

PRECISION CLOCK JITTER ATTENUATOR

Description

The Si5316 is a low jitter, precision jitter attenuator for high-speed communication systems, including OC-48, OC-192, 10G Ethernet, and 10G Fibre Channel. The Si5316 accepts dual clock inputs in the 19, 38, 77, 155, 311, or 622 MHz frequency range and generates a jitter-attenuated clock output at the same frequency. Within each of these clock ranges, the device can be tuned approximately 15% higher than nominal SONET/SDH frequencies, up to a maximum of 710 MHz in the 622 MHz range. The Si5316 is based on Silicon Laboratories' 3rd-generation DSPLL® technology. which provides any-rate frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5316 is ideal for providing jitter attenuation in high performance timing applications.

Applications

- Optical modules
- SONET/SDH OC-48/OC-192/STM-16/STM-64 line cards
- 10GbE, 10GFC line cards
- ITU G.709 line cards
- Wireless basestations

- Test and measurement
- Synchronous Ethernet

Features

- Fixed frequency jitter attenuator with selectable clock ranges at 19, 38, 77, 155, 311, and 622 MHz (710 MHz max)
- Support for SONET, 10GbE, 10GFC, and corresponding FEC rates
- Ultra-low jitter clock output with jitter generation as low as 0.3 ps_{RMS} (50 kHz–80 MHz)
- Integrated loop filter with selectable loop bandwidth (100 Hz to 7.9 kHz)
- Meets OC-192 GR-253-CORE jitter specifications
- Dual clock inputs with integrated clock select mux
- One clock input can be 1x, 4x, or 32x the frequency of the second clock input
- Single clock output with selectable signal format: LVPECL, LVDS, CML, CMOS
- LOL, LOS alarm outputs
- Pin programmable settings
- On-chip voltage regulator for 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10% operation
- Small size (6 x 6 mm 36-lead QFN)
- Pb-free, RoHS compliant

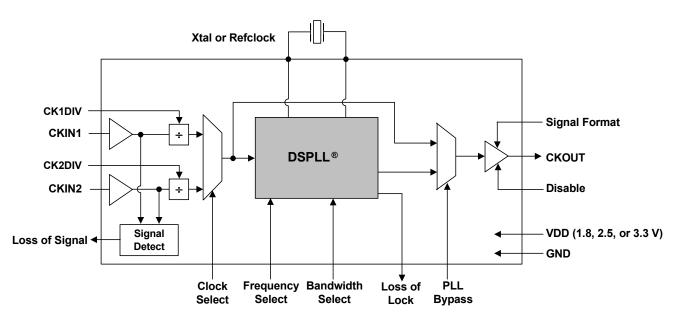


Table 1. Performance Specifications¹

 $(V_{DD} = 1.8 \pm 5\%, 2.5 \pm 10\%, \text{ or } 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 85 \text{ °C})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Temperature Range	T _A		-40	25	85	°C
Supply Voltage	V _{DD}		2.97	3.3	3.63	V
			2.25	2.5	2.75	V
			1.71	1.8	1.89	V
Supply Current	I _{DD}	f _{OUT} = 622.08 MHz	_	217	243	mA
		LVPECL format output				
		f _{OUT} = 19.44 MHz		194	220	mA
		CMOS format output				
		Disable Mode		165	215	mA
Input/Output Clock Fre-	CK _F	FRQSEL[1:0] = LL	19.38	_	22.28	MHz
quency (CKIN1, CKIN2,		FRQSEL[1:0] = LM	38.75	_	44.56	
CKOUT)		FRQSEL[1:0] = LH	77.5	_	89.13	
		FRQSEL[1:0] = ML	155.0	_	178.25	
		FRQSEL[1:0] = MM	310.0	_	356.5	
		FRQSEL[1:0] = MH	620.0	_	710.0	
3-Level Input Pins						
Input Mid Current	I_{MM}	See Note 2.	-2	_	2	μA
Input Clocks (CKIN1, CKIN	2)					
Differential Voltage Swing	CKN _{DPP}		0.25	_	1.9	V_{PP}
Common Mode Voltage	CKN _{VCM}	1.8 V ±5%	0.9	_	1.4	V
		2.5 V ±10%	1.0	_	1.7	V
		3.3 V ±10%	1.1	_	1.95	V
Rise/Fall Time	CKN _{TRF}	20–80%		_	11	ns
Duty Cycle	CKN _{DC}	Whichever is smaller	40	_	60	%
(Minimum Pulse Width)			2	_	_	ns
Output Clock (CKOUT)						
Common Mode	V _{OCM}	LVPECL	V _{DD} – 1.42	_	V _{DD} – 1.25	V
Differential Output Swing	V _{OD}	100 Ω load	1.1	_	1.9	V_{PP}
Single Ended Output Swing	V _{SE}	line-to-line	0.5	_	0.93	V
Rise/Fall Time	CKO _{TRF}	20–80%	_	230	350	ps
Duty Cycle Uncertainty	CKO _{DC}	LVPECL	-40	_	40	ps
		Differential 100 Ω				
		line-to-line;				
		measured at 50% point				
PLL Performance						
Jitter Generation	J_GEN	50 kHz-80 MHz	_	0.32	0.42	ps rms
LVPECL output,		12 kHz–20 MHz	_	0.31	0.41	ps rms
$f_{IN} = f_{OUT} = 622.08$						
BW[1:0] = HM						
Notes:						

Notes:

- 1. For a more comprehensive listing of device specifications, please consult the Silicon Laboratories Any-Rate Precision Clock Family Reference Manual. This document can be downloaded from www.silabs.com/timing.
- 2. This is the amount of leakage that the 3-level input can tolerate from an external driver. See the Family Reference Manual. In most designs, an external resistor voltage divider is recommended.

Table 1. Performance Specifications (Continued) (V_{DD} = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, T_A = -40 to 85 °C)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Jitter Transfer	J_{PK}		_	0.05	0.1	dB
External Reference Jitter Transfer	J _{PKEXTN}			30		kHz
Phase Noise	CKO _{PN}	100 Hz offset	_	– 65	-50	dBc/Hz
$f_{IN} = f_{OUT} = 622.08$		1 kHz offset	_	- 95	-87	dBc/Hz
		10 kHz offset	_	-110	-100	dBc/Hz
		100 kHz offset	_	-117	-110	dBc/Hz
		1 MHz offset	_	-130	-125	dBc/Hz
Subharmonic Noise f _{IN} = f _{OUT} = 622.08	SP _{SUBH}	Phase Noise @ 100 kHz Offset	_	-90	-85	dBc
Spurious Noise	SP _{SPUR}	Max spur @ n x F3	_	-98	- 75	dBc
f _{IN} = f _{OUT} = 622.08		(n ≥ 1, n x F3 < 100 MHz)				
Package						
Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still Air	_	38		°C/W

Notes:

- 1. For a more comprehensive listing of device specifications, please consult the Silicon Laboratories Any-Rate Precision Clock Family Reference Manual. This document can be downloaded from www.silabs.com/timing.
- 2. This is the amount of leakage that the 3-level input can tolerate from an external driver. See the Family Reference Manual. In most designs, an external resistor voltage divider is recommended.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to 3.6	V
LVCMOS Input Voltage	V _{DIG}	-0.3 to (V _{DD} + 0.3)	V
Operating Junction Temperature	T _{JCT}	-55 to 150	°C
Storage Temperature Range	T _{STG}	-55 to 150	°C
ESD HBM Tolerance (100 pF, 1.5 kΩ); All pins except CKIN+/CKIN–		2	kV
ESD MM Tolerance; All pins except CKIN+/CKIN-		200	V
ESD HBM Tolerance (100 pF, 1.5 kΩ); CKIN+/CKIN–		700	V
ESD MM Tolerance; CKIN+/CKIN-		150	V
Latch-Up Tolerance		JESD78 Compl	iant

Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

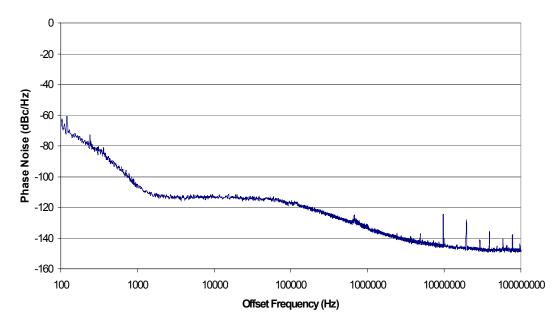
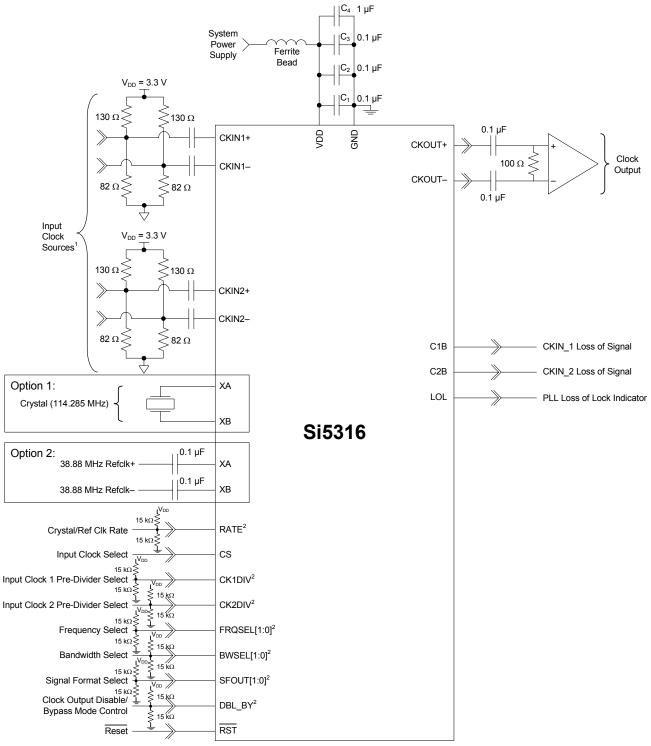



Figure 1. Typical Phase Noise Plot

Jitter Band	Jitter, RMS
Brick Wall, 100 Hz to 100 MHz	1,279 fs
SONET_OC48, 12 kHz to 20 MHz	315 fs
SONET_OC192_A, 20 kHz to 80 MHz	335 fs
SONET_OC192_B, 4 MHz to 80 MHz	194 fs
SONET_OC192_C, 50 kHz to 80 MHz	318 fs
Brick Wall, 800 Hz to 80 MHz	343 fs

Notes: 1. Assumes differential LVPECL termination (3.3 V) on clock inputs.

2. Denotes 3-level input pins with states designated as L (ground), M ($V_{DD}/2$), and H (V_{DD}).

Figure 2. Si5316 Typical Application Circuit

1. Functional Description

The Si5316 is a precision jitter attenuator for high-speed communication systems, including OC-48/STM-16, OC-192/STM-64, 10G Ethernet, and 10G Fibre Channel. The Si5316 accepts dual clock inputs in the 19, 38, 77, 155, 311, or 622 MHz frequency range and generates a jitter-attenuated clock output at the same frequency. Within each of these clock ranges, the device can be tuned approximately 15% higher than nominal SONET/SDH frequencies, up to a maximum of 710 MHz in the 622 MHz range. The Si5316 is based on DSPLL[®] Silicon Laboratories' 3rd-generation technology, which provides any-rate frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and loop filter components. For applications which require input clocks at different frequencies, the frequency of CKIN1 can be 1x, 4x, or 32x the frequency of CKIN2 as specified by the CK1DIV and CK2DIV inputs.

The Si5316 PLL loop bandwidth is selectable via the BWSEL[1:0] pins and supports a range from 100 Hz to 7.9 kHz. To calculate potential loop bandwidth values for a given input/output clock frequency, Silicon Laboratories offers a PC-based software utility, DSPLLsim, that calculates valid loop bandwidth settings automatically. This utility can be downloaded from http://www.silabs.com/timing; click on Documentation.

The Si5316 supports manual active input clock selection. The Si5316 monitors both input clocks for loss-of-signal and provides a LOS alarm when it detects missing pulses on either input clock. Hitless switching is not supported by the Si5316. During a clock transition, the phase of the output clock will slew at a rate defined by the PLL loop bandwidth until the original input clock phase to output clock phase is restored. The device monitors the lock status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock.

The Si5316 has one differential clock output. The electrical format of the clock output is programmable to support LVPECL, LVDS, CML, or CMOS loads. For system-level debugging, a bypass mode is available which drives the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8, 2.5, or 3.3 V supply.

1.1. External Reference

An external, 38.88 MHz clock or a low-cost 114.285 MHz 3rd overtone crystal is used as part of a fixed-frequency oscillator within the DSPLL. This external reference is required for the device to operate. Silicon Laboratories recommends using a high quality crystal. Specific recommendations may be found in the Family Reference Manual. An external 38.88 MHz clock from a high quality OCXO or TCXO can also be used as a reference for the device.

In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference when the DSPLL is in digital hold will be tracked by the output of the device. Note that crystals can have temperature sensitivities.

1.2. Further Documentation

Consult the Silicon Laboratories Any-Rate Precision Clock Family Reference Manual (FRM) for detailed information about the Si5316. Additional design support is available from Silicon Laboratories through your distributor.

Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration, including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from http://www.silabs.com/timing; click on Documentation.

2. Pin Descriptions: Si5316

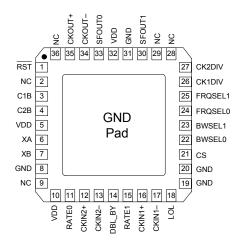


Table 3. Si5316 Pin Descriptions

Pin#	Pin Name	I/O	Signal Level	Description
1	RST		LVCMOS	External Reset.
				Active low input that performs external hardware reset of device. Resets all internal logic to a known state. Clock outputs are tristated during reset. After rising edge of RST signal, the Si5316 will perform an internal self-calibration when a valid signal is present. This pin has a weak pull-up.
2, 9, 28,	NC	_	_	No Connect.
29, 36				These pins must be left unconnected for normal operation.
3	C1B	0	LVCMOS	CKIN1 Loss of Signal.
				Active high Loss-of-signal indicator for CKIN1. Once triggered, the alarm will remain active until CKIN1 is validated. 0 = CKIN1 present 1 = LOS on CKIN1
4	C2B	0	LVCMOS	CKIN2 Loss of Signal.
				Active high Loss-of-signal indicator for CKIN2. Once triggered, the alarm will remain active until CKIN2 is validated. 0 = CKIN2 present 1 = LOS on CKIN2
5, 10, 32	V_{DD}	V_{DD}	Supply	Supply.
				The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following V_{DD} pins: $\begin{array}{ccc} 5 & 0.1~\mu F \\ 10 & 0.1~\mu F \end{array}$
				32 0.1 μF
				A 1.0 µF should also be placed as close to device as is practical.

*Note: Denotes 3-Level input pin with states designated as L (ground), M (VDD/2), and H (VDD).

Table 3. Si5316 Pin Descriptions (Continued)

Pin#	Pin Name	I/O	Signal Level	<u>-</u>
7	XB	I	Analog	External Crystal or Reference Clock.
6	XA			External crystal should be connected to these pins to use internal oscillator based reference. Refer to Family Reference Manual for interfacing to an external reference. External reference must be from a high-quality clock source (TCXO, OCXO). Frequency of crystal or external clock is set by the RATE pins.
8, 19*,	GND	GND	Supply	Ground.
20*, 31				Must be connected to system ground. Minimize the ground path impedance for optimal performance of this device. Grounding these pins does not eliminate the requirement to ground the GND PAD on the bottom of the package. *Note: May be left NC.
11	RATE0	I	3-Level*	External Crystal or Reference Clock Rate.
15	RATE1			Three level inputs that select the type and rate of external crystal or reference clock to be applied to the XA/XB port. Refer to the Family Reference Manual for settings. These pins have both a weak pull-up and a weak pull-down; they default to M. The "HH" setting is not supported. Some designs may require an external resistor voltage divider when
				driven by an active device that will tri-state.
12 13	CKIN2+ CKIN2-	I	Multi	Clock Input 2. Differential input clock. This input can also be driven with a single-
				ended signal.
14	DBL_BY	1	3-Level*	Output Disable/Bypass Mode Control. Controls enable of CKOUT divider/output buffer path and PLL bypass mode. L = CKOUT enabled M = CKOUT disabled H = Bypass mode with CKOUT enabled This pin has a weak pull-up and weak pull-down and defaults to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
16	CKIN1+	I	Multi	Clock Input 1.
17	CKIN1-			Differential input clock. This input can also be driven with a single-ended signal.
18	LOL	0	LVCMOS	PLL Loss of Lock Indicator. This pin functions as the active high PLL loss of lock indicator. 0 = PLL locked 1 = PLL unlocked
21	CS	I	LVCMOS	Input Clock Select.
				This pin functions as the input clock selector. This input is internally deglitched to prevent inadvertent clock switching during changes in the CKSEL input state. 0 = Select CKIN1
				1 = Select CKIN2
				Must be driven high or low.

Table 3. Si5316 Pin Descriptions (Continued)

Pin#	Pin Name	I/O	Signal Level	Description
23	BWSEL1	I	3-Level	Bandwidth Select.
22	BWSEL0			Three level inputs that select the DSPLL closed loop bandwidth. Detailed operations and timing characteristics for these pins may be found in the Any-Rate Precision Clock Family Reference Manual. These pins are both pull-ups and pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
25	FRQSEL1	I	3-Level	Frequency Select.
24	FRQSEL0			Sets the output frequency of the device. When the frequency of CKIN1 is not equal to CKIN2, the lower frequency input clock must be equal to the output clock frequency. These pins have both weak pull-ups and weak pull-downs and default to M. Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
26	CK1DIV	ı	3-Level	Input Clock 1 Pre-Divider Select.
				Pre-divider on CKIN1. Used with CK2DIV to divide input clock frequencies to a common value. L = CKIN1 input divider set to 1.
				M = CKIN1 input divider set to 4.
				H = CKIN1 input divider set to 32.
				This pin has a weak pull-up and weak pull-down and defaults to M.
				Some designs may require an external resistor voltage divider when driven by an active device that will tri-state.
27	CK2DIV	I	3-Level	Input Clock 2 Pre-Divider Select.
				Pre-divider on CKIN2. Used with CK1DIV to divide input clock frequencies to a common value.
				L = CKIN2 input divider set to 1.
				M = CKIN2 input divider set to 4.
				H = CKIN2 input divider set to 32.
				This pin has a weak pull-up and weak pull-down and defaults to M.
				Some designs may require an external resistor voltage divider when
				driven by an active device that will tri-state.
*Noto: Den	notes 3-l evel i	nnut nin	with states design	consted as L (ground), M (VDD/2), and H (VDD)

*Note: Denotes 3-Level input pin with states designated as L (ground), M (VDD/2), and H (VDD).

Table 3. Si5316 Pin Descriptions (Continued)

Pin#	Pin Name	I/O	Signal Level		Des	cription	
33	SFOUT0		3-Level	Signal Format	Select.		
30	SFOUT1			mode voltage a include LVPECI	nd differential sw L, LVDS, and CM	e output signal format (col ring) for CKOUT. Valid set IL. Also includes selection I tristate/sleep mode.	ttings
					SFOUT[1:0]	Signal Format	<u> </u>
					HH	LVDS	
					НМ	Reserved	
					HL	CML	
					МН	LVPECL	
					MM	Reserved	
					ML	LVDS—low swing	
					LH	CMOS	
					LM	Disabled	
					LL	Reserved	
				These pins have default to M.	e both weak pull-	ups and weak pull-downs	s and
					may require an extive device that w	xternal resistor voltage di vill tri-state.	vider when
34	CKOUT-	0	Multi	Clock Output.			
35	CKOUT+			Differential output clock with a frequency selected from a table of values. Output signal format is selected by SFOUT pins. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical single-ended clock outputs.			
GND PAD	GND	GND	Supply	Ground Pad.			
				The ground pad must provide a low thermal and electrical impedance to a ground plane.			
*Note: Den	otes 3-Level i	input pin	with states design	gnated as L (grour	nd), M (VDD/2), and	d H (VDD).	

3. Ordering Guide

Ordering Part Number	Package	ROHS6, Pb-Free	Temperature Range
Si5316-C-GM	36-Lead 6 x 6 mm QFN	Yes	–40 to 85 °C

4. Package Outline: 36-Lead QFN

Figure 3 illustrates the package details for the Si5316. Table 4 lists the values for the dimensions shown in the illustration.

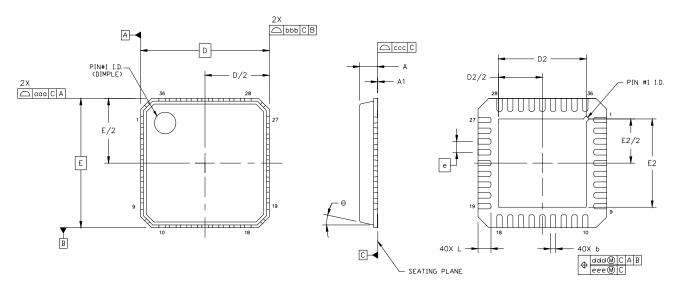


Figure 3. 36-Pin Quad Flat No-lead (QFN)

	•			
Iahle	4	Package	I)im	ancione
IUDIC	т.	I ackage		

Symbol	Millimeters				
	Min	Nom	Max		
Α	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D		6.00 BSC			
D2	3.95	4.10	4.25		
е	0.50 BSC				
Е	6.00 BSC				
E2	3.95	4.10	4.25		

Symbol	Millimeters				
	Min	Nom	Max		
L	0.50	0.60	0.70		
θ	_		12°		
aaa	_		0.10		
bbb	_		0.10		
CCC	_		0.08		
ddd	_	_	0.10		
eee		_	0.05		

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

5. Recommended PCB Layout

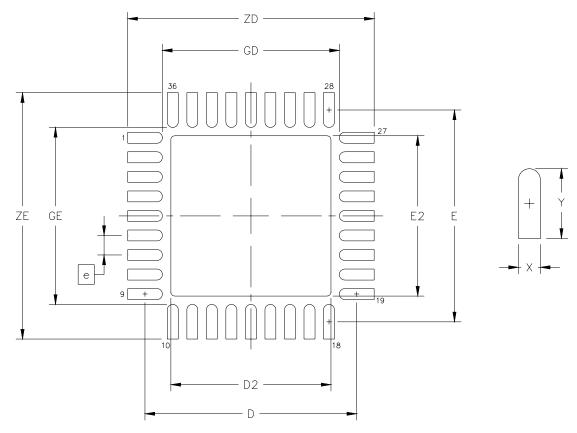


Figure 4. PCB Land Pattern Diagram

Table 5. PCB Land Pattern Dimensions

Dimension	MIN	MAX
е	0.50 BSC.	
E	5.42 REF.	
D	5.42 REF.	
E2	4.00	4.20
D2	4.00	4.20
GE	4.53	_
GD	4.53	_
X	_	0.28
Y	0.89 REF.	
ZE	_	6.31
ZD	_	6.31

Notes (General):

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Notes (Solder Mask Design):

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad.

Notes (Stencil Design):

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- **3.** The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
- **4.** A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center ground pad.

Notes (Card Assembly):

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.23 to 0.24

- Changed LVTTL to LVCMOS in Table 2, "Absolute Maximum Ratings," on page 3.
- Added Figure 1, "Typical Phase Noise Plot," on page 4.
- Showed preferred interface for an external reference clock in Figure 2, "Si5316 Typical Application Circuit," on page 5.
- Updated 3. "Ordering Guide" on page 11.
- Added "5. Recommended PCB Layout".

Revision 0.24 to Revision 0.3

- Changed 1.8 V operating range ±5%.
- Updated Table 1 on page 2.
- Updated Table 2 on page 3.
- Updated Table 3 on page 7.
- Added table under Figure 1 on page 4.
- Updated 1. "Functional Description" on page 6.
- Clarified 2. "Pin Descriptions: Si5316" on page 7 including pull-up/pull-down.

Revision 0.3 to Revision 0.4

- Updated Table 1, "Performance Specifications¹," on page 2.
- Updated Table 3, "Si5316 Pin Descriptions," on page 7.
- Updated Figure 2, "Si5316 Typical Application Circuit," on page 5.
- Updated 1.1. "External Reference" on page 6.
- Updated 2. "Pin Descriptions: Si5316" on page 7.

Si5316

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032 Email: Clockinfo@silabs.com Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and 5323 are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.