TOSHIBA TRANSISTOR SILOCON NPN EPITAXIAL TYPE (PCT PROCESS)

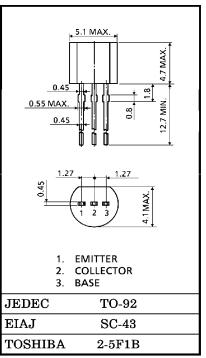
2 S C 2 2 4 0

LOW NOISE AUDIO AMPLIFIER APPLICATIONS

The 2SC2240 is a transistor for low frequency and low noise applications. This device is designed to lower noise figure in the region of low signal source impedance, and to lower the pulse noise. This is recommended for the first stages of Equalizer amplifiers.

Low Noise

: NF=4dB (Typ.) R_G=100 Ω , V_{CE}=6V, I_C=100 μ A, f=1kHz : NF=0.5dB (Typ.) R_G=1k Ω , V_{CE}=6V, I_C=100 μ A, f=1kHz


• Low Pulse Noise

: Low 1/f Noise

- High DC Current Gain $:h_{FE}=200\sim700$
 - High Breakdown Voltage : V_{CEO}=120V

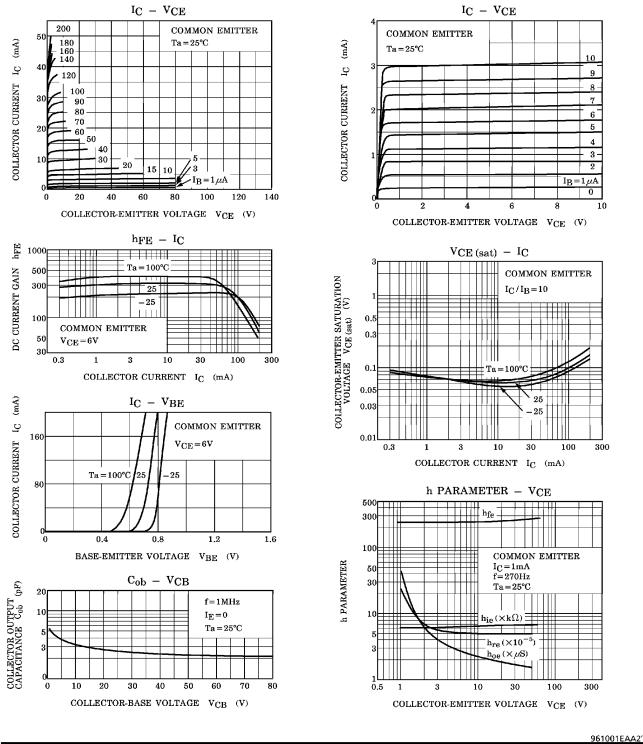
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT				
Collector-Base Voltage	V _{CBO}	120	V				
Collector-Emitter Voltage	VCEO	120	v				
Emitter-Base Voltage	V _{EBO}	5	V				
Collector Current	IC	100	mA				
Base Current	IB	20	mA				
Collector Power Dissipation	PC	300	mW				
Junction Temperature	Tj	125	°C				
Storage Temperature Range	T _{stg}	$-55 \sim 125$	°C				
ELECTRICAL CHARACTERISTICS (Ta = 25°C)							

Weight : 0.21g

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Collector Cut-off Current	ICBO	$V_{CB} = 120V, I_E = 0$	_	—	0.1	$\mu \mathbf{A}$	
Emitter Cut-off Current	I_{EBO}	$V_{EB} = 5V, I_{C} = 0$	_	—	0.1	μA	
Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{C}=1mA$, $I_{B}=0$	120	—	_	v	
DC Current Gain	h _{FE} (Note)	$V_{CE} = 6V, I_C = 2mA$	200	—	700		
Collector-Emitter Saturation Voltage	V _{CE (sat})	$I_{C} = 10 \text{mA}, I_{B} = 1 \text{mA}$		_	0.3	v	
Base-Emitter Voltage	v_{BE}	$V_{CE}=6V, I_{C}=2mA$		0.65	—	V	
Transition Frequency	${ m f_T}$	$V_{CE} = 6V, I_C = 1mA$	_	100	—	MHz	
Collector Output Capacitance	C _{ob}	$V_{CB} = 10V, I_E = 0, f = 1MHz$	—	3.0	—	pF	
Noise Figure NF		$V_{CE} = 6V, I_C = 0.1mA, f = 10Hz, R_G = 10k\Omega$	_	—	6		
	NF	$V_{CE} = 6V, I_C = 0.1mA, f = 1kHz, R_G = 10k\Omega$	_	_	2	dB	
		$V_{CE}=6V, I_C=0.1mA, f=1kHz, R_G=100\Omega$	_	4	_		

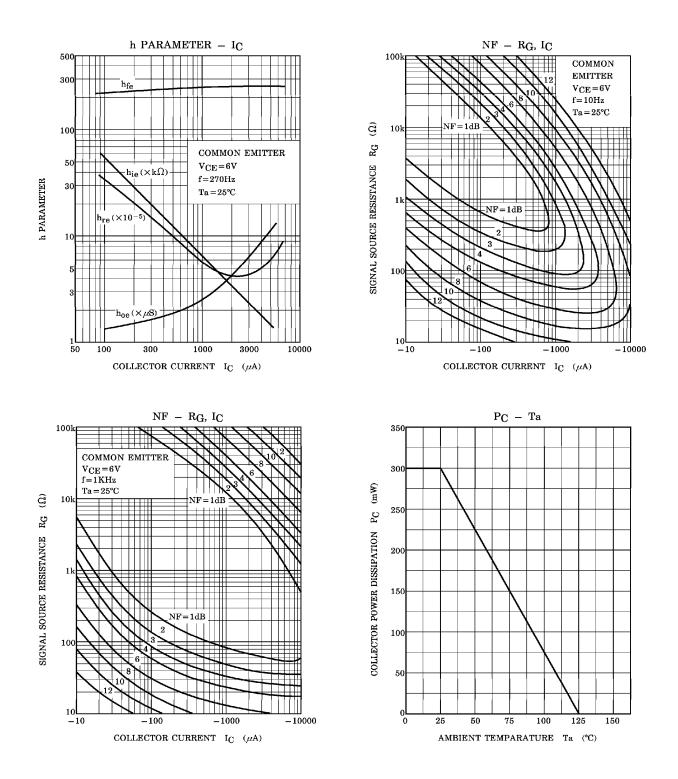
Note : h_{FE} Classification GR : 200~400, BL : 350~700


961001EAA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

1996-09-02 1/3

This Material Copyrighted By Its Respective Manufacturer


Unit in mm

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

1996-09-02 2/3

This Material Copyrighted By Its Respective Manufacturer

