\text {REFN }}\right)$. Bypass to GND with a $>0.1 \mu \mathrm{~F}$ capacitor.
48	REFN	Negative Reference Input/Output. Conversion range is $\pm\left(V_{\text {REFP }}-V_{\text {REFN }}\right)$. Bypass to GND with a $>0.1 \mu \mathrm{~F}$ capacitor.
-	EP	Exposed Paddle. Connect to analog ground.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

$V_{I N A}=$ INPUT VOLTAGE BETWEEN INA + AND INA- (DIFFERENTIAL OR SINGLE-ENDED)
$\mathrm{V}_{\text {INB }}=$ INPUT VOLTAGE BETWEEN INB + AND INB- (DIFFERENTIAL OR SINGLE-ENDED)
Figure 1. Pipelined Architecture-Stage Blocks

Detailed Description

The MAX1180 uses a nine-stage, fully-differential pipelined architecture (Figure 1), that allows for highspeed conversion while minimizing power consumption. Samples taken at the inputs move progressively through the pipeline stages every half clock cycle. Counting the delay through the output latch, the clockcycle latency is five clock cycles.
1.5 -bit (two-comparator) flash ADCs convert the heldinput voltages into a digital code. The digital-to-analog converters (DACs) convert the digitized results back into analog voltages, which are then subtracted from the original held-input signals. The resulting error signals are then multiplied by two and the residues are passed along to the next pipeline stages where the process is repeated until the signals have been processed by all nine stages. Digital error correction compensates for ADC comparator offsets in each of these pipeline stages and ensures no missing codes.

Input Track-and-Hold (T/H) Circuits

Figure 2 displays a simplified functional diagram of the input track-and-hold (T/H) circuits in both track-andhold mode. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a and S5b are closed. The fully-differential circuits sample the input signals onto the two capacitors
(C2a and C2b) through switches S4a and S4b. S2a and S2b set the common mode for the amplifier input, and open simultaneously with S 1 , sampling the input waveform. Switches S4a and S4b are then opened before switches S3a and S3b, connect capacitors C1a and C1b to the output of the amplifier, and switch S4c is closed. The resulting differential voltages are held on capacitors C2a and C2b. The amplifiers are used to charge capacitors C1a and C1b to the same values originally held on C2a and C2b. These values are then presented to the first-stage quantizers and isolate the pipelines from the fast-changing inputs. The wide input bandwidth T/H amplifiers allow the MAX1180 to track-and-sample/hold analog inputs of high frequencies (> Nyquist). Both ADC inputs (INA+, INB+, INA-, and INB-) can be driven either differentially or single-ended. Match the impedance of INA+ and INA-, as well as INB+ and INB-, and set the common-mode voltage to midsupply (VDD / 2) for optimum performance.

Analog Inputs and Reference Configurations

The full-scale range of the MAX1180 is determined by the internally generated voltage difference between REFP (VDD / $2+V_{\text {REFIN }} / 4$) and REFN (VDD / 2 Vrefin / 4).The full-scale range for both on-chip

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Figure 2. MAX1180 T/H Amplifiers

ADCs is adjustable through the REFIN pin, which is provided for this purpose.
REFOUT, REFP, COM (VDD / 2), and REFN are internally buffered low-impedance outputs.
The MAX1180 provides three modes of reference operation:

- Internal reference mode
- Buffered external reference mode
- Unbuffered external reference mode

In the internal reference mode, connect the internal reference output REFOUT to REFIN through a resistor (e.g., $10 \mathrm{k} \Omega$) or resistor divider, if an application requires

Dual 10－Bit，105Msps，3．3V，Low－Power ADC with Internal Reference and Parallel Outputs

Figure 3．System Timing Diagram
Table 1．MAX1180 Output Codes For Differential Inputs

DIFFERENTIAL INPUT VOLTAGE＊	DIFFERENTIAL INPUT	STRAIGHT OFFSET BINARY T／B＝	TWO＇S COMPLEMENT T／B＝
$V_{\text {REF }} \times 511 / 512$	+ FULL SCALE -1 LSB	1111111111	0111111111
$V_{\text {REF }} \times 1 / 512$	+1 LSB	1000000001	0000000001
0	Bipolar Zero	1000000000	0000000000
$-V_{\text {REF }} \times 1 / 512$	-1 LSB	0111111111	1111111111
$-V_{\text {REF }} \times 511 / 512$	－FULL SCALE +1 LSB	0000000001	1000000001
$-V_{\text {REF }} \times 512 / 512$	－FULL SCALE	0000000000	1000000000

${ }^{*} V_{\text {REF }}=V_{\text {REFP }}-V_{\text {REF }}$
a reduced full－scale range．For stability and noise filtering purposes，bypass REFIN with a＞10nF capacitor to GND．In internal reference mode，REFOUT，COM，REFP， and REFN become low－impedance outputs．
In the buffered external reference mode，adjust the ref－ erence voltage levels externally by applying a stable and accurate voltage at REFIN．In this mode，COM， REFP，and REFN become outputs．REFOUT may be left open or connected to REFIN through a $>10 \mathrm{k} \Omega$ resistor．
In the unbuffered external reference mode，connect REFIN to GND．This deactivates the on－chip reference buffers for REFP，COM，and REFN．With their buffers shut down，these nodes become high impedance and
may be driven through separate external reference sources．

Clock Input（CLK）
The MAX1180＇s CLK input accepts CMOS－compatible clock signals．Since the interstage conversion of the device depends on the repeatability of the rising and falling edges of the external clock，use a clock with low jitter and fast rise and fall times（＜2ns）．In particular， sampling occurs on the rising edge of the clock signal， requiring this edge to provide lowest possible jitter．Any significant aperture jitter would limit the SNR perfor－ mance of the on－chip ADCs as follows：

$$
\text { SNR }=20 \times \log _{10}\left(1 /\left[2 \pi \times \mathrm{f}_{\mathrm{I}} \times \mathrm{t} \times \mathrm{AJ}\right]\right)
$$

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

where fin represents the analog input frequency and $t_{A J}$ is the time of the aperture jitter.
Clock jitter is especially critical for undersampling applications. The clock input should always be considered as an analog input and routed away from any analog input or other digital signal lines.
The MAX1180 clock input operates with a voltage threshold set to $V_{D D} / 2$. Clock inputs with a duty cycle other than 50\%, must meet the specifications for high and low periods as stated in the Electrical Characteristics.

System Timing Requirements

Figure 3 depicts the relationship between the clock input, analog input, and data output. The MAX1180 samples at the rising edge of the input clock. Output data for channels A and B is valid on the next rising edge of the input clock. The output data has an internal latency of five clock cycles. Figure 4 also determines the relationship between the input clock parameters and the valid output data on channels A and B.

Digital Output Data, Output Data Format Selection (T/B), Output Enable (OE)

All digital outputs, D0A-D9A (Channel A) and D0B-D9B (Channel B), are TTL/CMOS logic-compatible. There is a five clock cycle latency between any particular sample and its corresponding output data. The output coding can be chosen to be either straight offset binary or two's complement (Table 1) controlled by a single pin (T/B). Pull T/B low to select offset binary and high to activate two's complement output coding. The capacitive load on the digital outputs D0A-D9A and D0B-D9B should be kept as low as possible ($<15 \mathrm{pF}$), to avoid large digital currents that could feed back into the analog portion of the MAX1180, thereby degrading its dynamic performance. Using buffers on the digital outputs of the ADCs can further isolate the digital outputs from heavy capacitive loads. To further improve the dynamic performance of the MAX1180 small-series resistors (e.g., 100Ω), add to the digital output paths, close to the MAX1180.
Figure 4 displays the timing relationship between output enable and data output valid, as well as power-down/wake-up and data output valid.

Power-Down (PD) and Sleep (SLEEP)

 ModesThe MAX1180 offers two power-save modes, sleep and full power-down mode. In sleep mode (SLEEP = 1), only the reference bias circuit is active (both ADCs are disabled) and current consumption is reduced to 2.8 mA .

Figure 4. Output Timing Diagram
To enter full power-down mode, pull PD high. With $\overline{O E}$ simultaneously low, all outputs are latched at the last value prior to the power-down. Pulling $\overline{\mathrm{OE}}$ high, forces the digital outputs into a high-impedance state.

Applications Information

Figure 5 depicts a typical application circuit containing two single-ended to differential converters. The internal reference provides a VDD / 2 output voltage for levelshifting purposes. The input is buffered and then split to a voltage follower and inverter. One lowpass filter per ADC suppresses some of the wideband noise associated with high-speed operational amplifiers. The user may select the RISO and CIN values to optimize the filter performance to suit a particular application. For the application in Figure 5, a RISO of 50Ω is placed before the capacitive load to prevent ringing and oscillation. The 22 pF CIN capacitor acts as a small bypassing capacitor.

Using Transformer Coupling

An RF transformer (Figure 6) provides an excellent solution to convert a single-ended source signal to a fully-differential signal, required by the MAX1180 for optimum performance. Connecting the center tap of the transformer to COM provides a VDD / 2 DC level shift to the input. Although a 1:1 transformer is shown, a stepup transformer may be selected to reduce the drive requirements. A reduced signal swing from the input driver, such as an op amp, may also improve the overall distortion.
In general, the MAX1180 provides better SFDR and THD with fully-differential input signals, than a singleended drive, especially for high input frequencies. In differential input mode, even-order harmonics are lower as both inputs (INA+, INA- and/or INB+, INB-) are balanced, and each of the ADC inputs only require half the signal swing compared to single-ended mode.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Figure 5. Typical Application for Single-Ended-to-Differential Conversion

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Figure 6. Transformer-Coupled Input Drive

Single-Ended AC-Coupled Input Signal

Figure 7 shows an AC-coupled, single-ended application. Amplifiers, like the MAX4108, provide high-speed, high bandwidth, low-noise, and low distortion to maintain the integrity of the input signal.

Typical QAM Demodulation Application

The most frequently used modulation technique for digital communications application is the Quadrature Amplitude Modulation (QAM). QAMs are typically found in spread-spectrum based systems. A QAM signal represents a carrier frequency modulated in both amplitude and phase. At the transmitter, modulating the baseband signal with quadrature outputs, a local oscillator followed by subsequent up-conversion can generate the QAM signal. The result is an in-phase (I) and a
quadrature (Q) carrier component, where the Q component is 90 degrees phase-shifted with respect to the inphase component. At the receiver, the QAM signal is divided down into its I and Q components, essentially representing the modulation process reversed. Figure 8 displays the demodulation process performed in the analog domain, using the dual-matched, 3V, 10-bit ADCs, MAX1180 and the MAX2451 quadrature demodulators, to recover and digitize the I and Q baseband signals. Before being digitized by the MAX1180, the mixed-down signal components may be filtered by matched analog filters, such as Nyquist or PulseShaping filters which remove any unwanted images from the mixing process, enhances the overall signal-to-noise (SNR) performance, and minimizes intersymbol interference.

Grounding, Bypassing, and Board Layout

The MAX1180 requires high-speed board layout design techniques. Locate all bypass capacitors as close to the device as possible, preferably on the same side as the ADC, using surface-mount devices for minimum inductance. Bypass $V_{D D}$, REFP, REFN, and COM with two parallel $0.1 \mu \mathrm{~F}$ ceramic capacitors and a $2.2 \mu \mathrm{~F}$ bipolar capacitor to GND. Follow the same rules to bypass the digital supply (OVDD) to OGND. Multilayer boards with separate ground and power planes, produce the highest level of signal integrity. Consider the use of a split ground plane arranged to match the physical location of the analog ground (GND) and the digital output driver ground (OGND) on the ADCs package. The two ground planes should be joined at a single point, such that the noisy digital ground currents do not interfere with the analog ground plane. The ideal location of this connection can be determined experimentally at a point along the gap between the two ground planes, which produces optimum results. Make this connection with a low-value, surface-mount resistor (1Ω to 5Ω), a ferrite bead, or a direct short. Alternatively, all ground pins could share the same ground plane, if the ground plane is sufficiently isolated from any noisy, digital systems ground plane (e.g., downstream output buffer or DSP ground plane). Route high-speed digital signal traces away from the sensitive analog traces of either channel. Make sure to isolate the analog input lines to each respective converter to minimize channel-to-channel crosstalk. Keep all signal lines short and free of 90 degree turns.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Figure 7. Using an Op Amp for Single-Ended, AC-Coupled Input Drive

Figure 8. Typical QAM Application, Using the MAX1180

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Figure 9. T/H Aperture Timing

Static Parameter Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1180 are measured using the best straight-line fit method.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step-width and the ideal value of 1LSB. A DNL error specification of less than 1LSB guarantees no missing codes and a monotonic transfer function.

Dynamic Parameter Definitions

Aperture Jitter

Figure 9 depicts the aperture jitter (tAJ), which is the sample-to-sample variation in the aperture delay.

Aperture Delay

Aperture delay (tAD) is the time defined between the falling edge of the sampling clock and the instant when an actual sample is taken (Figure 9).

Signal-to-Noise Ratio (SNR) For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error).

The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADCs resolution (N-Bits):

$$
\mathrm{SNR}_{[\max]}=6.02 \times \mathrm{N}+1.76
$$

In reality, there are other noise sources besides quantization noise; thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion (SINAD) SINAD is computed by taking the ratio of the RMS signal to all spectral components minus the fundamental and the DC offset.

Effective Number of Bits (ENOB)
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB is computed from:

$$
\mathrm{ENOB}=\frac{\mathrm{SINAD}_{\mathrm{dB}}-1.76}{6.02}
$$

Total Harmonic Distortion (THD)
THD is typically the ratio of the RMS sum of the first four harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log _{10}\left(\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right)
$$

where V_{1} is the fundamental amplitude, and V_{2} through V_{5} are the amplitudes of the 2nd- through 5th-order harmonics.

Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset.

Intermodulation Distortion (IMD)
The two-tone IMD is the ratio expressed in decibels of either input tone to the worst 3rd-order (or higher) intermodulation products. The individual input tone levels are at -6.5 dB full scale.

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

Functional Diagram

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Dual 10-Bit, 105Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES

1. ALL DIMENSIONS AND TOLERANCING CINFORM TI ANSI Y14.5-1982.
2. DATUM PLANE -H- IS LICATED AT MILD PARTING Line and CIINCident with lead, where lead exits PLASTIC BIDY AT BOTTOM OF PARTING LINE
DIMENSIONS D1 AND E1 DO NOT INCLUDE MELD PROTRUSION
ALLOWABLE MILD PROTRUSION IS 0.25 MM ON D1 AND E1 DIMENSIONS
THE TIP OF PACKAGE IS SMALLER THAN THE BITTIM IF PACKAGE BY 0.15 MILLIMETERS
3. DIMENSIIN b DIES NOT INCLUDE DAMBAR PROTRUSIIN. ALLDWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TITAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CINDITION.
TOTAL IN EXCESS DF THE 1 DIMENSION
4. ALL DIMENSIDNS ARE IN MILLIMETERS
5. THIS DUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MS-026, VARIATION ABA-HD.
. LEADS SHALL BE CDPLANAR WITHIN 0.08 MM.

OD DIMENSINS $\mathrm{X}_{\&}$ Y APPLY TO EXPOSED PAD (EP) VERSIONS ONLY. SEE INDIVIDUAL PRIDUCT DATASHEET TO DETERMINE IF A PRIDUCT USES EXPISED PAD PACKAGE.
$\triangle A$ MARKING IS FIR PACKAGE ORIENTATION REFERENCE ONLY.
6. NUMBER IF LEADS SHOWN ARE FIR REFERENCE GNLY.

$\begin{aligned} & s \\ & Y \\ & H \\ & \text { B } \\ & \text { d } \end{aligned}$	JEDEC VARIATİN		
	ABC-HD		
	MIN.	NDM.	MAX.
A	x^{2}	x	1.20
A_{1}	0.05	0.10	0.15
A_{2}	0.95	1.00	1.05
D	8.90	9.00	9.10
D_{1}	6.90	7.00	7.10
E	8.90	9.00	9.10
E_{1}	6.90	7.00	7.10
L	0.45	0.60	0.75
N	48		
e	0.50 BSC.		
b	0.17	0.22	0.27
b1	0.17	0.20	0.23
c	0.09	--	0.20
c1	0.09	--	0.16

PKG. CDDE	EXPOSED PAD VARIATIDNS					
	X			Y		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
C48E-7	3.70	4.00	4.30	3.70	4.00	4.30
C48E-8	4.70	5.00	5.30	4.70	5.00	5.30
C48E-10	3.70	4.00	4.30	3.70	4.00	4.30

[^0]| |
| :---: |
| | |
| | |

Revision History

Pages changed at Rev 1: 1-20

[^0]: -DRAWING NDT TD SCALE

