Features

Patent Number: 86474, 113235(R.O.C.), 5424740(U.S.A.)

- Universal specification
- Operating voltage: 2.0V~5.5V
- Low standby current
- Low memory retention current: 0.1µA (Typ.)
- Tone/pulse switchable
- Interface with LCD driver
- 32 digits for redialing
- Pause and $P \rightarrow T$ key for PBX
- 4×5 keyboard matrix
- Pulse rate control

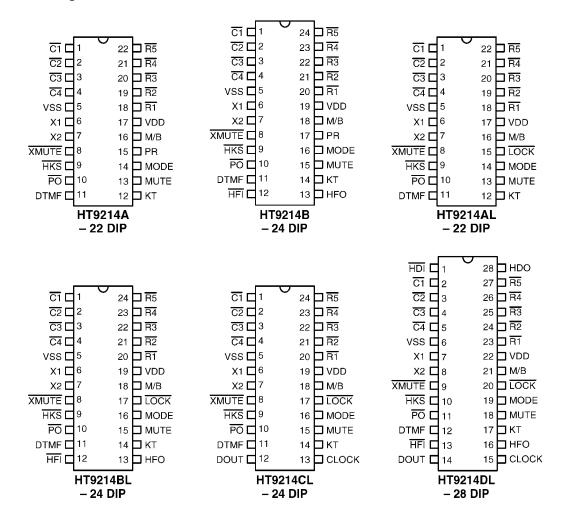
- Make/Break ratio control
- 3.58MHz crystal or ceramic resonator
- Hand-free control
- Hold-line control
- Pause, $P \rightarrow T$ can be saved for redialing
- Keytone function
- Lock function
- Auto switching from pulse mode to tone mode in EM4
- Memory number: 15 memories

General Description

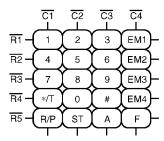
The HT9214 series tone/pulse dialers are CMOS LSIs for telecommunication systems.

The HT9214 series are offered in various packages from 22-pin DIP to 28-pin DIP. The 22-pin DIP version is suitable for low cost applications, while the 28-pin DIP version has versatile functions such as: Hold-line, Hand-free, IDD lock

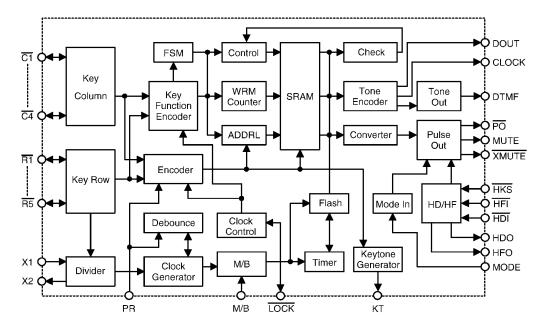
and LCD dialing number display interface, all of which are suitable for feature phone applications


The HT9214 provides Redial, 4 one-touch and 10 two-touch memory dials for speed dialing in either pulse or tone mode.

Selection Table


Function	Memory Dialing	Hold- Line	Hand- Free		Flash Function	Flash Time (ms)	Pulse No.	Tone Duration (ms)	Inter- Tone-Pause (ms)	Lock Function	Package	Note
HT9214A	R/P EM1~EM4 M0~M9	-	ı	_	Control	98/600	N	91	91	1	22 DIP	_
HT9214B	R/P EM1~EM4 M0~M9	_	√	_	Control	98/600	N	91	91	_	24 DIP	_
HT9214AL	R/P EM1~EM4 M0~M9	_		_	Control	98/600	N	91	91	√	22 DIP	PR=1
HT9214BL	R/P EM1~EM4 M0~M9	_	√	_	Control	98/600	N	91	91	√	24 DIP	PR=1
HT9214CL	R/P EM1~EM4 M0~M9	_		√	Control	98/600	N	91	91	√	24 DIP	PR=1
HT9214DL	R/P EM1~EM4 M0~M9	√	√	V	Control	98/600	N	91	91	√	28 DIP	PR=1

Pin Assignment



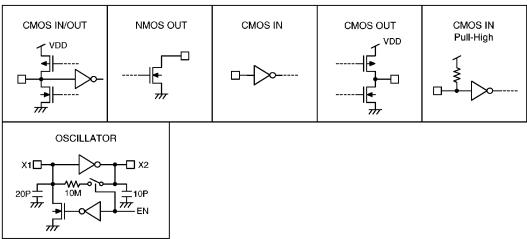
Keyboard Information

Block Diagram

Pin Description

Pin Name	1/0	Internal Connection	Description		
$\frac{\overline{\text{C1}} \sim \overline{\text{C4}}}{\overline{\text{R1}} \sim \overline{\text{R5}}}$	I/O	CMOS IN/OUT	These pins form a 4×5 keyboard matrix which can perform keyboard input detection. When on-hook (\overline{HKS} = high) all the pins are set high. While off-hook the column group ($\overline{C1}$ ~ $\overline{C4}$) remains low and the row group ($\overline{R1}$ ~ $\overline{R5}$) is set high for key input detection. An inexpensive single contact 4×5 keyboard can be used as an input device. Pressing a key connects a single column to a single row, and actuates the system oscillator that results in a dialing signal output. If more than two keys are pressed at the same time, no response occurs. The key-in debounce time is 20 ms. Refer to the keyboard information for keyboard arrangement and to the functional description for dialing specification selection.		
X1	I	OSCILLATOR	The system oscillator consists of an inverter, a bias resistor and the necessary load capacitor on chip. Connecting a standard 3.579545MHz crystal or ceramic resonator to the X1		
X2 O OSCILLATOR			and X2 terminals can implement the oscillator function oscillator is turned off in the standby mode, and is actually whenever a keyboard entry is detected.		

Pin Name	I/O	Internal Connection	Description
XMUTE	0	CMOS OUT	XMUTE is a CMOS output structure pulled to VSS during dialing signal transmission. Otherwise, it remains "high". XMUTE is used to mute the speech circuit when transmitting the dial signal.
IIKS	I CMOS IN Pull-High		This pin is used to monitor the status of the hook-switch and its combination with \overline{HFI} can control the \overline{PO} pin output to make or break the line. $\overline{HKS}=VDD$: On-hook state ($\overline{PO}=low$). Except $\overline{HFI/HDI}$ (hand-free/hold-line control input), other functions are all disabled. $\overline{HKS}=VSS$: Off-hook state ($\overline{PO}=high$). The chip is in the standby mode and ready to receive the key input.
PO	0	CMOS OUT	$\begin{array}{ c c c c c }\hline This \ pin \ is \ a \ CMOS \ output \ structure \ which \ by \ receiving \ the \\\hline \hline HKS \ and \ HFO \ signals, \ control \ the \ dialer \ to \ connect \ or \\\hline \hline disconnect \ the \ telephone \ line. \\\hline \hline PO \ outputs \ a \ low \ to \ break \ the \ line \ when \ \overline{HKS} \ is \ high \ (on-hook) \\\hline and \ HFO \ is \ low \ (hand-free \ inactive). \ \overline{PO} \ outputs \ a \ high \ to \\\hline make \ the \ line \ when \ \overline{HKS} \ is \ low \ (off-hook) \ or \ HFO \ is \ high \ or \\\hline HDO \ is \ high. \\\hline During \ the \ off-hook \ state, \ this \ pin \ also \ outputs \ the \ dialing \\\hline pulse \ train \ in \ pulse \ mode \ dialing. \ While \ in \ the \ tone \ mode, \ this \\\hline pin \ is \ always \ high. \\\hline \end{array}$
MODE	I	CMOS IN	This is an input pin, used for dialing mode selection either Tone mode or Pulse mode. MODE=VDD: Pulse mode MODE=VSS: Tone mode During pulse mode dialing, switching this pin to the tone mode changes the subsequent digit entry to tone mode. When the chips are in tone mode, switching to pulse mode will also be recognized.
MUTE	О	CMOS OUT	MUTE is a CMOS output structure pulled to VDD during Tone (DTMF) output transmission. Otherwise, it continuously remains "low".
DTMF	0	CMOS OUT	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs a low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor should not be less than $5k\Omega$.
HDI	I	CMOS IN Pull-High	This pin is a schmitt trigger input structure. Active low. Applying a negative going pulse to this pin can toggle the HDO output once. An external RC network is recommended for input debouncing. The pull-high resistance is $200 k\Omega$ typ.



Pin Name	1/0	Internal Connection		Description						
HDO	О	CMOS OUT	The HDO is a CMOS output structure. Its output is toggle-controlled by a negative transition on \overline{HDI} . When HDO is toggled high, \overline{PO} keeps high to hold the line. The hold function can be released by setting HFO high or by an on-off-hook operation or by another \overline{HDI} input. The HDO pin can directly drive the HT3810 series melody generators to produce a hold-line background melody. Refer to the functional description for the hold-line function.							
। सहा	I	CMOS IN Pull-High	This pin is a schmitt trigger input structure. Active low. Applying a negative going pulse to \overline{HFI} can toggle HFO once and hence control the hand-free function. The pull-high resistance of \overline{HFI} is $200k\Omega$ typ. An external RC network is recommended for input debouncing.							
НГО	0	CMOS OUT	The HFO is a CMOS output structure. Its output is toggle-controlled by a negative transition on the \overline{HFI} pin. When HFO is high, the hand-free function is enabled and \overline{PO} outputs a high to connect the line. The hand-free function \overline{can} be released by an on-off-hook operation or by another \overline{HFI} input or by setting HDO high. Refer to the functional description for the hand-free functional operation.							
DOUT	О	NMOS OUT	NMOS open drain out dialing digits to the LO μC for dialing num description for the det	CD driv ber di	er chi splay.	p (HT16) Refer	XX series	s) or to the		
CLOCK	О	NMOS OUT	NMOS open drain out pulse trains for DOU valid at the falling ed	T data	synch	ironizati				
KT	О	CMOS OUT	Keytone output pin. C key is pressed in the p pressed in the Tone (I	ulse m	ode or	$_{ m when}$ $_{ m th}$				
				Select	ion tal	ole				
M/B	I	CMOS IN	Make/Break ratio selection pin	M/B Pin		M/B Rate	Flash Time	Pulse Rate		
				1	1	2:3	600ms	10pps		
				0	1	1:2	98ms	10pps		
PR	I	CMOS IN	Pulse rate selection	0	0	1:2	600ms	20pps		
	Pull-High pin			1	0	IC t	testing m	ıode		

Pin Name	I/O	Internal Connection	Description
TEST	I	CMOS IN	For IC test only. $\overline{\text{TEST}} = \text{VDD}$ for normal operation
LOCK	I/O	CMOS IN/OUT	This is a three-state input-output pin, used for controlling long distance call function with a lock-switch LOCK=OPEN: Normal dialing LOCK=VDD: "0, 9" is inhibited for use as the first key input LOCK=VSS: "0" is inhibited for use as the first key input
VDD	I	_	Positive power supply, 2.0V~5.5V for normal operation
VSS	I		Negative power supply

Approximate internal connection circuits

Absolute Maximum Ratings*

Supply Voltage0.3V to 6V	Storage Temperature $-50 ^{\circ}\mathrm{C}$ to $125 ^{\circ}\mathrm{C}$
Input Voltage Vss-0.3 to Vpp+0.3V	Operating Temperature20°C to 75°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(F_{OSC}=3.5795MHz, Ta=25^{\circ}C)$

Symbol	Parameter		Test C	onditions	Min.	Тур.	Max.	Unit
Зушьо г	rarameter	$\mathbf{V_{DD}}$	C	Conditions		Typ.	Max.	Omi
$v_{ m DD}$	Operating Voltage	_	_		2	_	5.5	V
${ m I_{DD}}$	Operating Current	2.5V	Pulse	Off-hook Keypad entry	_	0.2	1	mA
			Tone	No load		0.6	2	mA
I_{STB}	Standby Current	1V	On-hoo No ent	ok, no load ry	_	_	1	μA
$ m V_R$	Memory Retention Voltage	_		_	1	_	5.5	v
$I_{ m R}$	Memory Retention Current	1V	On-ho	ok	_	0.1	0.2	μΑ
v_{IL}	Input Low Voltage			_	V_{SS}		$0.2 V_{ m DD}$	v
V_{IH}	Input High Voltage	_		_	$0.8V_{ m DD}$	_	V_{DD}	V
I_{OHXM}	Mute Pin Source Current (XMUTE, MUTE)	2.5V	V _{OH} =2V		-1		_	mA
I_{OLXM}	Mute Pin Sink Current (XMUTE, MUTE)	2.5V	V V _{OL} =0.5V		1	_	_	mA
$I_{\overline{HKS}}$	HKS Pin Input Current	2.5V	V _{HKS} =2.5V		_	_	0.1	μΑ
$R_{\overline{H}\overline{F}\overline{I}}$	HFI Pull-High Resistance	2.5V	V _{HFI} =0V		_	200	_	$\mathbf{k}\Omega$
$R_{\overline{H}\overline{D}\overline{I}}$	HDI Pull-High Resistance	2.5V	$V_{\overline{ m HDI}}=$	0V	_	200	_	$\mathbf{k}\Omega$
$R_{\overline{HKS}}$	HKS Pull-High Resistance	2.5V	$V_{\overline{HKS}}$ =	:0V	_	1	_	$\mathbf{M}\Omega$
$T_{\rm F1}$	Flash Time for F Key	_	M/B=V	SS, PR=VDD	_	98	_	$\mathbf{m}\mathbf{s}$
T_{F2}	Flash Time for F Key		M/B=V	DD, PR=VDD		600		ma
1 F2	riasii Time for r Key		M/B=VSS, PR=VSS		_	000	_	ms
I_{OH1}	Keypad Pin Source Current	2.5V	V _{OH} =0	V	-4	_	-40	μΑ
I_{OL1}	Keypad Pin Sink Current	2.5V	V _{OL} =2	.5V	200	400	_	μΑ
$I_{ m OH2}$	HFO Pin Source Current	2.5V	V _{OH} =2	2V	-1	_		mA
I_{OL2}	HFO Pin Sink Current	2.5V	V _{OL} =0	.5V	1	_	_	mА
I_{OH3}	HDO Pin Source Current	2.5V	V _{OH} =2	2V	-1	_	_	mA
I_{OL3}	HDO Pin Sink Current	2.5V	V _{OL} =0	.5V	1	_	_	mА
$\mathrm{T_{FP}}$	Pause Time After Flash	_	Control key		_	0.2	_	s
T_{DB}	Key-in Debounce Time	_		_	_	20	_	ms
T_{KTD}	Keytone Delay	_	_		_	20	_	ms
T_{KTR}	Keytone Release	_			_	20	_	ms
F_{OSC}	System Frequency	_	Crysta	l=3.5795MHz	3.5759	3.5795	3.5831	MHz

Pulse Mode Electrical Characteristics

 $(F_{OSC}=3.5795MHz, Ta=25^{\circ}C)$

Cromb al	Parameter	1	Cest Conditions	Min.	Т	Max.	Unit
Symbol			Conditions	141111.	Тур.	Max.	Omt
I_{POH}	PO Output Source Current	2.5V	V _{OH} =2V	-0.2	_	_	mA
${ m I}_{ m POL}$	PO Output Sink Current	2.5V	V _{OL} =0.5V	0.2	0.6	_	mA
PR	Pulse Rate		PR pin is connected to VDD	_	10	_	pps
T IV	I uise nate		M/B=VSS, PR=VSS		20	_	pps
M/B	Make/Break Ratio		M/B=VSS	_	33:66	_	%
IVI/D	Make/Dreak Ratio	_	M/B=VDD	_	40:60	_	70
m	Dua di sit manga Tima		M/B ratio=40:60	_	40 (10pps)	_	
${ m T}_{ m PDP}$	Pre-digit-pause Time	_	M/B ratio=33:66	_	33 (10pps) 17 (20pps)	_	ms
Т тъ ъ	Inton digit name Time		Pulse rate=10pps	_	800	_	ms
$\mathrm{T}_{\mathrm{IDP}}$	Inter-digit-pause Time	_	Pulse rate=20pps	_	600	_	ms
т.,	Pulse Make Duration		M/B ratio=33:66		33 (10pps) 17 (20pps)	_	ma
T_{M}	ruise make Duration		M/B ratio=40:60	_	40 (10pps)	_	ms
m_	Polos Possili Donetis		M/B ratio=33:66	_	66 (10pps) 33 (20pps)	_	
\mathbf{T}_{B}	Pulse Break Duration	_	M/B ratio=40:60	_	60 (10pps)	_	ms

Tone Mode Electrical Characteristics

(Fosc=3.5795MHz, Ta=25°C)

Symbol	Parameter	, ·	Test Conditions	Min.	Tem	Max.	Unit	
Symbol	rarameter	$\mathbf{V_{DD}}$	Conditions	WIIII.	Тур.	Max.		
V_{TDC}	DTMF Output DC Level			$0.45 \mathrm{V}_{\mathrm{DD}}$	_	$0.7V_{ m DD}$	v	
I_{TOL}	DTMF Sink Current	2.5V	V_{DTMF} =0.5 V	0.1	_	_	mA	
V_{TAC}	DTMF Output AC Level	_	Row group, R _L =5kΩ	0.12	0.155	0.18	Vrms	
$R_{ m L}$	DTMF Output Load	2.5V	THD≤–23dB	5	_	_	$\mathbf{k}\Omega$	
\mathbf{A}_{CR}	Column Pre-emphasis	2.5V	Row group=0dB	1	2	3	dB	
THD	Tone Signal Distortion	2.5V	$R_L=5k\Omega$		-30	-23	dB	
T _{TMIN}	Minimum Tone Duration	_	Auto-redial	_	91	_	ms	
T_{ITPM}	Minimum Inter-tone Pause	_	Auto-redial	_	91	_	ms	

THD (Distortion) (dB) = $20 \log (\sqrt{V1^2 + V2^2 + ... + Vn^2} / \sqrt{Vi^2 + Vh^2})$

Vi, Vh: Row group and column group signals

V1, V2, ... Vn: Harmonic signals (BW=300Hz~3500Hz)

Functional Description

Keyboard matrix

 $\overline{C1}\sim\overline{C4}$ and $\overline{R1}\sim\overline{R5}$ form a keyboard matrix. Together with a standard 4×5 keyboard, the keyboard matrix is used for dialing entries. The keyboard arrangement for the HT9214 series is shown in the **Keyboard Information**.

Tone frequency

Tone Name	Output Free	% Error	
Tone Name	Specified	Actual	% Error
R1	697	699	+0.29%
R2	770	766	-0.52%
R3	852	847	-0.59%
R4	941	948	+0.74%
$\overline{\text{C1}}$	1209	1215	+0.50%
$\overline{\text{C2}}$	1336	1332	-0.30%
<u>C3</u>	1477	1472	-0.34%

9

Note: % Error does not contain the crystal frequency drift

M/B ratio selection table

M/B Pin	PR Pin	M/B Ratio (%)
VDD	VDD	40:60
VSS	_	33:66
VDD	VSS	Test Mode

Flash function/time (duration) selection table

M/B Pin	PR Pin	Flash Function	Flash Time (T _F)		
VSS	VDD	Control	98ms		
VSS	VSS	Control	$600 \mathrm{ms}$		
VDD	VDD	Control	$600 \mathrm{ms}$		
VDD	VSS	Test Mode			

Pause and P→T duration table

T _P (sec)	$T_{P o T}$ (sec)	
3.6	3.6	

Pulse number table

Keypad	Output Pulse Number	
Digit Key	Normal N	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
0	10	
*/T	$P{ ightarrow}T$	
#	Ignored	

Tone duration and pause in redial function

Parameter	Symbol	Тур.	Unit
Minimum Tone Duration	${ m T_{TMIN}}$	91	ms
Minimum Inter- tone Pause	T_{ITPM}	91	ms
Cycle Time	T_{C}	182	ms

Hand-free function operation

- Hand-free function execution
 When HFO is low, a falling edge triggers the HFI, enabling the Hand-free function (HFO becomes high).
- Reset Hand-free function
 When HFO is high, the Hand-free function is enabled and can be reset by:
 - Off-hook
 - Applying a falling edge to $\overline{\text{HFI}}$
 - Changing the HDO pin from low to high

• Hand-free function table

Cur	rent S	tate	Input		Next State		
HKS	HFO	HDO	HDI	HFI	HKS	HFO	HDO
Н	L	X	Н	Н	An	L	An
Н	L	X	Н	₹	An	Н	L
Н	Н	X	Н	₽	An	L	An
Н	X	L	Н	Н	L	L	L
L	L	X	Н	Н	An	L	An
L	L	X	Н	₹	An	Н	L
L	н	L	Н	¥	An	L	An
L	X	X	Н	Н	Н	An	An
X	X	L	₹	Н	An	L	Н

H: Logic HIGH X: Don't care
L: Logic LOW An: Unchanged

∫: Rising edge ↓: Falling edge

Hold-line function operation

Hold-line function execution
 When HDO is low, a falling edge triggers HDI,
 enabling the Hold-line function (HDO becomes high). The XMUTE remains low when

 Reset Hold-line function
 When HDO is high, the Hold-line function is enabled and can be reset by:

• Off-hook

HDO is high.

- Applying a falling edge to $\overline{\text{HDI}}$
- · Changing the HFO pin from low to high

• Hold-line function table

Cur	rent S	tate		Input		Next	State
HKS	HDO	HFO	HFI	HDI	HKS	нро	нго
Н	L	X	Н	Н	An	L	An
Н	L	X	Н	¥	An	Н	L
Н	Н	L	Н	₽	An	L	An
Н	X	X	Н	Н	L	L	L
L	L	X	Н	Н	An	L	An
L	L	X	Н	₽	An	н	L
L	Н	L	Н	Ł	An	L	An
L	X	X	Н	Н	Н	An	An
X	X	L	₽	Н	An	L	Н

H: Logic HIGH L: Logic LOW X: Don't care An: Unchanged ★: Rising edge↓: Falling edge

DOUT BCD code

When dialing, the corresponding 4-bit BCD codes are serially presented on DOUT from MSB to LSB. The data of DOUT is valid at the falling edge of the CLOCK pin.

The following table lists the BCD codes corresponding to the keyboard input.

Key-In	BCD Code	Key-In	BCD Code
1	0001	8	1000
2	0010	9	1001
3	0011	0	1010
4	0100	*/T	1101
5	0101	#	1100
6	0110	F	1011
7	0111	P	1110

Key definition

• 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operations.

• */T

This key executes the $P \rightarrow T$ function and waits a $T_{P \rightarrow T}$ duration in the pulse mode. On the other hand, the */T key executes the * function in the tone mode.

• #

This is a dialing signal key for the tone mode only, no response in the pulse mode.

• R/P

Redial and pause function key. If it is pressed as the first key after off-hook, this key executes the redial function. Otherwise, it works as the pause key.

• ST

Store key. The execution of this key actuates the store memory function with (or without) dialing output. During the dialing signal transmission, the ST key is inhibited.

• F

The flash key is a control key. Pressing the F key will force the \overline{PO} pin to be "low" for the T_F duration and is then followed by T_{FP} (sec).

M/B Pin	PR Pin	Flash Time
VSS	VDD	98ms
VSS	VSS	600ms
VDD	VDD	$600 \mathrm{ms}$

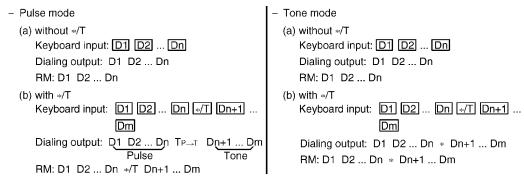
• EM1~EM3

One-touch memory dialing key. For speed-calling convenience, they provide memory dialing in either pulse or tone mode.

• EM4

The EM4 is a special memory dialing for automatic switching function from pulse to tone (DTMF) mode if the dialing contents include P key (to see the keyboard operation). Otherwise the EM4 speed dialing is the same as EM1~EM3.

• A


Auto key. When this key is pressed before pressing any of the digital keys (0~9) it executes the two-touch memory dialing function.

Keyboard operation

All of the following operations are described under on-off-hook or on-hook condition with the hand-free active condition.

· Normal dialing

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits are entered, the signal is transmitted but the redial function is inhibited.

Tone mode

(a) without */T

Redial

- Pulse mode

 (a) without */T

 RM content: D1 D2 ... Dn

 Keyboard input: R/P

 Dialing output: D1 D2 ... Dn

 RM: Unchanged

 (b) with */T

 RM content: D1 D2 ... Dn */T Dn+1 ... Dm

 Keyboard input: R/P

 Dialing output: Q1 D2 ... Dn TP→T Dn+1 ... Dm

 Pulse Tone

 RM: Unchanged
- Keyboard input: R/P
 Dialing output: D1 D2 ... Dn
 RM: Unchanged

 (b) with */T
 RM content: D1 D2 ... Dn */T Dn+1 ... Dm
 Keyboard input: R/P
 Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
 RM: Unchanged

RM content: D1 D2 ... Dn

· Memory store

- One-touch memory store (EM1~EM4)
 - (a) without dialing output

Keyboard input: ST D1 D2 ... Dn ST EMa

Dialing output: EMa: D1 D2 ... Dn

RM: D1 D2 ... Dn

(b) with dialing output

Keyboard input: D1 D2 ... Dn ST ST EMa

Dialing output: D1 D2 ... Dn EMa: D1 D2 ... Dn

RM: D1 D2 ... Dn

Note: If the dialing number exceeds 32 digits, the memory store is inhibited.

However, if the dialing number is not more than 32 digits the memory will store a max. of 16 digits \cdot

EMa=EM1~EM4, Ma=M0~M9, a=0~9

· Memory dialing

- One-touch memory dialing (EM1~EM3)

EMa content: D1 D2 ... Dn Keyboard input: EMa Dialing output: D1 D2 ... Dn

EMa: Unchanged RM: D1 D2 ... Dn

- One-touch memory dialing (EM4) with P key

in the pulse mode

EM4 content: D1 D2 ... Dn P Dn+1 ... Dm

Keyboard input: EM4

Dialing output: $\underbrace{D1\ D2\dots Dn}_{Pulse}\ T_{P\to T}\ \underbrace{Dn+1\dots Dm}_{Tone}$

EM4: Unchanged RM: D1 D2 ... Dn

Note: EMa=EM1~EM3, Ma=M0~M9, a=0~9

The EM4 memory dialing is the same as EM1~EM3 in the tone (DTMF) mode.

14

One-touch memory dialing (EM4) without P key in the pulse mode

Keyboard input: ST D1 D2 ... Dn ST a

Keyboard input: D1 D2 ... Dn ST ST a

EM4 content: D1 D2 ... Dn Dn+1 ... Dm

Keyboard input: EM4

Dialing output: D1 D2 ... Dn Dn+1 ... Dm

3rd Dec '97

EM4: Unchanged

- Two-touch memory store

(a) without dialing output

Ma: D1 D2 ... Dn

RM: D1 D2 ... Dn

Ma: D1 D2 ... Dn

RM: D1 D2 ... Dn

Dialing output: D1 D2 ... Dn

Dialing output:

(b) with dialing output

RM: D1 D2 ... Dn Dn+1 ... Dm

Two-touch memory dialing (M0~M9)

Ma content: D1 D2 ... Dn

Keyboard input: A a

Dialing output: D1 D2 ... Dn

Ma: Unchanged RM: D1 D2 ... Dn

· Chain dialing

EM1 content: D1 D2 ... Dn EM2 content: Dn+1 ... Dm M1 content: Dm+1 ... Dl M2 content: Dl+1 ... Dk

Keyboard input: D1 D2 D3 A 1 A 2 EM1 EM2

Dialing output: D1 D2 D3 Dm+1 ... DI DI+1 ... Dk D1 D2 ... Dn Dn+1 ... Dm

EM1/EM2/M1/M2: Unchanged

RM: D1 D2 D3 Dm+1 ... DI DI+1 ... Dk D1 D2 ... Dn Dn+1 ... Dm

Note: The maximum capacity of the RM memory is 32 digits. When the dialing number exceeds 32 digits, redialing is inhibited and $\overline{PO}=VDD$

Flash

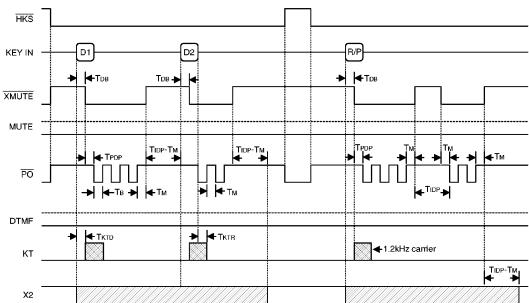
Keyboard input: D1 D2 ... Dn F Dn+1 ... Dm Dialing output: D1 D2 ... Dn TF TFP Dn+1 ... Dm RM: Dn+1 ... Dm

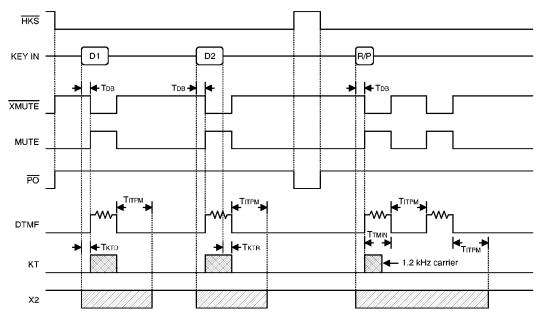
Note: Tr: break a flash time

Pause

Keyboard input: D1 D2 ... Dn R/P Dn+1 ... Dm Dialing output: D1 D2 ... Dn TP Dn+1 ... Dm RM: D1 D2 ... Dn P Dn+1 ... Dm

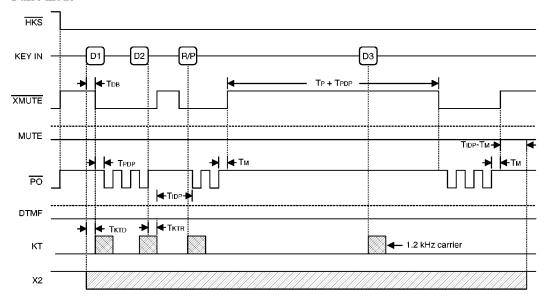
Note

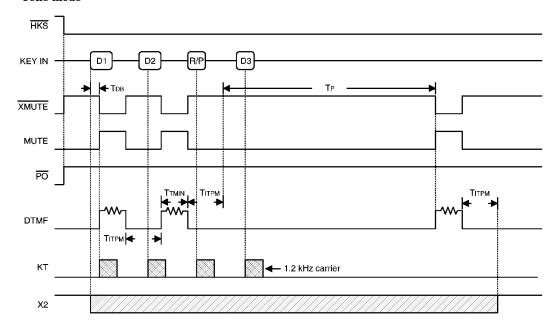

RM: Redial memory D1 D2 ... Dn: 0~9 Dn+1 ... Dm: 0~9, *, # Dm+1 ... Dl: 0~9, *, # Dl+1 ... Dk: 0~9, *, #


Timing Diagrams

Normal dialing

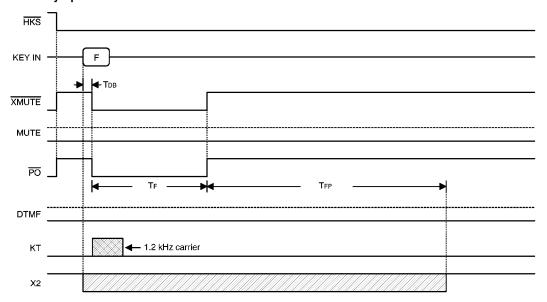
• Pulse mode


• Tone mode

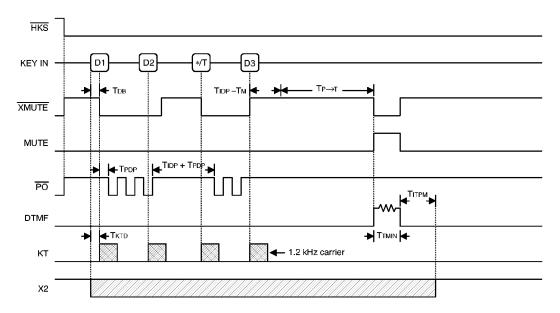


Dialing with pause key

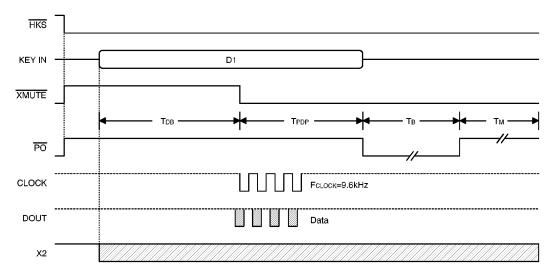
• Pulse mode



• Tone mode

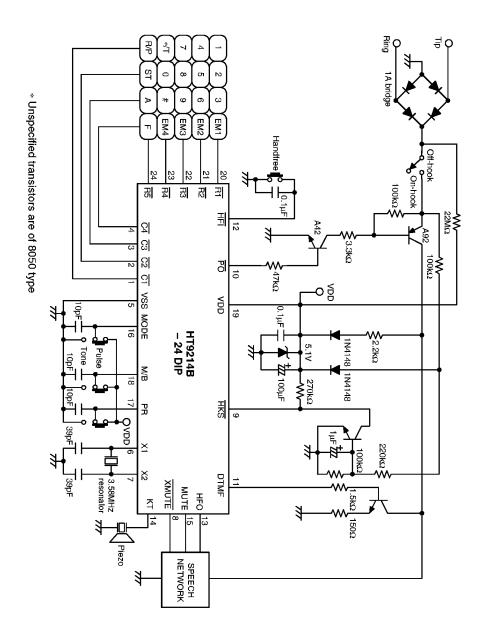


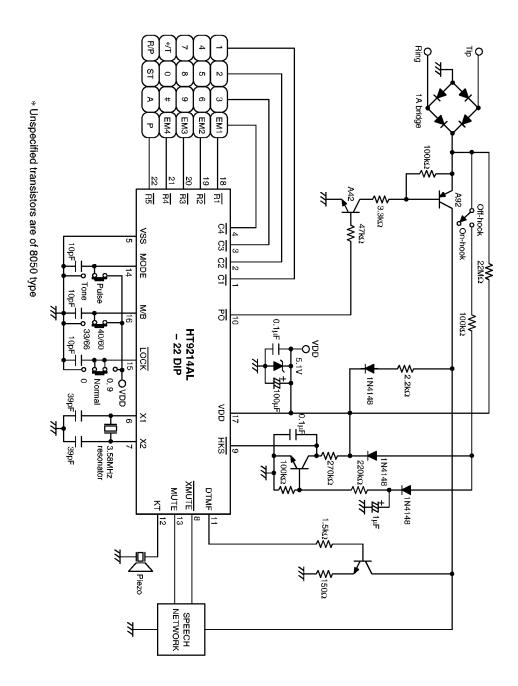
Flash key operation



Pulse→Tone operation

CLOCK & DOUT operation


Note: D1=D3=3 D2=2


Application circuit 1

