
BA6302A/BA6303

The BA6302A/BA6303 is a monolithic integrated circuit consisting of a sample and hold type F/V converter section, FG amplifier with hysteresis section, an error amplifier section, and an inverter section. Speed setting for motor control is achieved using externally connected RC constants, to allow a high level of freedom in setting the speed. To achieve stable start-up characteristics, a built-in high-speed start-up circuit is used.

By connecting a program counter to the FG amplifier output and F/V converter input, several types of motors can be speed controlled using a program.

Features

- Highly stable speed control is used with externally connected RC speedsetting components. A sample and hold F/V converter is used.
- 2. An FG amplifier with hysteresis is used to enable high noise immunity.
- 3. A built-in start-up circuit is used to achieve both high speed and high stability at start-up.
- 4. By using an FG program counter, multi-step speed control is possible.
- 5. Low power consumption ($V_{CC} = 9V$, $I_{CC} = 2.3\text{mA}$, typical)
- 6. Operates stably on 5V, 9V, or 12V supply
- 7. Two inverters are used for flexibility.

Applications

- 1. VTR Capstan motor speed control
- 2. VTR Drum motor speed control
- 3. VTR Reel motor speed control
- 4. Other motor speed control applications

Dimensions (mm)

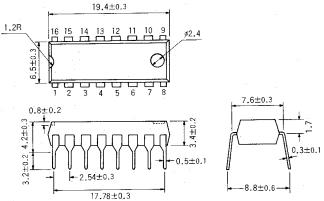
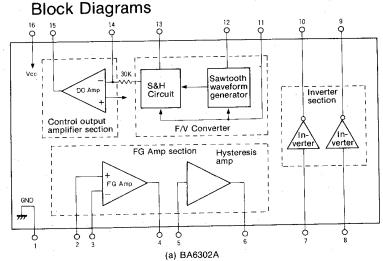



Fig. 1 Note: A mini-flat packaged type is also available upon request.

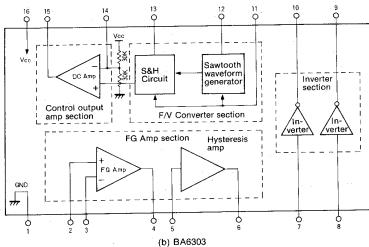


Fig. 2

Absolute Maximum Ratings (T_a = 25°C)

Parameter	Symbol	Limits	Unit		
Supply voltage	V _{CC}	15	V		
Power dissipation	Pd	450	mW		
Operating Topr		-20~+60	°C		
Storage temperature	T _{stg}	-55~+125	°C		
Inverter circuit load current	IL	10	mA		

^{*} Derating is done at $4.5 \text{mW/}^{\circ}\text{C}$ for operation above $T_a = 25 ^{\circ}\text{C}$.

Electrical Characteristics (Unless otherwise noted, $T_a = 25^{\circ}\text{C},\, V_{\rm CC} = 9.0\text{V})$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	Vcc	4.5	_	13.0	٧	
Supply current	Icc	1.6	2.3	3.0	mA	

FG Amplifier section

FG Amp DC bias voltage	V _{FGB}	1.1	1.3	1.5	٧	
FG Amp base bias current	l _{bb1}	_	80	320	nA	
FG Amp open-loop voltage gain	Avoi	65	75		dB	R_{FG} =1M Ω
FG Amp output level	V_{FGO}	2.0	2.6	3.0	V_{p-p}	$R_{FG} = 100k\Omega$
Hysteresis comparator bias current	I _{bb1}	_	600	1200	nA	
Central hysteresis voltage	V _{hym}	1.1	1.3	1.5	V	
Hysteresis width	V _{hyw}			-	mV	·
Hysteresis amplifier output level	V_{hyo}	6.5	7.3	-	V _{p-p}	$R_L = 10k\Omega$

F/V Conversion section

F/V Conversion output temperature coefficient	ΔV _{FVT}		160		ppm/°C	V _{FVO} = 4.5V
F/V Conversion output drift	ΔV_{FVO}	_	0		mV	V _{FVO} = 4.5V
Pin 12 base current	l _{bb3}	_	25	100	nA .	2 2
Pin 13 base current	l _{bb4}		15	00	nA	
F/V Conversion efficiency	∆FV	-	30	_	mV/Hz	$C_T = 0.1 \mu F R_T = 120 k\Omega$ FG = 100Hz

Control output amplifier section

DC Amp open-loop gain	G _{VO2}	49	55		dB	,
Central bias voltage	V _B	4.2	4.6	5.0	V	
DC Amp output level	V_{DCO}	6.1	6.3	_	V _{p-p}	$R_F = 30k\Omega R_L = 10k\Omega$

Inverter circuit,

Input threshold voltage	V _T	1.5		3.5	V	
Input impedance	R _{IN}	20	30		kΩ	
Output saturation voltage	V _{SAT}	_	0.2	0.3	V	$R_L = 10k\Omega V_{IN} = V_{CC}$
Output leakage voltage	IL.	T -	0	1	μΑ	$V_{CE} = 13.0V V_{IN} = 0V$