Si5369

Any-Frequency Precision Clock MultiplierlJitter Attenuator

Features

- Generates any frequency from 2 kHz to 945 MHz and select frequencies to 1.4 GHz from an input frequency of 2 kHz to 710 MHz
- Ultra-low jitter clock outputs with jitter generation as low as 300 fs rms ($50 \mathrm{kHz}-80 \mathrm{MHz}$)
- Integrated loop filter with selectable loop bandwidth (60 Hz to 8.4 kHz)
- Meets OC-192 GR-253-CORE jitter specifications
- Four clock inputs with manual or automatically controlled hitless switching and phase build-out
- Supports holdover and freerun modes of operation
- SONET frame sync switching and regeneration

Five clock outputs with selectable signal format (LVPECL, LVDS, CML, CMOS)

- Support for ITU G. 709 and custom FEC ratios (253/226, 239/237, 255/238, 255/237, 255/236)
- LOL, LOS, FOS alarm outputs
- Digitally-controlled output phase adjust
- $\mathrm{I}^{2} \mathrm{C}$ or SPI programmable settings
- On-chip voltage regulator for 1.8 V $\pm 5 \%$, $2.5 \mathrm{~V} \pm 10 \%$, or $3.3 \mathrm{~V} \pm 10 \%$ operation
- Small size: $14 \times 14 \mathrm{~mm}$ 100-pin TQFP
- Pb-free, RoHS compliant

Applications

- SONET/SDH OC-48/STM-16/OC-192/STM-64 line cards
- GbE/10GbE, 1/2/4/8/10G FC line cards
- ITU G. 709 and custom FEC line cards
- Wireless repeaters/wireless backhaul
- Data converter clocking
- OTN/WDM Muxponder, MSPP, ROADM line cards
- SONET/SDH + PDH clock synthesis
- Test and measurement
- Synchronous Ethernet
- Broadcast video

Description

The Si5369 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5369 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. The outputs are divided down separately from a common source. The Si5369 input clock frequency and clock multiplication ratio are programmable through an $I^{2} \mathrm{C}$ or SPI interface. The Si5369 is based on Silicon Laboratories' third-generation DSPLL ${ }^{\circledR}$ technology, which provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5 ,or 3.3 V supply, the Si5369 is ideal for providing clock multiplication and jitter attenuation in high performance timing applications.

Functional Block Diagram

Table of Contents

Section Page

1. Electrical Specifications 4
2. Typical Phase Noise Performance 16
3. Functional Description 20
3.1. External Reference 20
3.2. Further Documentation 20
4. Pin Descriptions: Si5369 21
5. Register Map 26
6. Register Descriptions 29
7. Ordering Guide 77
8. Package Outline: 100-Pin TQFP 78
9. Recommended PCB Layout 79
10. Top Marking 81
Document Change List 82
Contact Information 84

1. Electrical Specifications

Table 1. Recommended Operating Conditions ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Ambient Temperature	T_{A}		-40	25	85	C
Supply Voltage during Normal Operation	V_{DD}	3.3 V Nominal ${ }^{2}$	2.97	3.3	3.63	V

Notes:

1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical values apply at nominal supply voltages and an operating temperature of $25^{\circ} \mathrm{C}$ unless otherwise stated.
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

Figure 1. Differential Voltage Characteristics

CKIN, CKOUT

Figure 2. Rise/Fall Time Characteristics

Table 2. Absolute Limits

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DC Supply Voltage	$V_{D D}$		-0.5	-	3.8	V
LVCMOS Input Voltage	$\mathrm{V}_{\text {DIG }}$		-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
CKINn Voltage Level Limits	$\mathrm{CKN}_{\mathrm{VIN}}$		0	-	$V_{D D}$	V
XA/XB Voltage Level Limits	X $A_{\text {VIN }}$		0	-	1.2	V
Operating Junction Temperature	$\mathrm{T}_{\text {JCT }}$		-55	-	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$		-55	-	150	${ }^{\circ} \mathrm{C}$
ESD HBM Tolerance (100 pF, $1.5 \mathrm{k} \Omega$); All pins except CKIN+/CKIN-			2	-	-	kV
ESD MM Tolerance; All pins except CKIN+/CKIN-			150	-	-	V
ESD HBM Tolerance (100 pF, $1.5 \mathrm{k} \Omega$); CKIN+/CKIN-			700	-	-	V
ESD MM Tolerance; CKIN+/CKIN-			100	-	-	V
Latch-up Tolerance			JESD78 Compliant			

Table 3. DC Characteristics
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply Current ${ }^{1,6}$	$I_{\text {DD }}$	LVPECL Format 622.08 MHz Out All CKOUTs Enabled	-	394	435	mA
		LVPECL Format 622.08 MHz Out 1 CKOUT Enabled	-	253	284	mA
		CMOS Format 19.44 MHz Out All CKOUTs Enabled	-	278	321	mA
		CMOS Format 19.44 MHz Out 1 CKOUT Enabled	-	229	261	mA
		Disable Mode	-	165	-	mA
CKINn Input Pins ${ }^{2}$						
Input Common Mode Voltage (Input Threshold Voltage)	VICM	$1.8 \mathrm{~V} \pm 5 \%$	0.9	-	1.4	V
		$2.5 \mathrm{~V} \pm 10 \%$	1	-	1.7	V
		$3.3 \mathrm{~V} \pm 10 \%$	1.1	-	1.95	V
Input Resistance	CKN ${ }_{\text {RIN }}$	Single-ended	20	40	60	$k \Omega$
Single-Ended Input Voltage Swing (See Absolute Specs)	$V_{\text {ISE }}$	$\mathrm{f}_{\mathrm{CKIN}}<212.5 \mathrm{MHz}$ See Figure 1.	0.2	-	-	V_{PP}
		$\mathrm{f}_{\mathrm{CKIN}}>212.5 \mathrm{MHz}$ See Figure 1.	0.25	-	-	V_{PP}
Differential Input Voltage Swing (See Absolute Specs)	$\mathrm{V}_{\text {ID }}$	$\mathrm{f}_{\mathrm{CKIN}}<212.5 \mathrm{MHz}$ See Figure 1.	0.2	-	-	$V_{\text {PP }}$
		fCKIN > 212.5 MHz See Figure 1.	0.25	-	-	$V_{P P}$

Notes:

1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

Table 3. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Clocks (CKOUTn) ${ }^{\text {3,5,6 }}$						
Common Mode	$\mathrm{CKO}_{\text {Vсм }}$	LVPECL 100Ω load line-to-line	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 1.42 \end{gathered}$	-	$V_{D D}-1.25$	V
Differential Output Swing	$\mathrm{CKO}_{\mathrm{VD}}$	LVPECL 100Ω load line-to-line	1.1	-	1.9	V_{PP}
Single Ended Output Swing	$\mathrm{CKO}_{\text {VSE }}$	LVPECL 100Ω load line-to-line	0.5	-	0.93	V_{PP}
Differential Output Voltage	$\mathrm{CKO}_{\mathrm{VD}}$	CML 100Ω load line-toline	350	425	500	$m V_{P P}$
Common Mode Output Voltage	CKOVcm	CML 100Ω load line-toline	-	$\mathrm{V}_{\mathrm{DD}}-0.36$	-	V
Differential Output Voltage	$\mathrm{CKO}_{\mathrm{VD}}$	LVDS 100Ω load line-to-line	500	700	900	$m V_{P P}$
		Low Swing LVDS 100Ω load line-to-line	350	425	500	$m V_{P P}$
Common Mode Output Voltage	CKOVCm	LVDS 100Ω load line-toline	1.125	1.2	1.275	V
Differential Output Resistance	$\mathrm{CKO}_{\mathrm{RD}}$	CML, LVPECL, LVDS	-	200	-	Ω
Output Voltage Low	CKO Vollh	cmos	-	-	0.4	V
Output Voltage High	$\mathrm{CKO}_{\text {VOHLH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V} \\ \text { CMOS } \end{gathered}$	$\begin{aligned} & 0.8 \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	-	-	V

Notes:

1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

Table 3. DC Characteristics (Continued)
$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output Drive Current (CMOS driving into CKOvol for output low or $\mathrm{CKO}_{\mathrm{VOH}}$ for output high. CKOUT+ and CKOUT- shorted externally)	CKO_{10}	$\begin{gathered} \text { ICMOS[1:0] }=11 \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	7.5	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=10 \\ \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \end{gathered}$	-	5.5	-	mA
		$\begin{gathered} \text { ICMOS[1:0] =01 } \\ V_{D D}=1.8 \mathrm{~V} \end{gathered}$	-	3.5	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=00 \\ \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \end{gathered}$	-	1.75	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=11 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	32	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=10 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	24	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=01 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	16	-	mA
		$\begin{gathered} \mathrm{ICMOS}[1: 0]=00 \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{gathered}$	-	8	-	mA
2-Level LVCMOS Input Pins						
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{DD}}=1.71 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$	-	-	0.7	V
		$\mathrm{V}_{\mathrm{DD}}=2.97 \mathrm{~V}$	-	-	0.8	V
Input Voltage High	V_{IH}	$\mathrm{V}_{\mathrm{DD}}=1.89 \mathrm{~V}$	1.4	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=2.25 \mathrm{~V}$	1.8	-	-	V
		$V_{D D}=3.63 \mathrm{~V}$	2.5	-	-	V

Notes:

1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$.
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.

Table 3. DC Characteristics (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
3-Level Input Pins ${ }^{4}$						
Input Voltage Low	$\mathrm{V}_{\text {ILL }}$		-	-	$0.15 \times \mathrm{V}_{\mathrm{DD}}$	V
Input Voltage Mid	$\mathrm{V}_{\text {IMM }}$		$\begin{gathered} 0.45 \mathrm{x} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	-	$0.55 \times V_{\text {DD }}$	V
Input Voltage High	$\mathrm{V}_{\mathrm{IHH}}$		$\begin{gathered} 0.85 \mathrm{x} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	-	-	V
Input Low Current	$\mathrm{I}_{\text {LL }}$	See Note 4	-20	-	-	$\mu \mathrm{A}$
Input Mid Current	IIMM	See Note 4	-2	-	+2	$\mu \mathrm{A}$
Input High Current	I_{HH}	See Note 4	-	-	20	$\mu \mathrm{A}$
LVCMOS Output Pins						
Output Voltage Low	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} \mathrm{IO} & =2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}} & =1.71 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage Low		$\begin{aligned} I O & =2 \mathrm{~mA} \\ V_{D D} & =2.97 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Output Voltage High	V_{OH}	$\begin{gathered} \mathrm{IO}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.71 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Output Voltage High		$\begin{gathered} \mathrm{IO}=-2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=2.97 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}- \\ 0.4 \end{gathered}$	-	-	V
Disabled Leakage Current	l_{0}	RSTb $=0$	-100	-	100	$\mu \mathrm{A}$
Notes: 1. Current draw is independent of supply voltage 2. No under- or overshoot is allowed. 3. LVPECL outputs require nominal VDD $\geq 2.5 \mathrm{~V}$. 4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family Reference Manual for more details. 5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo $=622.08 \mathrm{MHz}$. 6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.						

Table 4. AC Specifications
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)						
Input Resistance	XARIN	RATE[1:0] = LM, MH, ac coupled	-	12	-	k Ω
Input Voltage Swing	XA ${ }_{\text {VPP }}$	RATE[1:0] = LM, MH, ac coupled	0.5	-	1.2	$V_{P P}$
Differential Reference Clock Input Pins (XA/XB)						
Input Voltage Swing	XA/XB ${ }_{\text {VPP }}$	RATE[1:0] = LM, MH	0.5	-	2.4	$V_{P P}$
CKINn Input Pins						
Input Frequency	$\mathrm{CKN}_{\mathrm{F}}$		0.002	-	710	MHz
Input Duty Cycle (Minimum Pulse Width)	CKN ${ }_{\text {DC }}$	Whichever is smaller (i.e., the 40\% / 60\% limitation applies only to high frequency clocks)	40	-	60	\%
			2	-	-	ns
Input Capacitance	$\mathrm{CKN}_{\text {CIN }}$		-	-	3	pF
Input Rise/Fall Time	CKN ${ }_{\text {TRF }}$	$20-80 \%$ See Figure 2	-	-	11	ns
CKOUTn Output Pins (See ordering section for speed grade vs frequency limits)						
Output Frequency (Output not configured for CMOS or Disabled)	CKO_{F}	N1 ≥ 6	0.002	-	945	MHz
		N1 $=5$	970	-	1134	MHz
		$\mathrm{N} 1=4$	1.213	-	1.4	GHz
Maximum Output Frequency in CMOS Format	CKO_{F}		-	-	212.5	MHz
$\begin{array}{\|l} \hline \text { Output Rise/Fall } \\ (20-80 \%) @ \\ 622.08 \mathrm{MHz} \text { output } \end{array}$	$\mathrm{CKO}_{\text {TRF }}$	Output not configured for CMOS or Disabled See Figure 2	-	230	350	ps
Output Rise/Fall (20-80\%) @ 212.5 MHz output	$\mathrm{CKO}_{\text {TRF }}$	$\begin{gathered} \text { CMOS Output } \\ V_{\text {DD }}=1.71 \\ C_{\text {LOAD }}=5 \mathrm{pF} \end{gathered}$	-	-	8	ns

*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.

Table 4. AC Specifications (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
$\begin{aligned} & \text { Output Rise/Fall } \\ & (20-80 \%) @ \\ & 212.5 \mathrm{MHz} \text { output } \end{aligned}$	CKO ${ }_{\text {TRF }}$	$\begin{gathered} \text { CMOS Output } \\ \mathrm{V}_{\mathrm{DD}}=2.97 \\ \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF} \end{gathered}$	-	-	2	ns
Output Duty Cycle Uncertainty @ 622.08 MHz	$\mathrm{CKO}_{\text {DC }}$	100Ω Load Line-to-Line Measured at 50\% Point (Not for CMOS)	-	-	± 40	ps
LVCMOS Input Pins						
Minimum Reset Pulse Width	$\mathrm{t}_{\text {RSTMN }}$		1			$\mu \mathrm{s}$
Reset to Microprocessor Access Ready	$t_{\text {READY }}$				10	ms
Input Capacitance	$\mathrm{C}_{\text {in }}$		-	-	3	pF

LVCMOS Output Pins

Rise/Fall Times	t_{RF}	C LOAD $=20 \mathrm{pf}$ See Figure 2	-	25	-	ns
LOSn Trigger Window	LOS $_{\text {TRIG }}$	From last CKINn \uparrow to \downarrow Internal detection of LOSn N3 $\neq 1$	-	-	$4.5 \times$ N3	$\mathrm{T}_{\text {CKIN }}$
Time to Clear LOL after LOS Cleared	$\mathrm{t}_{\text {CLRLOL }}$	\downarrow LOS to \downarrow LOL Fold = Fnew Stable Xa/XB reference	-	10	-	ms

Device Skew

Output Clock Skew	$\mathrm{t}_{\text {SKEW }}$	\uparrow of CKOUTn to \uparrow of CKOUT_m, CKOUTn and CKOUT_m at same frequency and signal format PHASEOFFSET $=0$ CKOUT_ALWAYS_ON $=1$ SQ ICAL $=1$	-	-	100	ps
Phase Change due to Temperature Variation*	${ }^{\text {TEMP }}$	Max phase changes from -40 to $+85^{\circ} \mathrm{C}$	-	300	500	ps

*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.

Table 4. AC Specifications (Continued)
$\left(V_{D D}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, T_{A}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
PLL Performance (fin = fout $=\mathbf{6 2 2 . 0 8} \mathbf{~ M H z ; ~ B W ~ = ~} \mathbf{1 2 0 ~ H z ; ~ L V P E C L) ~}$						
Lock Time	$\mathrm{t}_{\text {LOCKMP }}$	Start of ICAL to \downarrow of LOL	-	1	-	s
Settle Time	$\mathrm{t}_{\text {SETTLE }}$	End of ICAL to Fout within 1 ppm of final value	-	5	-	s
Output Clock Phase Change	$t_{\text {P_STEP }}$	After clock switch $\mathrm{f} 3 \geq 128 \mathrm{kHz}$	-	200	-	ps
Closed Loop Jitter Peaking	$J_{\text {PK }}$		-	0.05	0.1	dB
Jitter Tolerance	$\mathrm{J}_{\text {TOL }}$	Jitter Frequency \geq Loop Bandwidth	5000/BW	-	-	ns pk-pk
Phase Noise fout $=622.08 \mathrm{MHz}$	$\mathrm{CKO}_{\text {PN }}$	100 Hz Offset	-	-95	-	dBc/Hz
		1 kHz Offset	-	-110	-	dBc/Hz
		10 kHz Offset	-	-117	-	dBc/Hz
		100 kHz Offset	-	-118	-	dBc/Hz
		1 MHz Offset	-	-131	-	dBc/Hz
Spurious Noise	SP ${ }_{\text {SPUR }}$	$\begin{gathered} \text { Max spur @ nx F3 } \\ (\mathrm{n} \geq 1, \mathrm{nxF3}<100 \mathrm{MHz}) \end{gathered}$	-	-67	-	dBc

*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.

Table 5. Microprocessor Control
($\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
$I^{2} \mathrm{C}$ Bus Lines (SDA, SCL)						
Input Voltage Low	$\mathrm{VIL}_{12 \mathrm{C}}$		-	-	$0.25 \times \mathrm{V}_{\mathrm{DD}}$	V
Input Voltage High	$\mathrm{VIH}_{12 \mathrm{C}}$		$0.7 \times \mathrm{V}_{\mathrm{DD}}$	-	$V_{D D}$	V
Input Current	$\mathrm{II}_{12 \mathrm{C}}$	$\begin{gathered} \mathrm{VIN}=0.1 \times \mathrm{V}_{\mathrm{DD}} \\ \text { to } 0.9 \times \mathrm{V}_{\mathrm{DD}} \end{gathered}$	-10	-	10	$\mu \mathrm{A}$
Hysteresis of Schmitt trigger inputs	VHYS ${ }_{12 \mathrm{C}}$	$\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$	$0.1 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=2.5$ or 3.3 V	$0.05 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
Output Voltage Low	$\mathrm{VOL}_{12 \mathrm{C}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \\ & 10=3 \mathrm{~mA} \end{aligned}$	-	-	$0.2 \times \mathrm{V}_{\mathrm{DD}}$	V
		$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.5 \text { or } 3.3 \mathrm{~V} \\ \mathrm{IO}=3 \mathrm{~mA} \end{gathered}$	-	-	0.4	V

Table 5. Microprocessor Control (Continued)
($\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SPI Specifications						
Duty Cycle, SCLK	$t_{\text {DC }}$	SCLK $=10 \mathrm{MHz}$	40	-	60	\%
Cycle Time, SCLK	t_{c}		100	-	-	ns
Rise Time, SCLK	t_{r}	20-80\%	-	-	25	ns
Fall Time, SCLK	t_{f}	20-80\%	-	-	25	ns
Low Time, SCLK	$\mathrm{t}_{\text {sc }}$	20-20\%	30	-	-	ns
High Time, SCLK	$t_{\text {hsc }}$	80-80\%	30	-	-	ns
Delay Time, SCLK Fall to SDO Active	$\mathrm{t}_{\mathrm{d} 1}$		-	-	25	ns
Delay Time, SCLK Fall to SDO Transition	$\mathrm{t}_{\mathrm{d} 2}$		-	-	25	ns
Delay Time, SS Rise to SDO Tri-state	$\mathrm{t}_{\mathrm{d} 3}$		-	-	25	ns
Setup Time, SS to SCLK Fall	$\mathrm{t}_{\text {su1 }}$		25	-	-	ns
Hold Time, SS to SCLK Rise	$t_{\text {h }}$		20	-	-	ns
Setup Time, SDI to SCLK Rise	$\mathrm{t}_{\text {su2 }}$		25	-	-	ns
Hold Time, SDI to SCLK Rise	$t_{\text {n2 }}$		20	-	-	ns
Delay Time between Slave Selects	t_{cs}		25	-	-	ns

Table 6. Jitter Generation

Parameter	Symbol	Test Condition*		Min	Typ	Max	GR-253Specification	Unit
		Measurement Filter	$\begin{gathered} \text { DSPLL } \\ \mathrm{BW}^{2} \end{gathered}$					
Jitter Gen OC-192	JGEN	$0.02-80 \mathrm{MHz}$	120 Hz	-	4.2	-	30	pspp
				-	. 27	-	N/A	$\mathrm{ps}_{\mathrm{rms}}$
		4-80 MHz	120 Hz	-	3.7	-	10	pspp
				-	. 14	-	N/A	$\mathrm{ps}_{\mathrm{rms}}$
		$0.05-80 \mathrm{MHz}$	120 Hz	-	4.4	-	10	pspp
				-	. 26	-	1.0	ps ${ }_{\text {rms }}$
Jitter Gen OC-48	JGEN	$0.12-20 \mathrm{MHz}$	120 Hz	-	3.5	-	40.2	pspp
				-	. 27	-	4.02	ps ${ }_{\text {rms }}$
*Note: Test conditions: 1. $\mathrm{fIN}=\mathrm{fOUT}=622.08 \mathrm{MHz}$ 2. Clock input: LVPECL 3. Clock output: LVPECL 4. PLL bandwidth: 120 Hz 5. 114.285 MHz 3rd OT crystal used as $\mathrm{XA} / \mathrm{XB}$ input 6. $V_{D D}=2.5 \mathrm{~V}$ 7. $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$								

Table 7. Thermal Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \pm 5 \%, 2.5 \pm 10 \%\right.$, or $3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Value	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	40	$\mathrm{C}^{\circ} / \mathrm{W}$

2. Typical Phase Noise Performance

Figure 3. Broadcast Video

Jitter Bandwidth	Jitter (peak-peak)	Jitter (RMS)
10 Hz to 20 MHz	5.24 ps	484

Note: Number of samples: 8.91E9

Figure 4. OTN/SONET/SDH Phase Noise
Note: Phase noise plot uses brick wall integration.

Jitter Bandwidth	Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz	266 fs
SONET_OC192_A, 20 kHz to 80 MHz	283 fs
SONET_OC192_B, 4 MHz to 80 MHz	155 fs
SONET_OC192_C, 50 kHz to 80 MHz	275 fs
Brick Wall_800 Hz to 80 MHz	287 fs

Note: Jitter integration bands include low-pass ($-20 \mathrm{~dB} / \mathrm{Dec}$) and hi-pass ($-60 \mathrm{~dB} / \mathrm{Dec}$) roll-offs per Telecordia GR-253-CORE.

Figure 5. Wireless Base Station Phase Noise

Jitter Bandwidth	Jitter (peak-peak)	Jitter (RMS)
10 Hz to 20 MHz	7.28 ps	581
Note: Number of samples: 8.91E9		

Figure 6. Si5369 Typical Application Circuit ($I^{2} \mathrm{C}$ Control Mode)

Figure 7. Si5369 Typical Application Circuit (SPI Control Mode)

3. Functional Description

The Si5369 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter performance. The Si5369 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz . The device provides virtually any frequency translation combination across this operating range. Independent dividers are available for every input clock and output clock, so the Si5369 can accept input clocks at different frequencies and it can generate output clocks at different frequencies. The Si5369 input clock frequency and clock multiplication ratio are programmable through an $\mathrm{I}^{2} \mathrm{C}$ or SPI interface. Optionally, the fifth clock output can be configured as a 2 to 512 kHz SONET/SDH frame synchronization output that is phase aligned with one of the high-speed output clocks. Silicon Laboratories offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption. This utility can be downloaded from http://www.silabs.com/timing (click on Documentation).
The Si5369 is based on Silicon Laboratories' 3rdgeneration DSPLL ${ }^{\circledR}$ technology, which provides anyfrequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The Si5369 PLL loop bandwidth is digitally programmable and supports a range from 4 to 525 Hz . The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input clock frequency/clock multiplication ratio.
The Si5369 supports hitless switching between input clocks in compliance with GR-253-CORE and GR-1244CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock transition (<200 ps typ). Manual, automatic revertive and non-revertive input clock switching options are available. The Si5369 monitors the four input clocks for loss-ofsignal and provides a LOS alarm when it detects missing pulses on any of the four input clocks. The device monitors the lock status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. The Si5369 monitors the frequency of CKIN1, CKIN2, CKIN3, and CKIN4 with respect to a selected reference frequency and generates a frequency offset alarm (FOS) if the threshold is exceeded. This FOS feature is available for SONET applications in which both the monitored frequency on CKIN1, CKIN3, and CKIN4 and the reference frequency are integer multiples of 19.44 MHz . Both Stratum 3/3E and SONET Minimum Clock (SMC) FOS thresholds are supported.
The Si5369 provides a digital hold capability that allows the device to continue generation of a stable output clock when the selected input reference is lost. During digital
hold, the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately preceding digital hold.
The Si5369 has five differential clock outputs. The electrical format of the clock outputs is programmable to support LVPECL, LVDS, CML, or CMOS loads. If not required, unused clock outputs can be powered down to minimize power consumption. The phase difference between the selected input clock and the output clocks is adjustable in 200 ps increments for system skew control. In addition, the phase of one output clock may be adjusted in relation to the phase of the other output clock. The resolution varies from 800 ps to 2.2 ns depending on the PLL divider settings. Consult the DSPLLsim configuration software to determine the phase offset resolution for a given input clock/clock multiplication ratio combination. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single $1.8,2.5$, or 3.3 V supply.

3.1. External Reference

An external clock or a low-cost 114.285 MHz 3rd overtone crystal is typically used as part of a fixed-frequency oscillator within the DSPLL. This external reference is required for the device to operate. Silicon Laboratories recommends using a high-quality crystal. Specific recommendations may be found in the Family Reference Manual. An external clock from a high-quality OCXO or TCXO can also be used as a reference for the device.
In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference when the DSPLL is in digital hold, will be tracked by the output of the device. Note that crystals can have temperature sensitivities.

3.2. Further Documentation

Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed information about the Si5369. Additional design support is available from Silicon Laboratories through your distributor.
Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing; click on Documentation.

4. Register Map

All register bits that are not defined in this map should always be written with the specified Reset Values. The writing to these bits of values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as Register 64, should never be written to.

Register	D7	D6	D5	D4	D3	D2	D1	D0
0		FREE_RUN	CKOUT_ ALWAYS_ ON				$\begin{gathered} \text { BYPASS_ } \\ \text { REG } \end{gathered}$	
1	CK_PRIOR4 [1:0]		CK_PRIOR3 [1:0]		CK_PRIOR2 [1:0]		CK_PRIOR1 [1:0]	
2	BWSEL_REG [3:0]							
3	CKSEL	EG [1:0]	DHOLD	SQ_ICAL				
4	AUTOSEL_REG [1:0]		HIST_DEL [4:0]					
5	ICMOS [1:0]		SFOUT2_REG [2:0]			SFOUT1_REG [2:0]		
6			SFOUT4_REG [2:0]			SFOUT3_REG [2:0]		
7			SFOUT5_REG [2:0]			FOSREFSEL [2:0]		
8	HLOG_4 [1:0]		HLOG_3 [1:0]		HLOG_2 [1:0]		HLOG_1 [1:0]	
9	HIST_AVG [4:0]						HLOG_5 [1:0]	
10			$\begin{gathered} \text { DSBL5- } \\ \text { REG } \end{gathered}$		$\begin{gathered} \text { DSBL4_- } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { DSBL3_ } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { DSBL2_ } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { DSBL1_ } \\ \text { REG } \end{gathered}$
11					PD_CK4	PD_CK3	PD_CK2	PD_CK1
19	FOS_EN	FOS_THR [1:0]		VALTIME [1:0]		LOCKT [2:0]		
20			ALRMOUT_ PIN	$\begin{aligned} & \text { CK3_BAD_ } \\ & \text { PIN } \end{aligned}$	$\frac{\text { CK2_BAD_ }}{\text { PIN }}$	$\begin{aligned} & \text { CK1_BAD_ } \\ & \text { PIN } \end{aligned}$	LOL_PIN	INT_PIN
21				$\begin{aligned} & \text { CK4_ACTV_- } \\ & \text { PIN } \end{aligned}$	$\underset{\text { CK3_ACTV_ }}{\text { PIN }}$	$\underset{\text { PIN }}{\text { CK2_ACTV_ }}$	$\frac{\text { CK1_ACTV_ }}{\text { PIN }}$	CKSEL_PIN
22					$\frac{\text { CK_ACTV_ }}{\text { POL }}$	$\begin{gathered} \text { CK_BAD_ } \\ \text { POL } \end{gathered}$	LOL_POL	INT_POL
23				LOS4_MSK	LOS3_MSK	LOS2_MSK	LOS1_MSK	LOSX_MSK
24				FOS4_MSK	FOS3_MSK	FOS2_MSK	FOS1_MSK	LOL_MSK
25	N1_HS [2:0]				NC1_LS [19:16]			
26	NC1_LS [15:8]							
27	NC1_LS [7:0]							
28					NC2_LS [19:16]			
29	NC2_LS [15:8]							
30	NC2_LS [7:0]							
31					NC3_LS [19:16]			

Register	D7	D6	D5	D4	D3	D2	D1	D0
32	NC3_LS [15:8]							
33	NC3 LS [7:0]							
34					NC4_LS [19:16]			
35	NC4_LS [15:8]							
36	NC4_LS [7:0]							
37					NC5_LS [19:16]			
38	NC5_LS [15:8]							
39	NC5_LS [7:0]							
40	N2_HS [2:0]				N2_LS [19:16]			
41	N2_LS [15:8]							
42	N2_LS [7:0]							
43						N31_ [18:16]		
44	N31_[15:8]							
45	N31_ [7:0]							
46						N32_ [18:16]		
47	N31_ [15:8]							
48	N32_[7:0]							
49						N33_[18:16]		
50	N33_[15:8]							
51	N33_[7:0]							
52						N34_[18:16]		
53	N34_[15:8]							
54	N34_[7:0]							
55			CLKIN2RATE_[2:0]			CLKIN1RATE[2:0]		
56			CLKIN4RATE_[2:0]			CLKIN3RATE[2:0]		
128					$\begin{gathered} \text { CK4_ACTV_- } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { CK3_ACTV_ } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { CK2_ACTV_- } \\ \text { REG } \end{gathered}$	$\begin{gathered} \text { CK1_ACTV_- } \\ \text { REG } \end{gathered}$
129				LOS4_INT	LOS3_INT	LOS2_INT	LOS1_INT	LOSX_INT
130		DIGHOLDVALID		FOS4_INT	FOS3_INT	FOS2_INT	FOS1_INT	LOL_INT
131				LOS4_FLG	LOS3_FLG	LOS2_FLG	LOS1_FLG	LOSX_FLG

Register	D7	D6	D5	D4	D3	D2	D1	D0
132			FOS4_FLG	FOS3_FLG	FOS2_FLG	FOS1_FLG	LOL_FLG	
134	PARTNUM_RO [11:4]							
135	PARTNUM_RO [3:0]				REVID_RO [3:0]			
136	RST_REG	ICAL						
137								FASTLOCK
138					$\begin{gathered} \text { LOS4_EN } \\ {[1: 1]} \end{gathered}$	$\underset{[1: 1]}{\text { LOS3_EN }}$	$\underset{[1: 1]}{\text { LOS2_EN }}$	$\underset{[1: 1]}{\text { LOS1_EN }}$
139	$\begin{gathered} \text { LOS4_EN } \\ {[0: 0]} \end{gathered}$	$\begin{gathered} \text { LOS3_EN } \\ {[0: 0]} \end{gathered}$	$\begin{gathered} \text { LOS2_EN } \\ {[0: 0]} \end{gathered}$	$\begin{gathered} \text { LOS1_EN } \\ {[0: 0]} \end{gathered}$	FOS4_EN	FOS3_EN	FOS2_EN	FOS1_EN
140	INDEPENDENTSKEW1 [7:0]							
141	INDEPENDENTSKEW2 [7:0]							
142	INDEPENDENTSKEW3 [7:0]							
143	INDEPENDENTSKEW4 [7:0]							
144	INDEPENDENTSKEW5 [7:0]							

5. Register Descriptions

Register 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FREE_RUN	CKOUT_ALWAYS_ON				BYPASS_REG	
Type	R	R/W	R/W	R	R	R	R / W	R

Reset value $=00010100$

Bit	Name	Function		
7	Reserved	$\begin{array}{l}\text { FREE_RUN } \\ 6\end{array}$		
5	CKOUT_ALWAYS_ON Run.			
Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its				
external reference.				
0: Disable Free Run				
1: Enable			$]$	CKOUT Always On.
:---				
This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL				
is on and ICAL is not complete or successful. See Table 8.				
$0:$ Squelch output until part is calibrated (ICAL).				
$1:$ Provide an output. Note: The frequency may be significantly off until the part				
is calibrated.				

Register 1.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CK_PRIOR4 [1:0]		CK_PRIOR3 [1:0]		CK_PRIOR2 [1:0]		CK_PRIOR1 [1:0]	
Type	R/W		R/W		R/W		R/W	

Reset value = 11100100

Bit	Name	Function
7:6	CK_PRIOR4 [1:0]	CK_PRIOR 4. Selects which of the input clocks will be 4th priority in the autoselection state machine. 00: CKINO is 4th priority. 01: CKIN1 is 4th priority. 10: CKIN2 is 4th priority. 11: CKIN3 is 4th priority.
5:4	CK_PRIOR3 [1:0]	CK_PRIOR 3. Selects which of the input clocks will be 3rd priority in the autoselection state machine. 00: CKINO is 3rd priority. 01: CKIN1 is 3rd priority. 10: CKIN2 is 3rd priority. 11: CKIN3 is 3rd priority.
3:2	CK_PRIOR2 [1:0]	CK_PRIOR 2. Selects which of the input clocks will be 2nd priority in the autoselection state machine. 00: CKIN1 is 2nd priority. 01: CKIN2 is 2nd priority. 10: CKIN3 is 2nd priority. 11: CKIN4 is 2nd priority.
1:0	CK_PRIOR1 [1:0]	CK_PRIOR 1. Selects which of the input clocks will be 1st priority in the autoselection state machine. 00 : CKINO is 1st priority. 01: CKIN1 is 1st priority. 10: CKIN2 is 1st priority. 11: CKIN3 is 1st priority.

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	BWSEL_REG [3:0]				Reserved			
Type	R/W				R			

Reset value $=01000010$

Bit	Name	Function
$7: 4$	BWSEL_REG [3:0]	BWSEL_REG. Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After BWSEL_REG is written with a new value, an ICAL is required for the change to take effect.
3:0	Reserved	

Register 3.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	CKSEL_REG [1:0]	DHOLD	SQ_ICAL		Reserved			
Type	R/W	R/W	R/W	R				

Reset value $=00000101$

Bit	Name	Function
$7: 6$	CKSEL_REG [1:0]	CKSEL_REG. If the device is operating in manual register-based clock selection mode (AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins continue to control clock selection and CKSEL_REG is of no consequence. 00: CKIN_1 selected. 01: CKIN_2 selected. $10:$ CKIN_3 selected. $11:$ CKIN_4 selected.
5	DHOLD	DHOLD. Forces the part into digital hold. This bit overrides all other manual and automatic clock selection controls. $0:$ Normal operation. $1:$ Force digital hold mode. Overrides all other settings and ignores the quality of all of the input clocks.
4	SQ_ICAL	SQ_ICAL. This bit determines if the output clocks will remain enabled or be squelched (dis- abled) during an internal calibration. See Table 8. $0:$ Output clocks enabled during ICAL. $1:$ Output clocks disabled during ICAL.
$3: 0$	Reserved	

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	AUTOSEL_REG [1:0]	Reserved	HIST_DEL [4:0]				
Type	R/W	R	R/W				

Reset value $=00010010$

Bit	Name	Function
$7: 6$	AUTOSEL_REG [1:0]	AUTOSEL_REG [1:0]. Selects method of input clock selection to be used. 00: Manual (either register or pin controlled. See CKSEL_PIN). 01: Automatic Non-Revertive 10: Automatic Revertive 11: Reserved
5	Reserved	
$4: 0$	HIST_DEL [4:0]	HIST_DEL [4:0]. Selects amount of delay to be used in generating the history information MHIST, the value of M used during Digital Hold.

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	ICMOS [1:0]	SFOUT2_REG [2:0]		D0			
Type	R/W	R/W	ROUT_REG [2:0]				

Reset value = 11101101

Bit	Name	Function
7:6	ICMOS [1:0]	ICMOS [1:0]. When the output buffer is set to CMOS mode, these bits determine the output buffer drive strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation. These values assume CKOUT+ is tied to CKOUT-. 00: $8 \mathrm{~mA} / 2 \mathrm{~mA}$ 01: $16 \mathrm{~mA} / 4 \mathrm{~mA}$ 10: $24 \mathrm{~mA} / 6 \mathrm{~mA}$ 11: 32 mA (3.3 V operation)/8mA (1.8 V operation)
5:3	SFOUT2_REG [2:0]	SFOUT2_REG [2:0] Controls output signal format and disable for CKOUT2 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	SFOUT1_REG [2:0]	SFOUT1_REG [2:0] Controls output signal format and disable for CKOUT1 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS

Register 6

Reset value $=00101100$

Bit	Name	Function
7:6	Reserved	
5:3	SFOUT4_REG [2:0]	SFOUT4_REG [2:0]. Controls output signal format and disable for CKOUT4 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	SFOUT3_REG [2:0]	SFOUT3_REG [2:0]. Controls output signal format and disable for CKOUT3 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS

Register 7.

Reset value $=00101010$

Bit	Name	Function
7:6	Reserved.	
5:3	SFOUT5_REG [2:0]	SFOUT5_REG [2:0] Controls output signal format and disable for CKOUT5 output buffer. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when they are operated at 3.3 V . When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS. 000: Reserved 001: Disable 010: CMOS 011: Low swing LVDS 100: Reserved 101: LVPECL 110: CML 111: LVDS
2:0	FOSREFSEL [2:0]	FOSREFSEL [2:0]. Selects which input clock is used as the reference frequency for Frequency OffSet (FOS) alarms. 000: XA/XB (External reference) 001: CKIN1 010: CKIN2 011: CKIN3 100: CKIN4 101: Reserved 110: Reserved 111: Reserved

Register 8

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	HLOG_4[1:0]		HLOG_3[1:0]		HLOG_2[1:0]		HLOG_1[1:0]	
Type	R/W		R/W		R/W		R/W	

Reset value $=00000000$

Bit	Name	Function
$7: 6$	HLOG_4 [1:0]	HLOG_4 [1:0]. 00: Normal operation 01: Holds CKOUT4 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT4 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved
$5: 4$	HLOG_3 [1:0]	HLOG_3 [1:0]. 00: Normal operation 01: Holds CKOUT3 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT3 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved.
$3: 2$	HLOG_2 [1:0]HLOG_2 [1:0]. 00: Normal operation 01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved.	
$1: 0$	HLOG_1[1:0]HLOG_1 [1:0]. 00: Normal operation 01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved	

Register 9.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	HIST_AVG [4:0]		H0				
Type	R/W	R	R/W				

Reset value $=11000000$

Bit	Name	Function
$7: 3$	HIST_AVG [4:0]	HIST_AVG [4:0]. Selects amount of averaging time to be used in generating MHIST, the value of M used during digital hold. See Family Reference Manual for settings.
2	Reserved	
$1: 0$	HLOG_5 [1:0]	HLOG_5 [1:0]. 00: Normal Operation 01: Holds CKOUT5 output at static logic 0. Entrance and exit from this state will occur without glitches or runt pulses. 10: Holds CKOUT5 output at static logic 1. Entrance and exit from this state will occur without glitches or runt pulses. 11: Reserved

Register 10.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			DSBL5_REG	Reserved	DSBL4_REG	DSBL3_REG	DSBL2_REG	DSBL1_REG
Type	R	R	R/W	R	R/W	R/W	R	R

Reset value $=00000000$

Bit	Name	
$7: 6$	Reserved	Function
5	DSBL5_REG	DSBL5_REG. This bit controls the powerdown and disable of the CKOUT5 output buffer. If disable mode is selected, the NC5_LS output divider is also powered down. 0: CKOUT5 enabled. 1: CKOUT5 disabled.
4	Reserved	DSBL4_REG
3	DSBL4_REG. This bit controls the powerdown and disable of the CKOUT4 output buffer. If disable mode is selected, the NC4 output divider is also powered down. 0'b=CKOUT4 enabled 1'b=CKOUT4 disabled	
2	DSBL3_REG	DSBL3_REG. This bit controls the powerdown and disable of the CKOUT3 output buffer. If disable mode is selected, the NC3 output divider is also powered down. 0: CKOUT3 enabled $1:$ CKOUT3 disabled
1	DSBL2_REG	DSBL2_REG. This bit controls the powerdown and disable of the CKOUT2 output buffer. If disable mode is selected, the NC2 output divider is also powered down. 0: CKOUT2 enabled $1:$ CKOUT2 disabled
0	DSBL1_REG	DSBL1_REG. This bit controls the powerdown and disable of the CKOUT1 output buffer. If disable mode is selected, the NC1 output divider is also powered down. 0: CKOUT1 enabled $1:$ CKOUT1 disabled

Register 11.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					PD_CK4	PD_CK3	PD_CK2	PD_CK1
Type	R	R	R	R	R / W	R/W	R/W	R/W

Reset value $=01000000$

Bit	Name	Function
$7: 4$	Reserved	
3	PD_CK4	PD_CK4. This bit controls the powerdown of the CKIN4 input buffer. 0: CKIN4 enabled $1:$ CKIN4 disabled
2	PD_CK3	PD_CK3. This bit controls the powerdown of the CKIN3 input buffer. 0: CKIN3 enabled 1: CKIN3 disabled
1	PD_CK2	PD_CK2. This bit controls the powerdown of the CKIN2 input buffer. 0: CKIN2 enabled 1: CKIN2 disabled
0	PD_CK1	PD_CK1. This bit controls the powerdown of the CKIN1 input buffer. $0:$ CKIN1 enabled 1: CKIN1 disabled

Register 19.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	FOS_EN	FOS_THR [1:0]	VALTIME [1:0]	LOCKT [2:0]			
Type	R/W	R/W		R/W			

Reset value = 00101100

Bit	Name	Function
7	FOS_EN	FOS_EN. Frequency offset enable globally disables FOS. See the individual FOS enables (FOSx_EN, register 139). 00: FOS disable 01: FOS enabled by FOSx_EN
6:5	FOS_THR [1:0]	FOS_THR [1:0]. Frequency Offset at which FOS is declared: 00: ± 11 to 12 ppm Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK. 01: ± 48 to 49 ppm (SMC). 10: $\pm 30 \mathrm{ppm}$ SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK. 11: $\pm 200 \mathrm{ppm}$
4:3	VALTIME [1:0]	VALTIME [1:0]. Sets amount of time for input clock to be valid before the associated alarm is removed. 00: 2 ms 01: 100 ms 10: 200 ms 11: 13 s
2:0	LOCKT [2:0]	LOCKT [2:0]. Sets retrigger interval for one shot monitoring phase detector output. One shot is triggered by phase slip in DSPLL. Refer to the Family Reference Manual for more details. 000: 106 ms 001: 53 ms 010: 26.5 ms 011: 13.3 ms 100: 6.6 ms 101: 3.3 ms 110: 1.66 ms 111: $833 \mu \mathrm{~s}$

Register 20.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			ALRMOUT_PIN	CK3_BAD_PIN	CK2_BAD_PIN	CK1_BAD_PIN	LOL_PIN	INT_PIN
Type	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Reset value $=00111100$

Bit	Name	Function
7:6	Reserved	
5	ALRMOUT_PIN	ALRMOUT_PIN. The ALRMOUT status can be reflected on the ALRMOUT output pin. The request to reflect the interrupt status on this pin (INT_PIN=1) overrides the ALRMOUT_PIN request. 0: ALRMOUT not reflected on output pin. Output pin disabled if INT_PIN=0. 1: ALRMOUT reflected to output pin if INT_PIN=0. If INT_PIN=1, interrupt status appears on the output pin and ALRMOUT is not available on an output pin.
4	CK3_BAD_PIN	CK3_BAD_PIN. The CK3_BAD status can be reflected on the C3B output pin. 0: C3B output pin tristated 1: C3B status reflected to output pin
3	CK2_BAD_PIN	CK2_BAD_PIN. The CK2_BAD status can be reflected on the C2B output pin. 0: C2B output pin tristated 1: C2B status reflected to output pin
2	CK1_BAD_PIN	CK1_BAD_PIN. The CK1_BAD status can be reflected on the C1B output pin. 0: C1B output pin tristated 1: C1B status reflected to output pin
1	LOL_PIN	LOL_PIN. The LOL_INT status bit can be reflected on the LOL output pin. 0: LOL output pin tristated 1: LOL_INT status reflected to output pin
0	INT_PIN	INT_PIN. Reflects the interrupt status on the INT output pin. 0 : Interrupt status not displayed on INT output pin. If ALRMOUT_PIN $=0$, output pin is tristated. 1: Interrupt status reflected to output pin. ALRMOUT_PIN ignored.

Register 21.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				CK4_ACTV_PIN	CK3_ACTV_PIN	CK2_ACTV_PIN	CK1_ACTV_PIN	CKSEL_PIN
Type	R R	R	R/W	R/W	R/W	R/W	R/W	

Reset value = 11111111

Bit	Name	Function
7:5	Reserved	
4	CK4_ACTV_PIN	CK4_ACTV_PIN. If the CKSEL[1]/CK4_ACTV pin is functioning as the CK4_ACTV output (see CKSEL[1]/CK4_ACTV pin description on CK4_ACTV), the CK4_ACTV_REG status bit can be reflected to the CK4_ACTV output pin using the CK4_ACTV_PIN enable function. 0: CK4_ACTV output pin tristated 1: CK4_ACTV status reflected to output pin.
3	CK3_ACTV_PIN	CK3_ACTV_PIN. If the CKSEL[0]/CK3_ACTV pin is functioning as the CK3_ACTV output (see CKSEL[0]/CK3_ACTV pin description on CK3_ACTV), the CK3_ACTV_REG status bit can be reflected to the CK3_ACTV output pin using the CK3_ACTV_PIN enable function. 0: CK3_ACTV output pin tristated. 1: CK3_ACTV status reflected to output pin.
2	CK2_ACTV_PIN	CK2_ACTV_PIN. The CK2_ACTV_REG status bit can be reflected to the CK2_ACTV output pin using the CK2_ACTV_PIN enable function. 0: CK2_ACTV output pin tristated. 1: CK2_ACTV status reflected to output pin.
1	CK1_ACTV_PIN	CK1_ACTV_PIN. The CK1_ACTV_REG status bit can be reflected to the CK1_ACTV output pin using the CK1_ACTV_PIN enable function. 0: CK1_ACTV output pin tristated. 1: CK1_ACTV status reflected to output pin.
0	CKSEL_PIN	CKSEL_PIN. If manual clock selection is being used, clock selection can be controlled via the CKSEL_REG[1:0] register bits or the CKSEL[1:0] input pins. 0: CKSEL pins ignored. CKSEL_REG[1:0] register bits control clock selection. 1: CKSEL[1:0] input pins controls clock selection.

Register 22.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK_ACTV_POL	CK_BAD_POL	LOL_POL	INT_POL
Type	R	R	R	R	R / W	R / W	R / W	R / W

Reset value = 11011111

Bit	Name	Function
$7: 4$	Reserved	3 CK_ACTV_POL CK_ACTV_POL. Sets the active polarity for the CK1_ACTV, CK2_ACTV, CK3_ACTV, and CK4_ACTV signals when reflected on an output pin. 0: Active low 1: Active high 2 CK_BAD_POL CK_BAD_POL. Sets the active polarity for the C1B, C2B, C3B, and ALRMOUT signals when reflected on output pins. 0: Active low 1: Active high 1 LOL_POL LOL_POL. Sets the active polarity for the LOL status when reflected on an output pin. 0: Active low 1: Active high 0 INT_POL INT_POL. Sets the active polarity for the interrupt status when reflected on the INT_ALM output pin. 0: Active low 1: Active high

Register 23.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				LOS4_MSK	LOS3_MSK	LOS2_MSK	LOS1_MSK	LOSX_MSK
Type	R	R	R	R/W	R/W	R/W	R/W	R/W

Reset value $=00011111$

Bit	Name	Function
$7: 5$	Reserved	
4	LOS4_MSK	LOS4_MSK. Determines if a LOS on CKIN4 (LOS4_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS4_FLG register. 0: LOS4 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS4_FLG ignored in generating interrupt output.
3	LOS3_MSK	LOS3_MSK. Determines if a LOS on CKIN3 (LOS3_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS3_FLG register. 0: LOS3 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS3_FLG ignored in generating interrupt output.
2	LOS2_MSK	LOS2_MSK. Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS2_FLG register. 0: LOS2 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS2_FLG ignored in generating interrupt output.
1	LOS1_MSK	LOS1_MSK. Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOS1_FLG register. 0: LOS1 alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOS1_FLG ignored in generating interrupt output.
0	LOSX_MSK	LOSX_MSK. Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt. Writes to this register do not change the value held in the LOSX_FLG register. 0: LOSX alarm triggers active interrupt on INT output (if INT_PIN=1). 1: LOSX_FLG ignored in generating interrupt output.

Register 24.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				FOS4_MSK	FOS3_MSK	FOS2_MSK	FOS1_MSK	LOL_MSK
Type	R	R	R	R/W	R/W	R/W	R/W	R/W

Reset value = 00111111

Bit	Name	Function
$7: 5$	Reserved	
4	FOS4_MSK	FOS4_MSK. Determines if the FOS4_FLG is used to in the generation of an interrupt. Writes to this register do not change the value held in the FOS4_FLG register. 0: FOS4 alarm triggers active interrupt on INToutput (if INT_PIN = 1). 1: FOS4_FLG ignored in generating interrupt output.
3	FOS3_MSK	FOS3_MSK. Determines if the FOS3_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the FOS3_FLG register. 0: FOS3 alarm triggers active interrupt on INT output (if INT_PIN = 1). 1: FOS3_FLG ignored in generating interrupt output.
2	FOS2_MSK	FOS2_MSK. Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this reg- ister do not change the value held in the FOS2_FLG register. 0: FOS2 alarm triggers active interrupt on INT output (if INT_PIN = 1). 1: FOS2_FLG ignored in generating interrupt output.
1	FOS1_MSK	FOS1_MSK. Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg- ister do not change the value held in the FOS1_FLG register. 0: FOS1 alarm triggers active interrupt on INT output (if INT_PIN = 1). 1: FOS1_FLG ignored in generating interrupt output.
0	LOL_MSK	LOL_MSK. Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis- ter do not change the value held in the LOL_FLG register. 0: LOL alarm triggers active interrupt on INT output (if INT_PIN = 1). 1: LOL_FLG ignored in generating interrupt output.

Register 25.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N1_HS [2:0]		N0				
Type	R/W	RS [19:16]					

Reset value $=00100000$

Bit	Name	Function
7:5	N1_HS [2:0]	N1_HS [2:0]. Sets value for N1 high speed divider which drives NCn_LS ($n=1$ to 4) low-speed divider. 000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value. $\text { 001: N1 = } 5$ $\text { 010: N1 = } 6$ 011: $\mathrm{N} 1=7$ $\text { 100: N1 = } 8$ $\text { 101: N1 = } 9$ $\text { 110: N1 = } 10$ $\text { 111: N1 = } 11$
4	Reserved	
3:0	NC1_LS [19:16]	NC1_LS [19:0]. Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd. $00000000000000000000=1$ $00000000000000000001=2$ $00000000000000000011=4$ $00000000000000000101=6$ $11111111111111111111=2^{20}$ Valid divider values=[1, 2, 4, 6, $\left.\ldots, 2^{20}\right]$.

Register 26.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	NC1_LS [15:8]	NC1_LS [15:8]. See Register 25.	

Register 27.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC1_LS [7:0]							
Type	R/W							

Reset value $=00110001$

Bit	Name		Function
$7: 0$	NC1_LS [7:0]	NC1_LS [7:0]. See Register 25.	

Register 28.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						NC2_LS [19:16]		
Type	R	R	R	R	R / W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC1_LS [19:0]	NC2_LS [19:16]. Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd. $00000000000000000000=1$ $00000000000000000001=2$ $00000000000000000011=4$ $00000000000000000101=6$ \ldots
		$111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$

Register 29.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC2_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	NC2_LS [15:8]	NC2_LS [15:8]. See Register 28.	

Register 30.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	NC2_LS [7:0]						
Type	R/W						

Reset value $=00110001$

Bit	Name		Function
$7: 0$	NC2_LS [7:0]	NC2_LS [7:0]. See Register 28.	

Register 31.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						NC3_LS [19:16]		
Type	R	R	R	R	R / W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC3_LS [19:0]	NC3_LS [19:0. Sets value for NC3 low-speed divider, which drives CKOUT3 output. Must be 0 or odd. 0000000000000000000 = 1 $00000000000000000001=2$ $00000000000000000011=4$ $000000000000000000101=6$ \ldots $11111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$.

Register 32.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC3_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	NC3_LS [15:8]	NC3_LS [15:8]. See Register 31.	

Register 33.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	NC3_LS [7:0]						
Type	R/W						

Reset value $=00110001$

Bit	Name		Function
$7: 0$	NC3_LS [7:0]	NC3_LS [7:0]. See Register 31.	

Register 34.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						NC4_LS [19:16]		
Type	R	R	R	R	R/W			

Reset value $=00000000$

Bit	Name	Function
$7: 4$	Reserved	
$3: 0$	NC4_LS [19:0]	NC4_LS [19:0]. Sets value for NC4 low-speed divider, which drives CKOUT4 output. Must be 0 or odd. 00000000000000000000 $=1$ $00000000000000000001=2$ $000000000000000000011=4$ $000000000000000000101=6$
		\ldots
$11111111111111111111=2^{20}$		
Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$.		

Register 35.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC4_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	NC4_LS [15:8]	NC4_LS [15:8]. See Register 34.	

Register 36.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NC4_LS [7:0]							
Type	R/W							

Reset value $=00110001$

Bit	Name		Function
$7: 0$	NC4_LS [7:0]	NC4_LS [7:0]. See Register 34.	

Register 37.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						NC5_LS [19:16]		
Type	R	R	R	R	R/W			

Reset value $=00000000$

Bit	Name	Function
7:4	Reserved	
3:0	NC5_LS [19:0]	NC5_LS [19:0]. Sets value for NC5 low-speed divider, which drives CKOUT5 output. Must be 0 or odd. When CK_CONFIG=0: $00000000000000000000=1$ $00000000000000000001=2$ $000000000000000000011=4$ $000000000000000000101=6$ $111111111111111111111=2^{20}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{20}\right]$. When CK_CONFIG $=1$, maximum value limited to 2^{19}.: $00000000000000000000=1$ $00000000000000000001=2$ $000000000000000000011=4$ $000000000000000000101=6$ $011111111111111111111=2^{19}$ Valid divider values $=\left[1,2,4,6, \ldots, 2^{19}\right]$.

Register 38.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	NC5_LS [15:8]						
Type	R/W						

Reset value $=00000000$

Bit	Name		Function
$7: 0$	NC5_LS [15:8]	NC5_LS [15:8]. See Register 37.	

Register 39.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	NC5_LS [7:0]						
Type	R/W						

Reset value $=00110001$

Bit	Name		Function
$7: 0$	NC5_LS [7:0]	NC5_LS [7:0]. See Register 37.	

Register 40.

| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | D0 | Name | N2_HS [2:0] |
| :---: | :---: |
| Type | R/W |

Reset value $=11000000$

Bit	Name	Function
7:5	N2_HS [2:0]	N2_HS [2:0]. Sets value for N2 high speed divider which drives NCn_LS ($\mathrm{n}=1$ to 4) low-speed divider. 000:4 $001: 5$ 010:6 011:7 100:8 101:9 110:10 111:11.
4	Reserved	
3:0	N2_LS [19:16]	NC2_LS [19:0]. Sets value for N2 low-speed divider, which drives phase detector. $\begin{aligned} & 00000000000000000001=2 \\ & 000000000000000000011=4 \\ & 000000000000000000101=6 \end{aligned}$ $11111111111111111111=2^{20}$ Valid divider values $=\left[2,4,6, \ldots, 2^{20}\right]$.

Register 41.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N2_LS [15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	N2_LS [15:8]	N2_LS [15:8]. See Register 40.	

Register 42.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N2_LS [7:0]							
Type	R/W							

Reset value = 11111001

Bit	Name		Function
$7: 0$	N2_LS [7:0]	N2_LS [7:0]. See Register 40.	

Register 43.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N31[18:16]		
Type	R	R	R	R	R	R		

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N31 [18:0]	N31 [18:0]. Sets value for input divider for CKIN1. $0000000000000000000=1$ $0000000000000000001=2$
		\ldots
		1111111111111111111 $=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$.

Register 44.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N31 [15:8]						
Type	R/W						

Reset value $=00000000$

Bit	Name		Function
$7: 0$	N31 [15:8]	N31 [15:8]. See Register 43.	

Register 45.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N31 [7:0]							
Type	R/W							

Reset value $=00001001$

Bit	Name		Function
$7: 0$	N31 [7:0]	N31 [7:0]. See Register 43.	

Register 46.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N32_[18:16]		
Type	R	R	R	R	R	R / W		

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N32_[18:0]	N32_[18:0]. Sets value for input divider for CKIN2. 0000000000000000000 $=1$ $0000000000000000001=2$ $0000000000000000010=3$
		\ldots
$1111111111111111111=2^{19}$		
Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$.		

Register 47.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N32_[15:8]						
Type	R/W						

Reset value $=00000000$

Bit	Name		Function
$7: 0$	N32_[15:8]	N32_[15:8]. See Register 46.	

Register 48.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N32_[7:0]							
Type	R/W							

Reset value $=00001001$

Bit	Name		Function
$7: 0$	N32_[7:0]	N32_[7:0]. See Register 46.	

Register 49.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N33_[18:0]		
Type	R	R	R	R	R	R/W		

Reset value $=00000000$

Bit	Name	Function
18:0	N33_[18:0]	N33_[18:0]. Sets value for input divider for CKIN3. $\begin{aligned} & 0000000000000000000=1 \\ & 0000000000000000001=2 \\ & 0000000000000000010=3 \end{aligned}$ $1111111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$.

Register 50.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N33_[15:8]							
Type	R/W							

Reset value $=00000000$

Bit	Name		Function
$7: 0$	N33_[15:8]	N33_[15:8]. See Register 49.	

Register 51.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N33_[7:0]							
Type	R/W							

Reset value $=00001001$

Bit	Name		Function
$7: 0$	N33_[7:0]	N33_[7:0]. See Register 49.	

Register 52.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						N34_[18:16]		
Type	R	R	R	R	R / W			

Reset value $=00000000$

Bit	Name	Function
$7: 3$	Reserved	
$2: 0$	N34_[18:0]	N34_[18:0]. Sets value for input divider for CKIN4. $0000000000000000000=1$ $0000000000000000001=2$ $0000000000000000010=3$
		\ldots
		$11111111111111111=2^{19}$ Valid divider values $=\left[1,2,3, \ldots, 2^{19}\right]$.

Register 53.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	N34_[15:8]						
Type	R/W						

Reset value $=00000000$

Bit	Name		Function
$7: 0$	N34_[15:8]	N34_[15:8]. See Register 52.	

Register 54.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	N34_[7:0]							
Type	R/W							

Reset value $=00001001$

Bit	Name		Function
$7: 0$	N34_[15:8]	N34_[7:0]. See Register 52.	

Register 55.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CLKIN2RATE_[2:0]			CLKIN1RATE[2:0]		
Type	R	R	R/W			R/W		

Reset value $=00000000$

Bit	Name	Function
7:6	Reserved	
5:3	CLKIN2RATE[2:0]	CLKIN2RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. $\begin{aligned} & \text { 000: } 10-27 \mathrm{MHz} \\ & 001: 25-54 \mathrm{MHz} \\ & 002: 50-105 \mathrm{MHz} \\ & 003: 95-215 \mathrm{MHz} \\ & 004: 190-435 \mathrm{MHz} \\ & 005: 375-710 \mathrm{MHz} \\ & 006: \text { Reserved } \\ & 007: \text { Reserved } \end{aligned}$
2:0	CLKIN1RATE [2:0]	CLKIN1RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. $\begin{aligned} & 000: 10-27 \mathrm{MHz} \\ & 001: 25-54 \mathrm{MHz} \\ & 002: 50-105 \mathrm{MHz} \\ & 003: 95-215 \mathrm{MHz} \\ & 004: 190-435 \mathrm{MHz} \\ & 005: 375-710 \mathrm{MHz} \\ & 006: \text { Reserved } \\ & 007: \text { Reserved } \end{aligned}$

Register 56.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			CLKIN4RATE_[2:0]			CLKIN3RATE[2:0]		
Type	$R \quad \mathrm{R}$		R/W			R/W		

Reset value $=00000000$

Bit	Name	Function
7:6	Reserved	
5:3	CLKIN4RATE[2:0]	CLKIN4RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10-27 MHz 001: $25-54 \mathrm{MHz}$ 002: $50-105 \mathrm{MHz}$ 003: 95-215 MHz 004: $190-435 \mathrm{MHz}$ 005: 375-710 MHz 006: Reserved 007: Reserved
2:0	CLKIN3RATE [2:0]	CLKIN3RATE[2:0]. CKINn frequency selection for FOS alarm monitoring. 000: 10-27 MHz 001: 25-54 MHz 002: $50-105 \mathrm{MHz}$ 003: 95-215 MHz 004: 190-435 MHz 005: $375-710 \mathrm{MHz}$ 006: Reserved 007: Reserved

Register 128.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					CK4_ACTV_REG	CK3_ACTV_REG	CK2_ACTV_REG	CK1_ACTV_REG
Type	R							

Reset value $=00100000$

| Bit | Name | |
| :---: | :---: | :--- | :--- |
| $7: 4$ | Reserved | Function |
| 3 | CK4_ACTV_REG | CK4_ACTV_REG.
 Indicates if CKIN4 is currently the active clock for the PLL input.
 0: CKIN4 is not the active input clock. Either it is not selected or LOS4_INT is 1.
 $1:$ CKIN_4 is the active input clock. |
| 2 | CK3_ACTV_REG | CK3_ACTV_REG.
 Indicates if CKIN3 is currently the active clock for the PLL input.
 $0:$ CKIN3 is not the active input clock - either it is not selected or LOS3_INT is 1.
 $1:$ CKIN3 is the active input clock. |
| 1 | CK2_ACTV_REG | CK2_ACTV_REG.
 Indicates if CKIN2 is currently the active clock for the PLL input.
 $0:$ CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.
 $1:$ CKIN2 is the active input clock. |
| 0 | CK1_ACTV_REG | CK1_ACTV_REG.
 Indicates if CKIN1 is currently the active clock for the PLL input.
 0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.
 $1:$ CKIN1 is the active input clock. |

Register 129.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				LOS4_INT	LOS3_INT	LOS2_INT	LOS1_INT	LOSX_INT
Type	R							

Reset value = 00011110

Bit	Name	Function
$7: 5$	Reserved	
4	LOS4_INT	LOS4_INT. Indicates the LOS status on CKIN4. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN4 input.
3	LOS3_INT	LOS3_INT. Indicates the LOS status on CKIN3. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN3 input.
2	LOS2_INT	LOS2_INT. Indicates the LOS status on CKIN2. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN2 input.
1	LOS1_INT	LOS1_INT. Indicates the LOS status on CKIN1. 0: Normal operation. 1: Internal loss-of-signal alarm on CKIN1 input.
0	LOSX_INT	LOSX_INT. Indicates the LOS status of the external reference on the XA/XB pins. 0: Normal operation. 1: Internal loss-of-signal alarm on XA/XB reference clock input.
1		

Register 130.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		DIGHOLDVALID		FOS4_INT	FOS3_INT	FOS2_INT	FOS1_INT	LOL_INT
Type	R							

Reset value $=00000001$

Bit	Name	Function
7	Reserved	
6	DIGHOLDVALID	Digital Hold Valid. Indicates if the digital hold circuit has enough samples of a valid clock to meet digital hold specifications. 0: Indicates digital filter has not been filled. The digital hold output frequency (from the filter) is not valid. 1: Indicates digital hold filter has been filled. The digital hold output frequency is valid.
5	Reserved	
4	FOS4_INT	FOS4_INT. CKIN4 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN4 input.
3	FOS3_INT	FOS3_INT. CKIN3 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN3 input.
2	FOS2_INT	FOS2_INT. CKIN2 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN2 input.
1	FOS1_INT	FOS1_INT. CKIN1 Frequency Offset Status. 0: Normal operation. 1: Internal frequency offset alarm on CKIN1 input.
0	LOL_INT	LOL_INT. PLL Loss of Lock Status. 0: PLL locked. 1: PLL unlocked.

Register 131.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				LOS4_FLG	LOS3_FLG	LOS2_FLG	LOS1_FLG	LOSX_FLG
Type	R	R	R	R/W	R/W	R/W	R/W	R/W

Reset value $=00011111$

Bit	Name	Function
7:5	Reserved	
4	LOS4_FLG	LOS4_FLG. CKIN4 Loss-of-Signal Flag. 0 : Normal operation. 1: Held version of LOS4_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS4_MSK bit. Flag cleared by writing location to 0 .
3	LOS3_FLG	LOS3_FLG. CKIN3 Loss-of-Signal Flag. 0 : Normal operation. 1: Held version of LOS3_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS3_MSK bit. Flag cleared by writing location to 0 .
2	LOS2_FLG	LOS2_FLG. CKIN2 Loss-of-Signal Flag. 0 : Normal operation. 1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS2_MSK bit. Flag cleared by writing location to 0 .
1	LOS1_FLG	LOS1_FLG. CKIN1 Loss-of-Signal Flag. 0: Normal operation. 1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOS1_MSK bit. Flag cleared by writing location to 0 .
0	LOSX_FLG	LOSX_FLG. External reference (signal on pins XA/XB) Loss-of-Signal Flag. 0 : Normal operation. 1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by LOSX_MSK bit. Flag cleared by writing location to 0 .

Register 132.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			FOS4_FLG	FOS3_FLG	FOS2_FLG	FOS1_FLG	LOL_FLG	
Type	R	R	R/W	R/W	R/W	R/W	R/W	R

Reset value $=00000010$

Bit	Name	Function
7:6	Reserved	
5	FOS4_FLG	FOS4_FLG. CLKIN_4 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS4_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by FOS4_MSK bit. Flag cleared by writing location to 0 .
4	FOS3_FLG	FOS3_FLG. CLKIN_3 Frequency Offset Flag. 0 : Normal operation. 1: Held version of FOS3_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN=1) and if not masked by FOS3_MSK bit. Flag cleared by writing location to 0 .
3	FOS2_FLG	FOS2_FLG. CLKIN_2 Frequency Offset Flag. 0 : Normal operation. 1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is enabled (INT _PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing location to 0 .
2	FOS1_FLG	FOS1_FLG. CLKIN_1 Frequency Offset Flag. 0: Normal operation. 1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing location to 0 .
1	LOL_FLG	LOL_FLG. PLL Loss of Lock Flag. 0: PLL locked 1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing location to 0 .
0	Reserved	

Register 134.

Bit	D7	D6	D5	D4	D3	D2	D1
Name	PARTNUM_RO[11:4]						
Type	R						

Reset value $=00000100$

Bit	Name	Function	
$7: 0$	PARTNUM_RO [11:0]	PARTNUM_RO [11:0]. Device ID: $000001000100 ' b=S i 5369$	

Register 135.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PARTNUM_RO [3:0]				REVID_RO [3:0]			
Type	R				R			

Reset value $=01000010$

Bit	Name	Function
$7: 4$	PARTNUM_RO [3:0]	PARTNUM_RO [3:0]. See Register 134.
$3: 0$	REVID_RO [3:0]	REVID_RO [3:0]. Indicates revision number of device. 0000: Revision A 0001: Revision B 0010: Revision C Other codes: Reserved

Register 136.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RST_REG	ICAL						
Type	R/W	R/W	R	R	R	R	R	R

Reset value $=00000000$

Bit	Name	Function
7	RST_REG	$\begin{array}{l}\text { RST_REG. } \\ \text { Internal Reset. } \\ \text { 0: Normal operation. } \\ \text { 1: Reset of all internal logic. Outputs tristated or disabled during reset. }\end{array}$
6	ICAL	$\begin{array}{l}\text { ICAL. } \\ \text { Start an Internal Calibration Sequence. } \\ \text { For proper operation, the device must go through an internal calibration sequence. ICAL } \\ \text { is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is } \\ \text { complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be } \\ \text { present to begin ICAL. } \\ \text { Note: Any divider, CLINn_RATE or BWSEL_REG changes require an ICAL to take effect. } \\ \text { Changes in SFOUTn_REG, PD_CKn, or DSBLn_REG will cause a random change in skew } \\ \text { until an ICAL is completed. }\end{array}$
0: Normal operation.		
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-		
calibration, ICAL is internally reset to zero.		

Register 137.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Reserved	FASTLOCK						
Type	R	R/W						

Reset value $=00000000$

Bit	Name	Function
$7: 1$	Reserved	Do not modify.
0	FASTLOCK	This bit must be set to 1 to enable FASTLOCK. This improves initial lock time by dynamically changing the loop bandwidth.

Register 138.

\left.| Bit | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Reserved | | | | | LOS4_EN[1:1] | LOS3_EN[1:1] | LOS2_EN[1:1] | LOS1_EN [1:1] $\right]$ R/W

Reset value = 00001111

Bit	Name	Function
$7: 4$	Reserved	
3	LOS4_EN [1:0]	LOS4_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Man- ual for details.
2	LOS3_EN [1:0]	LOS3_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. $10:$ Enable LOSA monitoring. $11:$ Enable LOS monitoring.
		LOSA is a slower and less sensitive version of LOS. See the Family Reference Man- ual for details.

1	LOS2_EN [1:0]	LOS2_EN [1:0]. Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved.
		10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Man- ual for details.
0	LOS1_EN [1:0]	LOS1_EN [1:0].
	Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. $10:$ Enable LOSA monitoring.	
	11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the Family Reference Man- ual for details.	

Register 139.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	LOS4_EN [0:0]	LOS3_EN [0:0]	LOS2_EN [0:0]	LOS1_EN [0:0]	FOS4_EN	FOS3_EN	FOS2_EN	FOS1_EN
Type	R/W							

Reset value = 11111111

Bit	Name	Function
7	LOS4_EN [0:0]	LOS4_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
6	LOS3_EN [0:0]	LOS3_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
5	LOS2_EN [0:0]	LOS2_EN. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.
4	LOS1_EN [0:0]	LOS1_EN [0:0]. Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2). Note: LOS1_EN is split between two registers. 00: Disable LOS monitoring. 01: Reserved. 10: Enable LOSA monitoring. 11: Enable LOS monitoring. LOSA is a slower and less sensitive version of LOS. See the family reference manual for details.

Bit	Name	Function
3	FOS4_EN	FOS4_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.
2	FOS3_EN	FOS3_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.
1	FOS2_EN	FOS2_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.
0	FOS1_EN	FOS1_EN. Enables FOS on a Per Channel Basis. 0: Disable FOS monitoring. 1: Enable FOS monitoring.

Register 140.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW1[7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW1[7:0]	INDEPENDENTSKEW1 [7:0]. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider.

Register 141.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW2[7:0]							
Type	R/W							

Reset value $=00000001$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW2[7:0]	INDEPENDENTSKEW2. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider.

Register 142.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	INDEPENDENTSKEW3 [7:0]								
Type	R/W								

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW3[7:0]	INDEPENDENTSKEW3 . 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider.

Register 143.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW4[7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPEND-ENTSKEW4[7:0]	INDEPENDENTSKEW4. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider.

Register 144.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	INDEPENDENTSKEW5[7:0]							
Type	R/W							

Reset value $=00000000$

Bit	Name	Function
$7: 0$	INDEPENDENTSKEW5[7:0]	INDEPENDENTSKEW5. 8 bit field that represents a twos complement of the phase offset in terms of clocks from the high speed output divider when CK_CONFIG $=0$.

Table 8. CKOUT_ALWAYS_ON and SQICAL Truth Table

CKOUT_ALWAYS_ON	SQICAL	Results	Output to Output Skew Preserved?
0	0	CKOUT OFF until after the first ICAL	N
0	1	CKOUT OFF until after the first successful ICAL (i.e., when LOL is low)	Y
1	0	CKOUT always ON, including during an ICAL	N
1	1	CKOUT always ON, including during an ICAL	Y

Table 9 lists all of the register locations that should be followed by an ICAL after their contents are changed.

Table 9. Register Locations Requiring ICAL

Addr	Register
0	BYPASS_REG
0	CKOUT_ALWAYS_ON
1	CK_PRIOR4
1	CK_PRIOR3
1	CK_PRIOR2
1	CK_PRIOR1
2	BWSEL_REG
4	HIST_DEL
5	ICMOS
7	FOSREFSEL
9	HIST_AVG
10	DSBL5_REG
10	DSBL4_REG
10	DSBL3_REG
10	DSBL2_REG
10	DSBL1_REG
11	PD_CK2
11	PD_CK1
19	FOS_EN
19	FOS_THR
19	VALTIME
19	LOCKT
25	N1_HS
26	NC1_LS
28	NC2_LS
31	NC3_LS
34	NC4_LS
37	NC5_LS

Table 9. Register Locations Requiring ICAL

Addr	Register
40	N2_HS
40	N2_LS
43	N31
46	N32
49	N33
51	N34
55	CLKIN2RATE
55	CLKIN1RATE
56	CLKIN4RATE
56	CLKIN3RATE

6. Pin Descriptions: Si5369

Table 10. Si5369 Pin Descriptions

Pin \#	Pin Name	I/O	Signal Level	
$1,2,4,20$,	NC			Description
$22,23,24$,				
$25,37,47$,				No Connect.
$48,50,51$,				
$52,53,56$,				
$66,67,72$,				
$73,74,75$,				
$80,85,95$				
3				

Table 10. Si5369 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
$\begin{gathered} \hline 5,6,15,27, \\ 62,63,76, \\ 79,81,84, \\ 86,89,91, \\ 94,96,99, \\ 100 \end{gathered}$	V_{DD}	Vdd	Supply	$V_{D D}$. The device operates from a $1.8,2.5$, or 3.3 V supply. Bypass capacitors should be associated with the following V_{DD} pins:
$\begin{gathered} \hline 7,8,14,18, \\ 19,21,26, \\ 28,31,33, \\ 36,38,41, \\ 43,46,54, \\ 55,64,65 \end{gathered}$	GND	GND	Supply	Ground. This pin must be connected to system ground. Minimize the ground path impedance for optimal performance.
9	C1B	0	LVCMOS	CKIN1 Invalid Indicator. This pin performs the CK1_BAD function if $C K 1 _B A D _P I N=1$ and is tristated if CK1_BAD_PIN $=0$. Active polarity is controlled by CK_BAD_POL. $0=$ No alarm on CKIN1. 1 = Alarm on CKIN1.
10	C2B	O	LVCMOS	CKIN2 Invalid Indicator. This pin performs the CK2_BAD function if $C K 2 _B A D _P I N=1$ and is tristated if CK2_BAD_PIN $=0$. Active polarity is controlled by $C K _B A D _P O L$. $0=$ No alarm on CKIN2. 1 = Alarm on CKIN2.
11	C3B	0	LVCMOS	CKIN3 Invalid Indicator. This pin performs the CK3_BAD function if $C K 3 _B A D _P I N=1$ and is tristated if $C K 3 _B A D _P I N=0$. Active polarity is controlled by $C K _B A D _P O L$. $0=$ No alarm on CKIN3. 1 = Alarm on CKIN3.
12	INT_ALM	0	LVCMOS	Interrupt/Alarm Output Indicator. This pin functions as a maskable interrupt output with active polarity controlled by the INT_POL register bit. The INT output function can be turned off by setting $I N T_{-} P I N=0$. If the ALRMOUT function is desired instead on this pin, set $A L R M O U T _P I N=1$ and $I N T _P I N=0$. $0=A L R M O U T$ not active. 1 = ALRMOUT active. The active polarity is controlled by $C K _B A D _P O L$. If no function is selected, the pin tristates.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.				

Table 10. Si5369 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	LVCMOS 13 57	CSO_C3A CS1_C4A

Table 10. Si5369 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
49	LOL	O	LVCMOS	PLL Loss of Lock Indicator. This pin functions as the active high PLL loss of lock indicator if the LOL_PIN register bit is set to one. 0 = PLL locked. 1 = PLL unlocked. If LOL_PIN $=0$, this pin will tristate. Active polarity is controlled by the LOL_POL bit. The PLL lock status will always be reflected in the LOL_INT read only register bit.
58	C1A	O	LVCMOS	CKIN1 Active Clock Indicator. This pin serves as the CKIN1 active clock indicator. The CK1_ACTV_REG bit always reflects the active clock status for CKIN1. If CK1_ACTV_PIN $=1$, this status will also be reflected on the C1A pin with active polarity controlled by the $C K _A C T V _P O L$ bit. If $C K 1 _A C T V _P I N=0$, this output tristates.
59	C2A	O	LVCMOS	CKIN2 Active Clock Indicator. This pin serves as the CKIN2 active clock indicator. The CK2_ACTV_REG bit always reflects the active clock status for CKIN_2. If CK2_ACTV_PIN = 1, this status will also be reflected on the C 2 A pin with active polarity controlled by the $C K _A C T V _P O L$ bit. If $C K 2 _A C T V _P I N=0$, this output tristates.
60	SCL	I	LVCMOS	Serial Clock. This pin functions as the serial port clock input for both SPI and $1^{2} \mathrm{C}$ modes. This pin has a weak pull-down.
61	SDA_SDO	I/O	LVCMOS	Serial Data. In $I^{2} \mathrm{C}$ microprocessor control mode (CMODE $=0$), this pin functions as the bidirectional serial data port. In SPI microprocessor control mode (CMODE = 1), this pin functions as the serial data output.
$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	I	LVCMOS	Serial Port Address. In $I^{2} \mathrm{C}$ microprocessor control mode (CMODE $=0$), these pins function as hardware controlled address bits. The $I^{2} \mathrm{C}$ address is 1101 [A2] [A1] [A0]. In SPI microprocessor control mode (CMODE = 1), these pins are ignored. This pin has a weak pull-down.
70	A2_SS	I	LVCMOS	Serial Port Address/Slave Select. In $I^{2} \mathrm{C}$ microprocessor control mode (CMODE $=0$), this pin functions as a hardware controlled address bit [A2]. In SPI microprocessor control mode (CMODE = 1), this pin functions as the slave select input. This pin has a weak pull-down.
71	SDI	I	LVCMOS	Serial Data In. In SPI microprocessor control mode (CMODE = 1), this pin functions as the serial data input. In $I^{2} C$ microprocessor control mode ($\mathrm{CMODE}=0$), this pin is ignored. This pin has a weak pull-down.

Table 10. Si5369 Pin Descriptions (Continued)

Pin \#	Pin Name	I/O	Signal Level	Description
$\begin{aligned} & 77 \\ & 78 \end{aligned}$	CKOUT3+ CKOUT3-	0	MULTI	Clock Output 3. Differential clock output. Output signal format is selected by SFOUT3_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
$\begin{aligned} & 82 \\ & 83 \end{aligned}$	CKOUT1CKOUT1+	0	MULTI	Clock Output 1. Differential clock output. Output signal format is selected by SFOUT1_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
$\begin{aligned} & \hline 87 \\ & 88 \end{aligned}$	$\begin{aligned} & \hline \text { FS_OUT- } \\ & \text { FS_OUT+ } \end{aligned}$	O	MULTI	Frame Sync Output. Differential frame sync output or fifth high-speed clock output. Output signal format is selected by SFOUT_FSYNC_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs. Duty cycle and active polarity are controlled by FSYNC_PW and FSYNC_POL bits, respectively. Detailed operations and timing characteristics for these pins may be found in the Any-Frequency Precision Clock Family Reference Manual.
90	CMODE	I	LVCMOS	Control Mode. Selects $I^{2} \mathrm{C}$ or SPI control mode for the device. $0=I^{2} C$ Control Mode. 1 = SPI Control Mode. This pin must be tied high or low.
$\begin{aligned} & 92 \\ & 93 \end{aligned}$	CKOUT2+ CKOUT2-	0	MULTI	Clock Output 2. Differential clock output. Output signal format is selected by SFOUT2_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
$\begin{aligned} & 97 \\ & 98 \end{aligned}$	CKOUT4CKOUT4+	0	MULTI	Clock Output 4. Differential clock output. Output signal format is selected by SFOUT4_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.
GND PAD	GND PAD	GND	Supply	Ground Pad. The ground pad must provide a low thermal and electrical impedance to a ground plane.

7. Ordering Guide

Ordering Part Number	Output Clock Frequency Range	Package	ROHS6, Pb-Free	Temperature Range
Si5369A-C-GQ	$2 \mathrm{kHz}-945 \mathrm{MHz}$ $970-1134 \mathrm{MHz}$ $1.213-1.417 \mathrm{GHz}$	$100-$ Pin $14 \times 14 \mathrm{~mm}$ TQFP	Yes	-40 to $85^{\circ} \mathrm{C}$
Si5369B-C-GQ	$2 \mathrm{kHz}-808 \mathrm{MHz}$	$100-$ Pin $14 \times 14 \mathrm{~mm}$ TQFP	Yes	-40 to $85^{\circ} \mathrm{C}$
Si5369C-C-GQ	$2 \mathrm{kHz}-346 \mathrm{MHz}$	$100-$ Pin $14 \times 14 \mathrm{~mm}$ TQFP	Yes	-40 to $85^{\circ} \mathrm{C}$
Si5369D-C-GQ	$2 \mathrm{kHz}-243 \mathrm{MHz}$	$100-$ Pin $14 \times 14 \mathrm{~mm}$ TQFP	Yes	-40 to $85^{\circ} \mathrm{C}$
Note: Add an R at the end of the device to denote tape and reel options (for example, Si5369-C-GMR).				

8. Package Outline: 100-Pin TQFP

Figure 8 illustrates the package details for the Si 5369 . Table 11 lists the values for the dimensions shown in the illustration.

SECTIGN A-A

SECTIDV B-B

Figure 8. 100-Pin Thin Quad Flat Package (TQFP)
Table 11. 100-Pin Package Diagram Dimensions

Dimension	Min	Nom	Max	Dimension	Min	Nom	Max
A	-	-	1.20	E	16.00 BSC.		
A1	0.05	-	0.15	E1	14.00 BSC.		
A2	0.95	1.00	1.05	E2	3.85	4.00	4.15
b	0.17	0.22	0.27	L	0.45	0.60	0.75
c	0.09	-	0.20	aaa	-	-	0.20
D	16.00 BSC.			bbb	-	-	0.20
D1	14.00 BSC .			ccc	-	-	0.08
D2	3.85	4.00	4.15	ddd	-	-	0.08
e	0.50 BSC .			θ	0°	$3.5{ }^{\circ}$	7°

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This package outline conforms to JEDEC MS-026, variant AED-HD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Recommended PCB Layout

Figure 9. PCB Land Pattern Diagram

Table 12. PCB Land Pattern Dimensions

Dimension	MIN	MAX
e	0.50 BSC .	
E	15.40 REF.	
D	15.40 REF.	
E2	3.90	4.10
D2	3.90	4.10
GE	13.90	-
GD	13.90	-
X	-	0.30
Y	1.50 REF.	
ZE	-	16.90
ZD	-	16.90
R1	0.15 REF	
R2	-	1.00

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-7351 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm .

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be $1: 1$ for the perimeter pads.
9. A 4×4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad.

Card Assembly

10. A No-Clean, Type-3 solder paste is recommended.
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10. Top Marking

\(\left.$$
\begin{array}{|l|c|c|}\hline \text { Mark Method: } & \text { Laser } & \\
\hline \text { Logo Size: } & \begin{array}{c}9.2 \times 3.1 \mathrm{~mm} \\
\text { Center-Justified }\end{array} & \begin{array}{c}3.0 \text { Point (1.07 mm) } \\
\text { Right-Justified }\end{array}
$$

\hline Font Size: \& Device Part Number \& See "7. Ordering Guide" on page 77.\end{array}\right]\)| Assigned by the Assembly Supplier. |
| :---: |
| Line 1 Marking: |
| Line 2 Marking: |

Document Change List

Revision 0.1 to Revision 0.4

- Updated Table 4, "AC Specifications," on page 10.
- Added table note.

Notes:

Contact Information

Silicon Laboratories Inc.

400 West Cesar Chavez

Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

