INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

Downloaded from **Elcodis.com** electronic components distributor

Semiconductors

Philips

74HC/HCT126

FEATURES

- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT126 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The HC/HCT126 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input (nOE). A LOW at nOE causes the outputs to assume a HIGH impedance OFF-state.

The "126" is identical to the "125" but has active HIGH enable inputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STWBOL	FARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	11	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	23	24	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

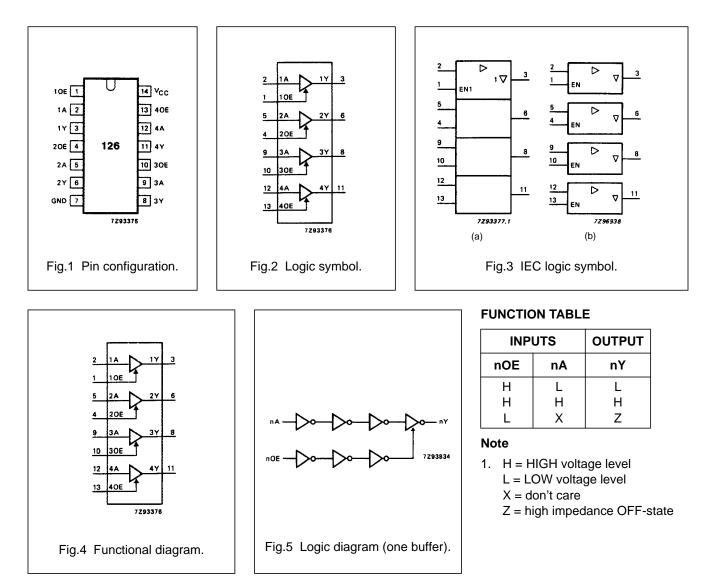
 $f_o = output frequency in MHz$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT126

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 4, 10, 13	10E to 40E	output enable inputs (active HIGH)	
2, 5, 9, 12	1A to 4A	data inputs	
3, 6, 8, 11	1Y to 4Y	data outputs	
7	GND	ground (0 V)	
14	V _{CC}	positive supply voltage	

Downloaded from Elcodis.com electronic components distributor

74HC/HCT126

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA to nY		30	100		125		150	ns	2.0	Fig.6
			11	20		25		30		4.5	
			9	17		21		26		6.0	
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		41	125		155		190	ns	2.0	Fig.7
			15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		41	125		155		190	ns	2.0	Fig.7
			15	25		31		38		4.5	
			12	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition time		14	60		75		90	ns	2.0	Fig.6
			5	12		15		18		4.5	
			4	10		13		15		6.0	

74HC/HCT126

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

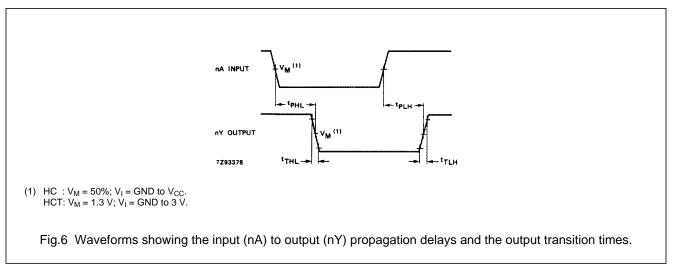
Output capability: bus driver I_{CC} category: MSI

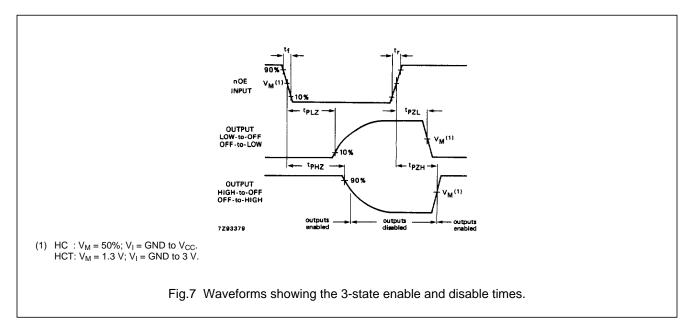
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per unit, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nOE	1.00

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	Т _{ать} (°С) 74НСТ								TEST CONDITIONS	
											WAVEFORMS
		+25			-40 to +85		-40 to +125			V _{CC} (V)	WAVEFORINS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA to nY		14	24		30		36	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY		13	25		31		38	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY		18	28		35		42	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

Downloaded from Elcodis.com electronic components distributor

74HC/HCT126

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

December 1990