
								F	REVISI	ONS										
LTR					[DESCR		N					DA	DATE (YR-MO-DA) APPROVED						
A	Char	nges i	n acco	ordanc	e with	N.O.F	. 5962	2-R016	6-93.				92-11-09			M. A. FRYE				
В				anges SE 332		devic	e type	04.					94-09-01			M. A. FRYE				
С	Char	nges i	n acco	ordanc	e with	N.O.F	. 5962	2-R017	7-95.					95-0)1-17			M. A.	FRYE	
D	Char	nges i	n acco	ordanc	e with	N.O.F	. 5962	2-R060)-95.					95-0	1-25			M. A.	FRYE	
E	Add Make	device e limit	e type chang	05 wit jes to	h a ter the +P	mpera SS1 t	ture ra est as	inge o specif	f –55°(fied un	C to +9 der ta	90°C. ble I.	- ro		02-1	0-31			R. MC	ONNIN	
THE ORIGINAL REV	FIRST	PAGE	OF TH	IIS DR/	AWING	6 HAS E	BEEN F	REPLAG	CED.											
SHEET																				
REV	E	Е	E	E	E	E														
SHEET	15	16	17	18	19	20														
REV STATUS				REV	/		Е	Е	Е	Е	Е	Е	Е	E	Е	Е	Е	Е	Е	E
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARED NDRA F) BY Roone	ΞY				DI	EFEN	SE SI	UPPL	Y CE	NTER		.UMB	US	
MICRO	NDAR CIRC	UIT			CKED ARLES	BY E.BE	SORE			COLUMBUS, OHIO 43216 http://www.dscc.dla.mil										
	SE BY A RTMEN	ALL TS		MIC		A. FRY				MICROCIRCUIT, LINEAR, 12-BIT A/D CONVERTER WITH MICROPROCESSOR										
AND AGEN DEPARTMEN				DRA	WING	APPRO 92-0	0VAL D 5-14	ATE		INT	ERF	ACE,	MON	NOLI	THIC	SILI	CON			
AM	SC N/A			REV	ISION I	LEVEL	E			/	ZE		GE CC 67268			ļ	5962-	·9169	0	
										SHE	ET		1	OF	20					

DSCC FORM 2233 APR 97 <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 <u>PIN</u>. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	<u>Generic number</u>	Circuit function
01	674ZA	High performance, 12-bit A/D converter with microprocessor interface and S/H
02	674ZB	Medium performance, 12-bit A/D converter with microprocessor interface and S/H
03	674BT	12-bit A/D converter with microprocessor interface
04	674AT	12-bit A/D converter with microprocessor interface
05	674BT	12-bit A/D converter with microprocessor interface

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class	Device requirements documentation
М	Vendor self-certification to the requirements for MIL-STD-883 compliant, non- JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A
Q or V	Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Х	GDIP1-T28 or CDIP2-T28	28	Dual-in-line
3	CQCC1-N28	28	Square leadless chip carrier

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 2

1.3 Absolute maximum ratings. 1/

V _{CC} to digital common	
V _{EE} to digital common	. 0 V dc to -16.5 V dc <u>2</u> /
V _{LOGIC} to digital common Analog common to digital common:	
Device types 01, 02, and 04 Device types 03 and 05	
Control inputs (CE, \overline{CS} , A _O , 12/8, R / \overline{C}) to	
digital common	-0.5 V dc to V _{LOGIC} + 0.5 V dc
Analog inputs (REF IN, BIP OFF, 10 V _{IN}) to	
analog common	. ±16.5 V dc
20 VIN analog input voltage to analog common	. ±24 V dc
VREF OUT	Indefinite short to common
	momentary short to V _{CC}
Power dissipation (P _D):	momentary short to V_{CC}
Power dissipation (P _D): Device types 01 02, and 04 (T _A = +25°C)	,
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$)	. 1000 mW . 470 mW
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds)	. 1000 mW . 470 mW . +300°C
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$)	. 1000 mW . 470 mW . +300°C
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds)	. 1000 mW . 470 mW . +300°C 65°C to +150°C
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds) Storage temperature range	. 1000 mW . 470 mW . +300°C 65°C to +150°C . +175°C
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds) Storage temperature range Junction temperature (T_J) Thermal resistance, junction-to-case (θ_{JC}) Thermal resistance, junction-to-ambient (θ_{JA}):	. 1000 mW . 470 mW . +300°C 65°C to +150°C . +175°C . See MIL-STD-1835
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds) Storage temperature range Junction temperature (T_J) Thermal resistance, junction-to-case (θ_{JC}) Thermal resistance, junction-to-ambient (θ_{JA}): Device types 01 and 02 case X	. 1000 mW . 470 mW . +300°C 65°C to +150°C . +175°C . See MIL-STD-1835 . 48°C/W
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds) Storage temperature range Junction temperature (T_J) Thermal resistance, junction-to-case (θ_{JC}) Thermal resistance, junction-to-ambient (θ_{JA}): Device types 01 and 02 case X Device types 03 and 05 case X	. 1000 mW . 470 mW . +300°C 65°C to +150°C . +175°C . See MIL-STD-1835 . 48°C/W . 60°C/W
Device types 01 02, and 04 ($T_A = +25^{\circ}C$) Device types 03 and 05 ($T_A = +25^{\circ}C$) Lead temperature (soldering, 10 seconds) Storage temperature range Junction temperature (T_J) Thermal resistance, junction-to-case (θ_{JC}) Thermal resistance, junction-to-ambient (θ_{JA}): Device types 01 and 02 case X	. 1000 mW . 470 mW . +300°C 65°C to +150°C . +175°C . See MIL-STD-1835 . 48°C/W . 60°C/W . 50°C/W

1.4 Recommended operating conditions.

Logic supply voltage (V _{LOGIC})	+4.5 V dc to +5.5 V dc
Positive supply voltage (V_{CC})	+11.4 V dc to +16.5 V dc
Negative supply voltage (V_{EE})	11.4 V dc to -16.5 V dc $2/$
Ambient operating temperature	e range (T _A) :
Device types 01 – 04	55°C to +125°C
Device type 05	55°C to +90°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

 $2/V_{EE}$ is not required for operation of devices 01, 02, and 04.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	3

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 -	Test Method Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

3.2.3 Truth table. The truth table shall be as specified on figure 2.

3.2.4 Block diagrams. The block diagrams shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics and post irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post irradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWINGSIZE ASIZE A5962-91690DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000REVISION LEVEL ESHEET 4				
MICROCIRCUIT DRAWINGA5962-91690DEFENSE SUPPLY CENTER COLUMBUSREVISION LEVELSHEET	STANDARD	SIZE		
	••••••	Α		5962-91690
			REVISION LEVEL E	SHEET 4

	۲ 	ABLE I. Electrical performance	e characteristic	<u>s</u> .			1
Test	Symbol	Conditions <u>1/</u> -55°C \leq T _A \leq +125°C V _{CC} = +15 V, V _{EE} = -15 V,	Group A subgroups	Device type	Lir	nits	Unit
		V _{LOGIC} = +5 V, unless otherwise specified			Min	Max	
Power supply current <u>2</u> / from V _{LOGIC}	ILOGIC	Three-state outputs	1,2,3	01,02, 04		+1.0	mA
				03,05		+7.0	
Power supply current <u>2</u> / from V _{CC}	ICC	Three-state outputs	1,2,3	01,02, 04		+9.0	mA
				03,05		+7.0	
Power supply current <u>2</u> / from V _{EE}	IEE	Three-state outputs	1,2,3	03,05	-14		mA
Resolution			1,2,3	All	12		Bits
Integral linearity error	ILE	Unipolar 10 V span, Bipolar 20 V span	1	All	-0.5	+0.5	LSB
			2,3		-1.0	+1.0	
Differential linearity error (minimum resolution for which no missing codes are guaranteed)	DLE		1,2,3	All	12		Bits
Unipolar offset voltage error	V _{IO}	10 V span	1	All	-2.0	+2.0	LSB
Unipolar offset voltage drift	ΔV _{IO} / ΔT	10 V span, using internal reference	2,3	All	-1.0	+1.0	LSB
Bipolar zero offset error	BZ	20 V span	1	01,02, 04	-4.0	+4.0	LSB
				03,05	-3.0	+3.0	
Bipolar zero offset drift	ΔB _Z / ΔT	20 V span, using internal reference	2,3	02,03, 04,05	-2.0	+2.0	LSB
				01	-1.0	+1.0	_
Gain error	AE	Bipolar 20 V span 50 Ω resistor from REF OUT to	1	01,02, 04		0.3	%FSR
		REF IN		03,05		0.125	
See footnotes at end of tab	le.						
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			A			596	2-9169
			REV		L	SHEET	5

APR 97

	TABLE I	. Electrical performance char	acteristics	- Continued.			
Test Symb		$\label{eq:conditions} \begin{array}{l} \mbox{1/} \\ -55^\circ \mbox{C} \leq \mbox{T}_A \leq +125^\circ \mbox{C} \\ \mbox{V}_{\mbox{CC}} = +15 \mbox{ V}, \mbox{V}_{\mbox{EE}} = -15 \mbox{ V}, \end{array}$	Group subgrou		Lir	nits	Unit
		V _{LOGIC} = +5 V, unless otherwise specified			Min	Max	
Gain error drift	ΔΑ _Ε / ΔΤ	Bipolar 20 V span, using internal reference	2,3	01		12.5	ppm/°C
				02,04		25.0	
				03,05		17.5	
Power supply <u>3/ 4/</u> sensitivity to V _{CC}	+PSS1		1,2,3	3 01-04	-1.5	+1.5	LSB
				05	-1.0	+1.0	-
Power supply <u>3/ 5/</u> sensitivity to V _{LOGIC}	+PSS2		1,2,3	3 All	-0.5	+0.5	LSB
Power supply <u>3/ 6/</u> sensitivity to V _{EE}	-PSS3		1,2,3	3 All	-1.0	+1.0	LSB
Input impedance <u>2</u> /	Z _{IN}	10 V span	1,2,3	3 01,02, 04	3.75	6.25	kΩ
				03,05	3.0	7.0	
		20 V span		01,02, 04	15	25	_
				03,05	6	14	
Internal reference <u>7</u> / voltage	V _{REF}	IREFOUT = 2 mA	1,2,3	8 01,02	9.97	10.03	V
				03,04, 05	9.9	10.1	
Logic input high $\frac{2}{8}$, voltage (CE, \overline{CS} , 12/ $\overline{8}$, R/ \overline{C} , A _O)	VIH	Logic "1"	1,2,3	3 All	+2.0	+5.5	V
Logic input low $2/8/$ voltage (CE, \overline{CS} , $12/\overline{8}$, R/\overline{C} , A_O)	VIL	Logic "0"	1,2,3	3 All	-0.5	+0.8	V
See footnotes at end of table).		1		-		
STANDARD MICROCIRCUIT DRAWING			IZE A			596	2-91690
DEFENSE SUPPLY COLUMBUS, C	DLUMBUS		REVISION LEV	ΈL	SHEET	6	

	TABLE I	. Electrical performan	ce charac	cteristics -	– Contir	nued.			
Test	Symbol	Conditions <u>1/</u> -55°C \leq T _A \leq +12 V _{CC} = +15 V, V _{EE} =	5°C	Group A subgroups		Device type	Limits		Unit
		V _{LOGIC} = +5 V unless otherwise sp					Min	Max	
Logic input current 2/	I _{IN(LOG)}	0 to +5.5 V input		1,2,3	(01,02		+1.0	μΑ
						04	-20	+20	
		0 to +5.0 V input			(03,05	-10	+10	
Logic low output <u>2</u> / voltage (DB11-DB0, STS)	V _{OL}	Logic "0', I _{SINK} = 1.6 mA		1,2,3		All		+0.4	V
Logic high output <u>2</u> / voltage (DB11-DB0)	V _{OH}	Logic "1", I _{SOURCE} = 500 μA		1,2,3		All	+2.4		V
Three-state output leakage current	ΙZ	High-Z state, (DB11- DB0 only),		1,2,3	. (01,02	-5.0	+5.0	μA
		$V_{applied} = 5.0 V$			(03,05	-10	+10	
						04	-20	+20	
Functional tests <u>2</u> /		See section 4.4.1b		7,8		All			
Low R/ \overline{C} pulse width <u>9</u> /	tHRL	See figure 4		9,10,1	1	All	50		ns
STS delay from R/\overline{C} <u>10</u> /	t _{DS}	See figure 4		9,10,1	1 (01,02, 04		200	ns
					(03,05		225	-
Data valid after $\underline{11}/$ R/ \overline{C} low	tHDR	See figure 4		9,10,1	1	All	25		ns
STS delay after data valid	tHS	See figure 4		9,10,1	1 (01,02, 04	300	1000	ns
					(03,05	30	600	1
High R/ \overline{C} pulse width <u>9</u> /	tHRH	See figure 4		9,10,1	1	All	150		ns
Data access time <u>12</u> /	t _{DDR}	See figure 4		9,10,1	1	All		150	ns
See footnotes at end of table		·							
MICROCIRCU			SIZ A					596	2-91690
DEFENSE SUPPLY (COLUMBUS, O					REVISIO	ON LEVE E	iL	SHEET	7

	TABLE	I. Electrical performance ch	aracteristics -	- Continued.			
Test	Symbol	Conditions <u>1</u> / -55°C \leq T _A \leq +125°C V _{CC} = +15 V, V _{EE} = -15 V	Group A _{V,} subgroup		Li	imits	Unit
		V _{LOGIC} = +5 V, unless otherwise specified	d		Min	Max	1
STS delay from CE <u>10</u> /	tDSC	See figure 5	1,2,3	01,02		200	ns
				03,05		225	1
CE pulse width <u>9</u> /	tHEC	See figure 5	1,2,3	All	50		ns
CS to CE setup	tssc	See figure 5	1,2,3	All	50		ns
Conversion time <u>13</u> /	t _C	8-bit cycle, see figure 5	9,10,11	1 All	6	10	μs
		12-bit cycle, see figure 5			9	15	1
CS low during CE high	tHSC	See figure 5	9,10,11	1 All	50		ns
R/\overline{C} to CE setup	tSRC	See figure 5	9,10,11	1 All	50		ns
R/\overline{C} low during CE high	tHRC	See figure 5	9,10,11	1 All	50		ns
A _O to CE setup	tSAC	See figure 5	9,10,11	1 All	0		ns
A _O valid during CE high	tHAC	See figure 5	9,10,11	1 All	50		ns
Access time (from CE) <u>12</u> /	tDD	See figure 6	9,10,11	1 All		150	ns
Data valid after CE <u>11</u> / low	tHD		9,10,11	1 01,02, 04	25		ns
			9,10,	03,05	25		
			11		15		
Output float delay <u>11</u> /	tHL		9,10,11	1 All		150	ns
See footnotes at end of table.							
STAN MICROCIRCU	IDARD UIT DRAW	WING	SIZE A			596	62-91690
DEFENSE SUPPLY (COLUMBUS, O	CENTER CO	OLUMBUS	ſ		ΞL	SHEET	T 8

Ε

8

COLUMBUS, OHIO 43216-5000

	TABLE I	. Electrical performance chara	<u>cteristics</u> – Co	ntinued.			
Test	Symbol	Conditions <u>1</u> / -55°C \leq T _A \leq +125°C V _{CC} = +15 V, V _{EE} = -15 V,	Group A subgroups	Device type	Lir	nits	Unit
		V _{LOGIC} = +5 V, unless otherwise specified			Min	Max	
CS to CE setup	^t SSR	See figure 6	9,10,11	All	50		ns
R/\overline{C} to CE setup	tSRR	See figure 6	9,10,11	All	0		ns
Sample and hold <u>14</u> / acquisition time	t _{acq}	T _A = +25°C	9	01,02, 04	1.2	2.0	μs
A _O to CE setup	t _{SAR}	See figure 6	9,10,11	All	50		ns
CS valid after CE low	t _{HSR}	See figure 6	9,10,11	All	0		ns
R/\overline{C} high after CE low	thrr	See figure 6	9,10,11	All	0		ns
A _O valid after CE low	tHAR	See figure 6	9,10,11	All	50		ns

- 1/ For device types 01, 02, 03, 04, $T_A = -55^{\circ}C$ to $+125^{\circ}C$. For device type 05, $T_A = -55^{\circ}C$ to $+90^{\circ}C$ 12/8 connected to V_{LOGIC}, A_O and \overline{CS} at logic "0", CE at logic "1". 10 V unipolar: 50 Ω resistor pin 8 to pin 10, 50 Ω resistor pin 12 to ground. Analog input connected to pin 13. 20 V bipolar: 50 Ω resistor pin 8 to pin 12, 50 Ω resistor pin 8 to pin 10. Analog input connected to pin 14. Unless otherwise noted, these conditions apply.
- $\underline{2}$ / Device types are tested to the conditions stated in table I, but are guaranteed to the specified limits for the following variations in the supply voltage ranges. V_{LOGIC} = +5 V to ±5%, V_{CC} = +12 V ±5% and +15 V to ±10%, V_{EE} = -12 V ±5% and -15 V ±10%. (V_{EE} not required for operation of devices 01, 02, and 04). For device types 03 and 05, V_{LOGIC} = +5 V to ±10%.
- 3/ Maximum change in full scale calibration due to supply voltage shifts. Full scale calibration to be measured at minimum and maximum voltage settings for each individual supply.
- 4/ +13.5 V \leq V_{CC} \leq +16.5 V, V_{LOGIC} = 5 V, V_{EE} = -15 V and +11.4 V \leq V_{CC} \leq +12.6 V, V_{LOGIC} = 5 V, V_{EE} = -12 V. (V_{EE} not required for operation of devices 01, 02 and 04).
- 5/ 4.5 V \leq V_{LOGIC} \leq 5.5 V, V_{CC} = 15 V, V_{EE} = -15 V. (V_{EE} not required for operation of devices 01, 02, and 04).
- $\underline{6}/ \quad -16.5 \text{ V} \leq \text{V}_{EE} \leq -13.5 \text{ V}, \text{ V}_{LOGIC} = 5 \text{ V}, \text{ V}_{CC} = +15 \text{ V} \text{ and } -12.6 \text{ V} \leq \text{V}_{EE} \leq -11.4 \text{ V}, \text{ V}_{LOGIC} = 5 \text{ V}, \text{ V}_{CC} = +12 \text{ V}.$
- 7/ Reference should be buffered for operation on +12 V supplies. External load should not change during conversion.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 9

TABLE I. Electrical performance characteristics - Continued.

- $\underline{8}$ / For devices types 01, 02, and 04, $12/\overline{8}$ is not TTL compatible, must be hard-wired to V_{LOGIC} or digital common.
- 9/ Pulse width is measured at the Schottky TTL input logic threshold voltage (1.3 V).
- <u>10</u>/ t_{DS} and t_{DSC} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.3 V) to when the STS output reaches 2.4 V. No external loading is applied to STS.
- <u>11</u>/ t_{HDR}, t_{HD}, and t_{HL} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.3 V), to when the output voltage has moved 0.5 V in the direction of its final high impedance output voltage. Each individual data bit (DBO - DB11) is measured for both logic one to "high Z" and logic zero to "high Z" transitions. External loading is as shown on figure 7.
- 12/ t_{DDR} and t_{DD} are measured from the point when the input signal crosses the Schottky TTL logic threshold voltage (1.3 V), to when the output crosses either 2.4 V for a logic one, or 0.4 V for a logic zero. Each individual data bit (DBO DB11) is measured for both "high Z" to logic zero transitions. External loading is as shown on figure 8.
- 13/ t_C is measured as the time from when the STS line crosses the 1.0 V level, going positive, to when it crosses the 1.0 V level going negative. No external loading is applied to STS.
- 14/ Guaranteed by design.

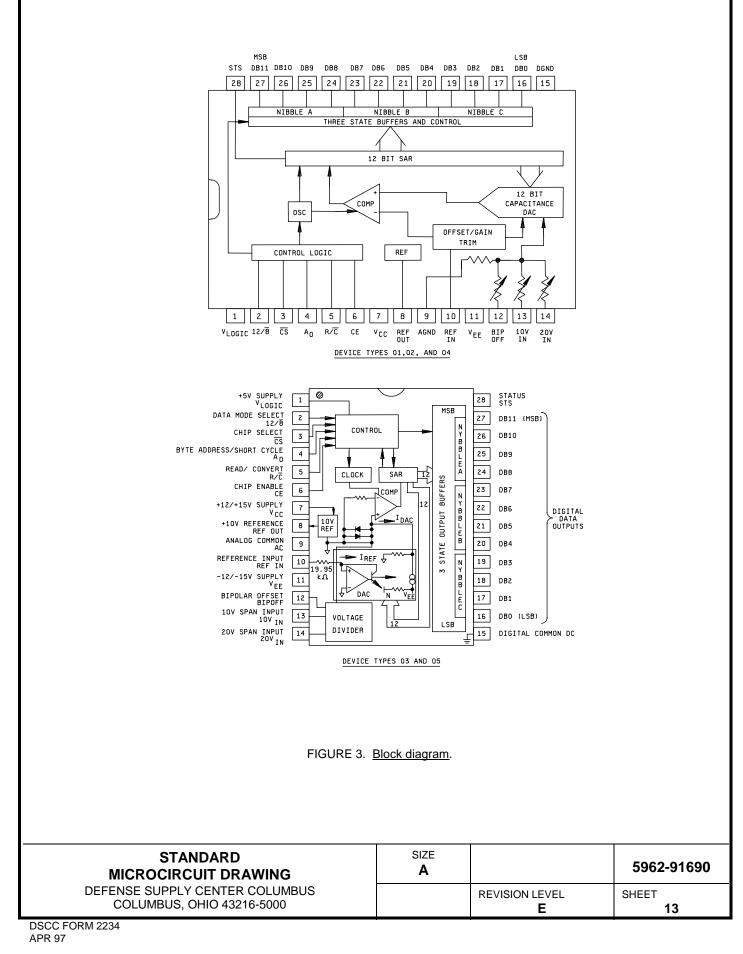
3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

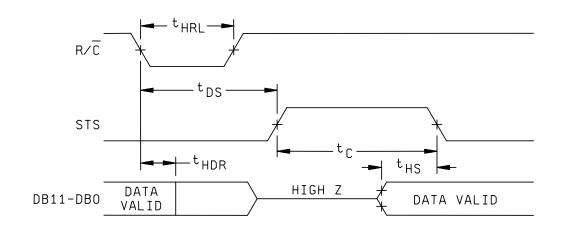
3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.

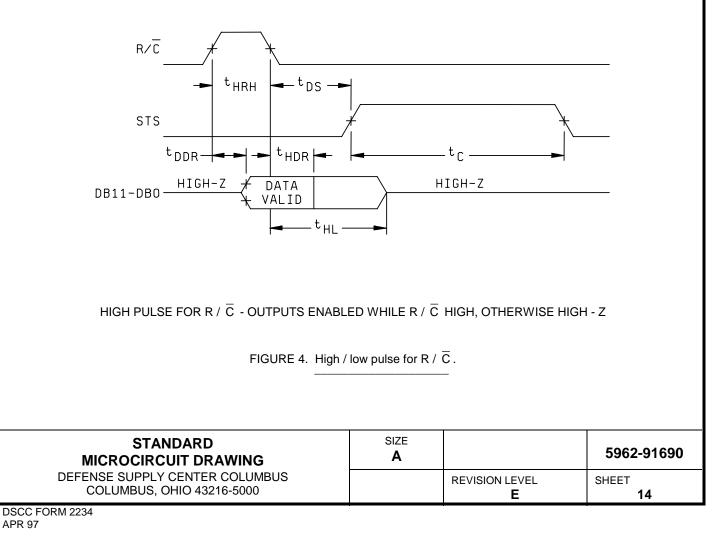
3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

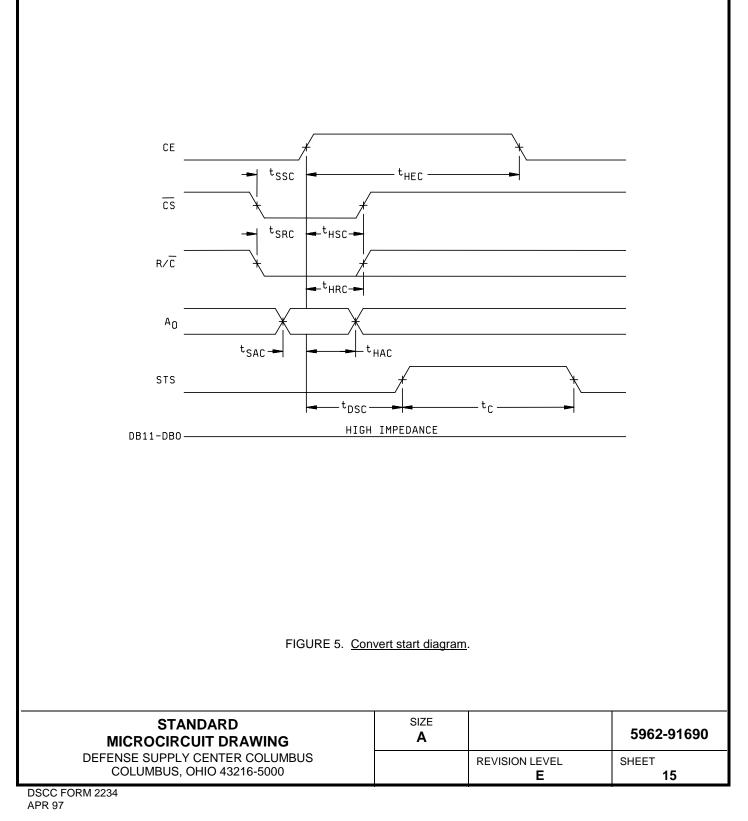
3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 93 (see MIL-PRF-38535, appendix A).

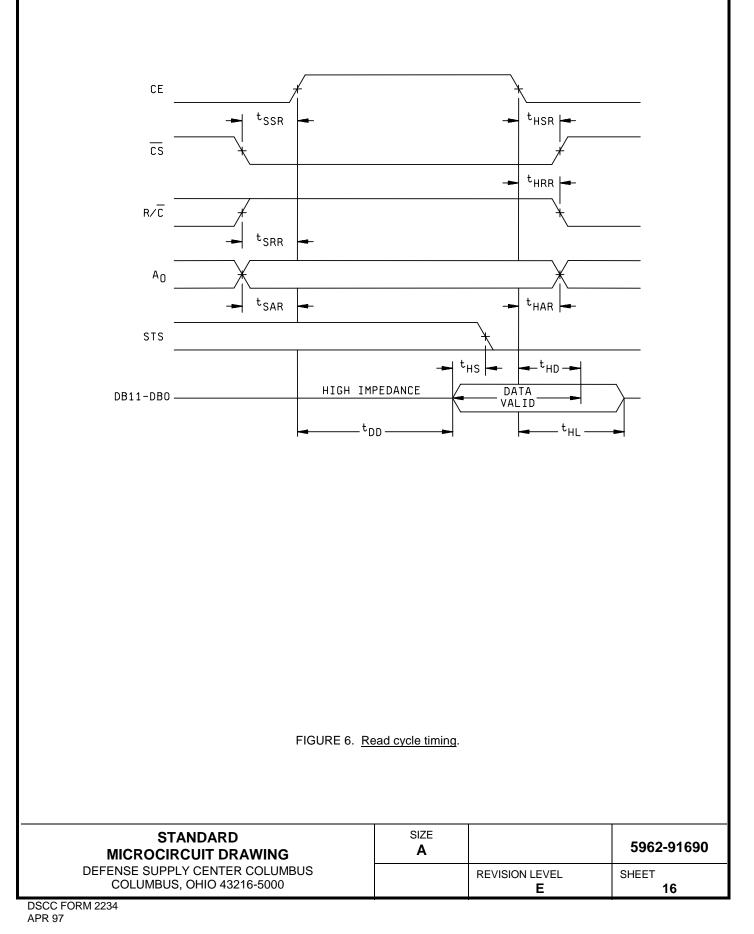

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	10


nd 3 (V_{LOGIC}) elect $(12/\overline{8})$ hort cycle (A_O) rert (\overline{CS}) hort cycle (A_O) rert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) it $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$ non $(DGND)$	X and 3 Terminal symbol +5 V supply (V _{LOGIC}) Data mode select (12/8) Chip select (CS) Byte address / short cycle (A _O) Read / convert (R / C) Chip enable (CE) +12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	3 +5 V supply (V _{LOGIC}) Data mode select (12/8) Chip select (CS) Byte address / short cycle (A _O Read / convert (R / C̄) Chip enable (CE) +12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})
elect $(12/\overline{8})$ ect (\overline{CS}) hort cycle (A_0) vert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) et $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$	$\begin{array}{c} +5 \ V \ \text{supply} \ (V_{\text{LOGIC}}) \\ \hline \text{Data mode select} \ (12/\overline{8}) \\ \hline \text{Chip select} \ (\overline{\text{CS}}) \\ \hline \text{Byte address} \ / \ \text{short cycle} \ (A_{\text{O}}) \\ \hline \text{Read} \ / \ \text{convert} \ (\text{R} \ / \ \overline{\text{C}}) \\ \hline \text{Chip enable} \ (\text{CE}) \\ +12 \ V \ / \ +15 \ V \ \text{supply} \ (V_{\text{CC}}) \\ \hline +10 \ V \ \text{reference} \ (\text{REF OUT}) \\ \hline \text{Analog common} \ (\text{AGND}) \\ \hline \text{Reference input} \ (\text{REF IN}) \\ \hline -12 \ / \ -15 \ V \ \text{supply} \ (V_{\text{EE}}) \\ \hline \text{Bipolar offset} \ (\text{BIP OFF}) \\ \hline 10 \ V \ \text{span input} \ (10 \ V_{\text{IN}}) \\ \hline 20 \ V \ \text{span input} \ (20 \ V_{\text{IN}}) \end{array}$	Data mode select $(12/\overline{8})$ Chip select (\overline{CS}) Byte address / short cycle $(A_O$ Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})
elect $(12/\overline{8})$ ect (\overline{CS}) hort cycle (A_0) vert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) et $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$	Data mode select $(12/\overline{8})$ Chip select (\overline{CS}) Byte address / short cycle (A_O) Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})20 V span input (20 V _{IN})	Data mode select $(12/\overline{8})$ Chip select (\overline{CS}) Byte address / short cycle $(A_O$ Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})
elect $(12/\overline{8})$ ect (\overline{CS}) hort cycle (A_0) vert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) et $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$	Data mode select $(12/\overline{8})$ Chip select (\overline{CS}) Byte address / short cycle (A_O) Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})20 V span input (20 V _{IN})	Data mode select $(12/\overline{8})$ Chip select (\overline{CS}) Byte address / short cycle $(A_O$ Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})
act (\overline{CS}) hort cycle (A_O) vert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) at $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Chip select (\overline{CS}) Byte address / short cycle $(A_O$ Read / convert (R / \overline{C}) Chip enable (CE) +12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
hort cycle (A_O) vert (R / \overline{C}) ble (CE) supply (V_{CC}) ce $(REF OUT)$ non $(AGND)$ put $(REF IN)$ upply (V_{EE}) et $(BIP OFF)$ put $(10 V_{IN})$ put $(20 V_{IN})$	Byte address / short cycle (A_O) Read / convert (R / \overline{C}) Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})20 V span input (20 V _{IN})	Byte address / short cycle $(A_O Read / convert (R / \overline{C})Chip enable (CE)+12 V / +15 V supply (VCC)+10 V reference (REF OUT)Analog common (AGND)Reference input (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (VEE)Bipolar offset (BIP OFF)10 V span input (10 VIN)$
vert (R / \overline{C}) ble (CE) supply (V _{CC}) ce (REF OUT) non (AGND) put (REF IN) upply (V _{EE}) et (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	$\begin{array}{c} \mbox{Read / convert (R / \overline{C})} \\ \mbox{Chip enable (CE)} \\ \mbox{+12 V / +15 V supply (V_{CC})} \\ \mbox{+10 V reference (REF OUT)} \\ \mbox{Analog common (AGND)} \\ \mbox{Reference input (REF IN)} \\ \mbox{-12 / -15 V supply (V_{EE})} \\ \mbox{Bipolar offset (BIP OFF)} \\ \mbox{10 V span input (10 V_{IN})} \\ \mbox{20 V span input (20 V_{IN})} \end{array}$	Read / convert (R / C̄)Chip enable (CE)+12 V / +15 V supply (V _{CC})+10 V reference (REF OUT)Analog common (AGND)Reference input (REF OUT)Analog common (AGND)Reference input (REF IN)-12 / -15 V supply (V _{EE})Bipolar offset (BIP OFF)10 V span input (10 V _{IN})
ble (CE) supply (V _{CC}) ce (REF OUT) non (AGND) put (REF IN) upply (V _{EE}) tt (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	Chip enable (CE) +12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	Chip enable (CE) +12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
supply (V _{CC}) ce (REF OUT) non (AGND) put (REF IN) upply (V _{EE}) et (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	+12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	+12 V / +15 V supply (V _{CC}) +10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
ce (REF OUT) non (AGND) put (REF IN) upply (V _{EE}) it (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	+10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	+10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
ce (REF OUT) non (AGND) put (REF IN) upply (V _{EE}) it (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	+10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	+10 V reference (REF OUT) Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
non (AGND) put (REF IN) upply (V _{EE}) ut (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	Analog common (AGND) Reference input (REF IN) -12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
put (REF IN) upply (V _{EE}) it (BIP OFF) put (10 V _{IN}) put (20 V _{IN})	Reference input (REF IN)-12 / -15 V supply (VEE)Bipolar offset (BIP OFF)10 V span input (10 VIN)20 V span input (20 VIN)	-12 / -15 V supply (V _{EE}) Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
put (10 V _{IN}) put (20 V _{IN})	Bipolar offset (BIP OFF)10 V span input (10 VIN)20 V span input (20 VIN)	Bipolar offset (BIP OFF) 10 V span input (10 V _{IN})
put (10 V _{IN}) put (20 V _{IN})	10 V span input (10 V _{IN}) 20 V span input (20 V _{IN})	10 V span input (10 V _{IN})
put (20 V _{IN})	20 V span input (20 V _{IN})	
		20 V span input (20 V _{IN})
non (DGND)		
	Digital common (DGND)	Digital common (DGND)
(LSB)	DB0 (LSB)	DB0 (LSB)
31	DB1	DB1
32	DB2	DB2
33	DB3	DB3
34	DB4	DB4
35	DB5	DB5
36		DB6
		DB7
		DB8
		DB9
		DB10
. ,	. ,	DB11 (MSB) Status (STS)
	35 36 37 38 39 10 (MSB) (STS)	55 DB5 36 DB6 37 DB7 38 DB8 39 DB9 10 DB10 (MSB) DB11 (MSB)

CE	CS	R / C	12/8	A _O	Operation
0	Х	Х	Х	Х	None
Х	1	Х	Х	Х	None
1	0	0	Х	0	Initiate 12-bit conversion
1	0	0	Х	1	Initiate 8-bit conversion
1	0	1	1	Х	Enable 12-bit parallel output
1	0	1	0	0	Enable 8 most significant bits
1	0	1	0	1	Enable 4 LSBs + 4 trailing zeros


FIGURE 2. Truth table.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	12



LOW PULSE FOR R / $\overline{C}\,$ - OUTPUTS ENABLED AFTER CONVERSION

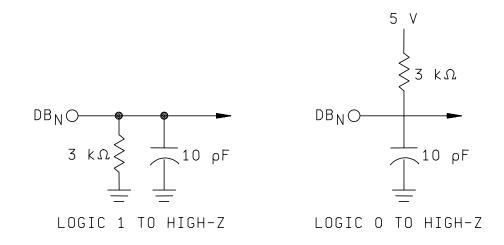
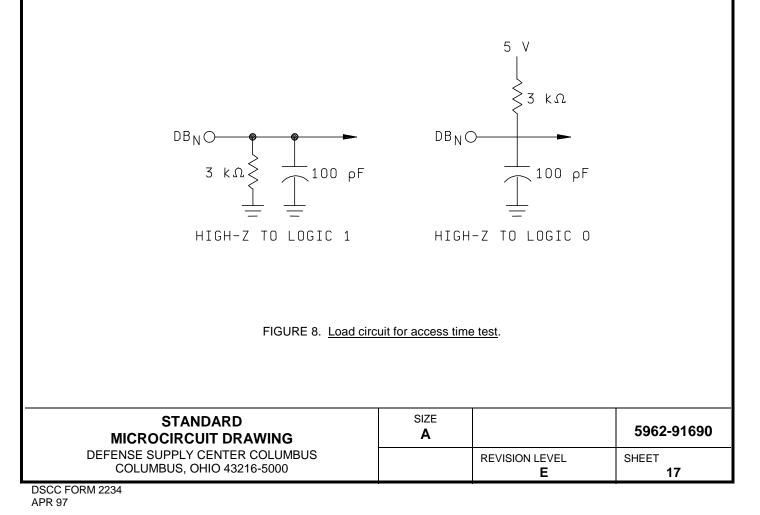



FIGURE 7. Load circuit for output float delay test.

Downloaded from Elcodis.com electronic components distributor

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

- 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	18

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgr (in accord MIL-PRF-38	ance with
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1	1	1
Final electrical parameters (see 4.2)	1,2,3 <u>1</u> /	1,2,3 <u>1</u> /	1,2,3 <u>1</u> /
Group A test requirements (see 4.4)	1,2,3,7,8,9,10,11 <u>2</u> /	1,2,3,7,8, <u>2</u> / 9,10,11	1,2,3,7,8, <u>2</u> / 9,10,11
Group C end-point electrical parameters (see 4.4)	1	1	1
Group D end-point electrical parameters (see 4.4)	1	1	1
Group E end-point electrical parameters (see 4.4)			

TABLE II. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

2/ Subgroups 10 and 11, if not tested, shall be guaranteed to the limits specified in table I.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD	SIZE		5962-91690
MICROCIRCUIT DRAWING	A		5502-51050
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	19

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table II herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the post irradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-91690
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	20

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 02-10-31

Approved sources of supply for SMD 5962-91690 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard	Vendor	Vendor	Reference
microcircuit drawing	CAGE	similar	military specification
PIN <u>1</u> /	number	PIN <u>2</u> /	PIN
5962-9169001MXC	<u>3</u> /	HADC674ZAMD/883	M38510/14005BXA
5962-9169001M3A	<u>3</u> /	HADC674ZAMC/883	
5962-9169002MXC	<u>3</u> /	HADC674ZBMD/883	M38510/14006BXA
5962-9169002M3A	<u>3</u> /	HADC674ZBMC/883	
5962-9169003MXA	24355	AD674BTD/883B	M38510/14006BXA
5962-9169003M3A	24355	AD674BTE/883B	
5962-9169004MXC	<u>3</u> /	SP674AT/B	M38510/14006BXA
5962-9169004M3C	<u>3</u> /	SP674AT/B	
5962-9169005M3A	24355	AD674BTE/883B	

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.

<u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

3/ Not available from an approved source of supply.

Vendor CAGE number

24355

Vendor name and address

Analog Devices Route 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of contact: 804 Woburn Street Wilmington, MA 01887-3462

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.