HD74LS90 • Decade Counters

The HD74LS90 contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and threestage binary counter for divide-by-five. This device has a gated zero reset and also has gated set-to-nine inputs for use in BCD nine's complement applications. To use this maximum count length of this counter the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are descrived in the appropriate function table. A symmetrical divide-by-ten count can be obtained from HD-74LS90 counter by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

PIN ARRANGEMENT

BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

Item Supply voltage		Symbol	Ratings	Unit V	
		Vcc	7.0		
Supply volta _l Input voltage	R Inputs	V	7.0	v	
	A, B Inputs	Vin	5.5	v	
· · A, B		Topr	-20~+75	Ċ	
Storage temper	ature range	Tris	$-65 \sim +150$	°C	

FUNCTION TABLE Reset/Count Function Table

	Reset	Inputs			Out	puts	
R0(1)	R0(2)	R9(1)	R9(2)	Qu	Qc	QB	QA
Н	Н	L	×	L	L	L	L
Н	Н	×	L	L	L	L	L
×	×	Н	Н	Н	L	L	Н
×	L	×	L		Co	unt	
L	×	L	×		Co	unt	
L	×	×	L		Co	unt	
×	L	L	×		Co	unt	

BCD Count Sequence(Notes1) Bi-Quinary Count Sequence(Notes2)

		-								
C	Outputs				<u> </u>	Qutputs				
Count	Qu	Qc	QB	QA	Count	QA	QD	Qc	QB	
0	L	L	L	L	0	L	L	L	L	
1	L	L	L	н	1	L	L	L	н	
2	L	L	н	L	2	L	L	Н	L	
3	L	L	н	Н	3	L	L	Н	[н	
4	L	н	L	L	4	L	Н	L	L	
5	L	Н	L	Н	5	н	L	L	_ L	
6	L	Н	Н	L	6	Н	L	L	н	
7	L	Н	н	н	7	Н	L	Н	L	
8	н	L	L	L	8	Н	L	Н	Н	
9	Н	L	L	Н	9	Н	н	L	L	

Notes) 1. Output Q_A is connected to input B for BCD count. 2. Output Q_D is connected to input A for Bi-quinary count.

3. H; high level, L; low level, X; irrelevant.

ERECOMMENDED OPERATING CONDITIONS

Ite	em	Symbol	min	typ	max	Unit
Count	A input		0		32	MHz
frequency	B input	fcount	0		16	MI
Pulse width	A input	tu	15	-	-	
	B input		30	_	-	ns
	Reset inputs	1	15	-	-]
Setup time		ts u	25	_	-	ns

TIMING DEFINITION

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}C$)

	Item	Symbol		Test Conditions		min	typ*	max	Uni
		ViH				2.0	-	_	v
Input volta	age	VIL				_		0.8	v
Output voltage		Vон	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}, I_{OH} = -400 \mu \text{A}$				_	-	v
		.,			$Io_L = 4mA^{**}$	-		0.4	
	V_{OL} $V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}$ $I_{OL} = 8 \text{mA}^{**}$			-	0.5	v			
	Any Reset	-						-0.4	
	A input	IIL	$V_{CC}=5.25\mathrm{V}, V_{l}=0.4\mathrm{V}$	$V_l = 0.4 V$	—	_	-2.4	mA	
	B input	-					-	-3.2	
Any Reset						-	20		
Input current	A input	Іін	$V_{CC} = 5.25 \text{V}, V_l = 2.7 \text{V}$			-	-	40	μA
	B input				-	-	80		
	Any Reset			$V_i = 7 V$	-	-	0.1		
	A input	- Iı	$V_{cc} = 5.25 V$	$V_{i} = 5.5V$		-	_	0.2	mA
	B input			-	-	0.4			
Short-cir	cuit output current	los	$V_{CC} = 5.25 V$			- 20	_	-100	m A
Supply cu	rrent * * *	Icc	$V_{CC} = 5.25 V$			-	9	15	mA
nput clan	np voltage	Vik	$V_{cc} = 4.75V$,	$I_{IN} = -18 \text{mA}$		_	_	-1.5	v

* V_{CC} =5V, Ta=25°C ** Q_A output is tested at specified I_{OL} plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan out capability.

*** I_{CC} is measured with all outputs open, both R_0 inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

ESWITCHING CHARACTERISTICS ($V_{cc} = 5V$, $T_a = 25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
M		Α	QA		32	42	-	MIL
Maximum count frequency	fmax	В	QB		16	-	_	MH2
	tplh	A			_	10	16	
	tphl.	A	QA		-	12	18	ns
	tPLH	В	0		-	32	48	ns
	tPHL .	Б	QD	$C_L = 15 \mathrm{pF},$	_	34	50	
	tplH	В	Qв		-	10	16	ns
	I PHL				-	14	21	
Propagation delay time	tplh	В	0.	CL = 15 pr, $R_L = 2 \text{k} \Omega$	$ \begin{array}{c ccccc} - & 21 & 32 \\ - & 23 & 35 \\ \end{array} $	32		
	tPHL.	D	Qc	$RL = 2K \Omega$		35	i n:	
	I PLH	В			-	21	32	
	I PHL	D	Q₽		-	23	35	ns
	t PHL	Set-to-0	QA~QD			26	40	ns
	t PLH	Set-to-9	QA, QD		-	20	30	
	t PHL	Set-10-9	QB, QC		-	26	40	ns

OHITACHI

TESTING METHOD

Notes) 1. Input pulse; $t_{TLH} \leq 15$ ns. $t_{THL} \leq 6$ ns, PRR=1 MHz, duty cycle=50% C_L includes probe and jig capacitance.
 All diodes are 1S2074 ①.

Waveform-1 f=ar, tPLH, tPHL(Clock→Q)

2) Testing Table

	From input		Inp	uts		Outputs					
Item	to output	A	В	Ro	R9	QA	Qв	Qc	Qυ		
_	A→Q	IN	to Qa	GND	GND	Out	Out	Out	Out		
fmax	B→Q	4.5V	IN	GND	GND	_	Out	Out	Out		
	A→QA	IN	to QA	GND	GND	Out		-	-		
	A→Qn	IN	to QA	GND	GND	—	-	-	Out		
	B→Q _B	4.5V	IN ·	GND	GND	_	Out		-		
ŧ₽LH	B→Qc	4.5V	IN	GND	GND	_	-	Out	-		
tPHL.	B→QD	4.5V	IN	GND	GND	_	-	_	Ou		
	Rð≁Q	IN*	to QA	IN	GND	Out	Out	Out	Ou		
	R∮≛→Q	IN*	to QA	GND	IN	Out	Out	Out	Ou		

*; For initialized

**; Measured with each input and unused inputs at 4.5V.

Waveform-2 tPHL(Ro→Q)

Waveform-3 tplh. tphl(R4→Q)

O HITACHI

HITACHI/ LOGIC/ARRAYS/MEM 29E D 🗰 4496203 0014913 0 🗰

PACKAGING INFORMATIONS

Factory orders for circuits described in this databook should include a three-part type number as explained in the following example.

-20

Plastic DIP

20 Pin

HITACHI

Hitachi America Ltd. • 2210 O'Toole Ave. • San Jose, CA 95131 • (408) 435-8300

11

HITACHI/ LOGIC/ARRAYS/MEM 29E D

4496203 0014914 2 🔳

T-90-20

PACKAGING INFORMATIONS

12

HITACHI

Hitachi America Ltd. • 2210 O'Toole Ave. • San Jose, CA 95131 • (408) 435-8300