

3.0V, SOTinyTM 0.4 Ω SPDT Analog Switch

Features

· CMOS Technology for Bus and Analog Applications

• Low ON-Resistance: 0.4Ω (+2.7V Supply)

• Wide V_{DD} Range: +1.5V to +3.6V

Low Power Consumption : 5μW

· Rail-to-Rail switching throughout Signal Range

• Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 kHz

 –41dB (100kHz) Crosstalk Rejection Reduces Signal Distortion

• Extended Industrial Temperature Range: -40°C to 85°C

• Packaging (Pb-free & Green available):

- 6-pin Small Compact SOT23 (T)

Applications

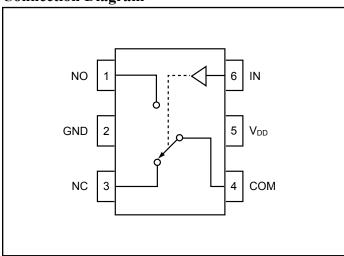
- · Cell Phones
- PDAs
- Portable Instrumentation
- · Battery Powered Communications
- · Computer Peripherals

Pin Description

Pin Number	Name	Description
1	NO	Data Port (Normally Open)
2	GND	Ground
3	NC	Data Port (Normally Closed)
4	COM	Common Output/Data Port
5	V_{DD}	Positive Power Supply
6	IN	Logic Control

Function Table

Logic Input	Function
0	NC Connected to COM
1	NO Connected to COM


Description

The PI3A3159 is a, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the PI3A3159 has an On-Resistance of 0.4Ω at 3.0V.

Control input, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3159 is a lower voltage and On-Resistance replacement for the PI5A3159.

Connection Diagram

Absolute Maximum Ratings

Voltages Referenced to GND
V _{DD} 0.5V to +3.6V
$V_{IN},V_{COM},V_{NC},V_{NO}$ (Note 1)0.5V to V_{DD} +0.3V or 30mA, whichever occurs first
Current (any terminal)±200mA
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)±400mA

Thermal Information

Continuous Power Dissipation	
SOT23-6 (derate 7.1mW/°C above +70°C)	V
Storage Temperature65°C to +150°C	\mathbb{C}
Lead Temperature (soldering, 10s)+300°C	\mathbb{C}
Note:	

1. Signals on NC, NO, COM, or IN exceeding V_{DD} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{DD} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Package	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Analog Switch								
Analog Signal Range	V _{ANALOG}			Full	0		V_{DD}	V
				25			0.4	
On Resistance	R _{ON}	$V_{DD} = 2.7V$	SOT23	- Full			0.5	
		$I_{COM} = 100 \text{mA},$	TDFN	Tull			0.6	
On-Resistance Match	A D	V_{NO} or $V_{NC} = +1.5V$		25			0.08	$]_{\Omega}$
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$			Full			0.09]
On-Resistance Flat-		$V_{DD} = 2.7V,$		25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{V}, 2.0 \text{V}$		Full			0.1	
NO or NC Off Leak-	I _{NO(OFF)} or	$V_{DD} = 3.3V, V_{COM} = 0V$		25	-1		1	
age Current ⁽⁶⁾	I _{NC(OFF)}	V_{NO} or $V_{NC} = +2.0V$		Full	-10		10	
COM On Leakage	Lagren	$V_{DD} = 3.3V, V_{COM} = +2.0V$		25	-2		2	nA
Current ⁽⁶⁾	I _{COM(ON)}	V_{NO} or $V_{NC} = +2.0V$		Full	-20		20	

- The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing. 2.
- Guaranteed by design.
- $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured. 5.
- Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{DD} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol Conditions		Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Logic Input			,				
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			v
Input Low Voltage	$V_{\rm IL}$	Guaranteed Logic LowLevel				0.5	ľ
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V		-1		1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V		-1		1	μA
Dynamic		•					
т. О. Т.			25			20	
Turn-On-Time t _{ON}	ton	$V_{DD} = 3.3 \text{V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{V},$	Full			20	
T OMT	ĺ.,	Figure 1 25				10	ns
Turn-Off-Time	t _{OFF}		Full			15	i
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega$, Figure 2	25		40		рC
Off Isolation ⁽⁴⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3			-27		dB
CrossTalk ⁽⁵⁾	X _{TALK}	$R_L = 50\Omega f = 100 \text{ KHz}$, Figure 4			-41		QB
NC or NO Capacitance	C _{NC/NO} (OFF)	f = 1MHz, Figure 5			90		
COM Off Capacitance	C _{COM(OFF)}	1 – Hvinz, Figure 3			90		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			240		
Supply							
Power-Supply Range	V_{DD}		E11	1.5		3.6	V
Positive Supply Current	I _{CC}	$V_{DD} = 3.6V$, $V_{IN} = 0V$ or V_{DD}	Full			100	nA

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. Off Isolation = $20log_{10}$ [V_{COM} / (V_{NO} or V_{NC})]. See Figure 3.
- 5. Between any two switches. See Figure 4.

Electrical Specifications - Single +2.5V Supply $(V_{DD} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{DD}	V
On-Resistance	D	$V_{DD} = 2.5V, I_{COM} = -8mA,$	25			0.5	
On-Resistance	R _{ON}	V_{NO} or $V_{NC} = 1.8V$	Full			0.55	
On-Resistance Match Be-	AD		25			0.09	Ω
tween Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{DD} = 2.5V, I_{COM} = -8mA,$	Full			0.09	1 22
On-Resistance Flatness ⁽⁵⁾	D D	V_{NO} or $V_{NC} = 0.8V$, 1.8V	25			0.02	
On-Resistance Flatness(*)	R _{FLAT(ON)}		Full			0.02	1
Dynamic							
т о т	1,	25	25			30	ns
Turn-On-Time	t _{ON}	$V_{DD} = 2.5 \text{V}, V_{NO} \text{ or } V_{NC} = 1.8 \text{V},$	Full			30	
T Off Time	1,	Figure 1	25			15	
Turn-Off-Time	t _{OFF}		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		40		рC
Logic Input							
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			.,
Input Low Voltage	V _{IL}	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{DD} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Analog Switch					'		
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V_{DD}	V
On-Resistance	R _{ON}	$V_{DD} = 1.8V, I_{COM} = -4mA,$	25			0.6	
OII-Resistance	KON	V_{NO} or $V_{NC} = 1.5V$	Full			0.6	
On-Resistance Match	$\Delta R_{ m ON}$		25			0.07	Ω
Between Channels ⁽⁴⁾	ΔΚΟΝ	$V_{DD} = 1.8V, I_{COM} = -4mA,$	Full			0.09	
On-Resistance	Dry ATIONE		25			0.8	
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.8	
Dynamic							
Turn-On-Time	.		25			50	1
Turri-On-Trine	t _{ON}	$V_{DD} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$,	Full			50	
Turn-Off-Time	4	Figure 1	25			25	ns
Turn-On-Time	t _{OFF}		Full	0 0 0 0 0 0 0 0 5 5 5 2 2	25		
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		36		pC
Logic Input					'	,	
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			T 7
Input Low Voltage	$V_{\rm IL}$	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

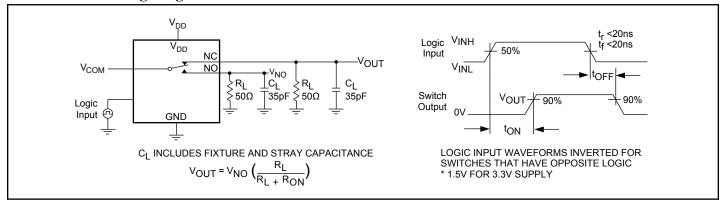


Figure 1. Switching Time

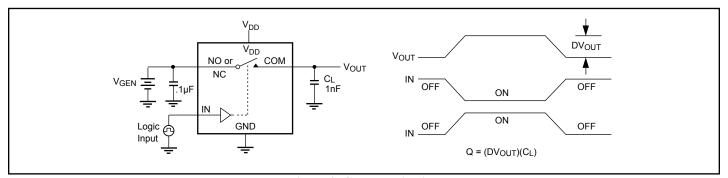


Figure 2. Charge Injection

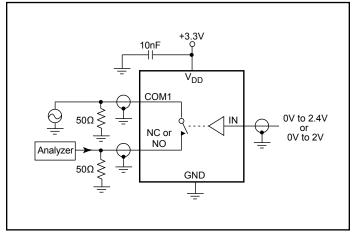


Figure 3. Off Isolation

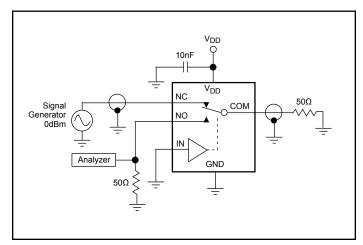


Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

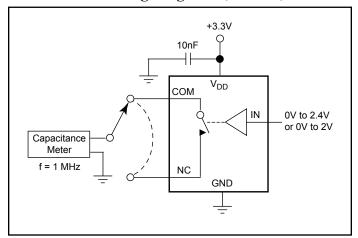


Figure 5. Channel-Off Capacitance

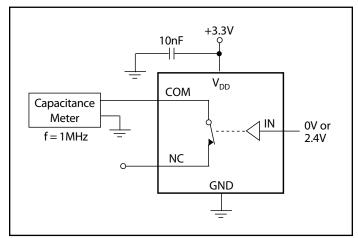
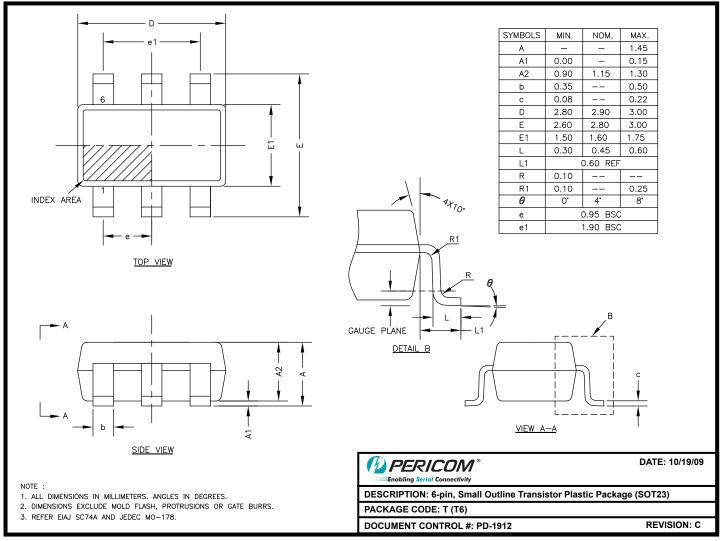



Figure 6. Channel-On Capacitance

Packaging Mechanical: 6-Pin SOT23 (T)

09-0131

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3159TEX	T	Pb-free & Green, 6-pin, SOT23	ZG

Notes:

Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/ X = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com