8-bit Microcontrollers

CMOS

F²MC-8FX MB95430H Series

MB95F432H/F433H/F434H
 MB95F432K/F433K/F434K

DESCRIPTION

MB95430H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.
Note: $\mathrm{F}^{2} \mathrm{MC}$ is the abbreviation of FUJITSU Flexible Microcontroller.

FEATURES

- F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.
- Clock
- Selectable main clock source

Main OSC clock (up to 16.25 MHz , maximum machine clock frequency: 8.125 MHz)
External clock (up to 32.5 MHz , maximum machine clock frequency: 16.25 MHz)
Main CR clock ($1 / 8 / 10 / 12.5 \mathrm{MHz} \pm 2 \%$, maximum machine clock frequency: 12.5 MHz)

- Selectable subclock source

Sub-OSC clock (32.768 kHz)
External clock (32.768 kHz)
Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

- Timer
- 8/16-bit composite timer $\times 1$ channel
- 16 -bit PPG $\times 1$ channel
- 16-bit free-running timer $\times 1$ channel
- 16-bit output compare $\times 2$ channels
- Time-base timer $\times 1$ channel
- Watch prescaler $\times 1$ channel
- UART/SIO $\times 1$ channel
- Full duplex double buffer
- Capable of clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer
(Continued)

For the information for microcontroller supports, see the following website.
http://edevice.fujitsu.com/micom/en-support/
(Continued)

- ${ }^{2} \mathrm{C} \times 1$ channel
- Built-in wake-up function
- Voltage comparator $\times 4$ channels
- Operational amplifier (OPAMP) $\times 1$ channel
- Software-select programmable gain
- Software-select standalone option
- Power down function included
- External interrupt $\times 8$ channels
- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter $\times 17$ channels
- 8-bit and 10-bit resolution can be chosen.
- Low power consumption (standby) modes
- Stop mode
- Sleep mode
- Watch mode
- Time-base timer mode
- I/O port
- MB95F432H/F433H/F434H (maximum no. of I/O ports: 28)

General-purpose I/O ports (N-ch open drain) : 1
General-purpose I/O ports (CMOS I/O) : 27

- MB95F432K/F433K/F434K (maximum no. of I/O ports: 29)

General-purpose I/O ports (N-ch open drain) : 2
General-purpose I/O ports (CMOS I/O) : 27

- On-chip debug
- 1-wire serial control
- Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
- Built-in hardware watchdog timer
- Built-in software watchdog timer
- Low-voltage detection reset circuit
- Built-in low-voltage detector
- Clock supervisor counter
- Built-in clock supervisor counter function
- Programmable port input voltage level
- CMOS input level / hysteresis input level
- Dual operation Flash memory
- The erase/write operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.
- Flash memory security function
- Protects the content of the Flash memory

■ PRODUCT LINE-UP

	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K
Type	Flash memory product					
Clock supervisor counter	It supervises the main clock oscillation.					
Program ROM capacity	8 Kbyte	12 Kbyte	20 Kbyte	8 Kbyte	12 Kbyte	20 Kbyte
RAM capacity	240 bytes	240 bytes	496 bytes	240 bytes	240 bytes	496 bytes
Low-voltage detection reset	No			Yes		
Reset input	Dedicated			Selected by software		
CPU functions	Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$ and 16 bits Minimum instruction execution time $: 61.5 \mathrm{~ns}$ (with machine clock $=16.25 \mathrm{MHz}$) Interrupt processing time $: 0.6 \mu \mathrm{~s}$ (with machine clock $=16.25 \mathrm{MHz}$)					
Generalpurpose I/O	I/O ports (Max): 28 CMOS I/O: 27 N -ch open drain: 1			I/O ports (Max): 29 CMOS I/O: 27 N-ch open drain: 2		
Time-base timer	Interrupt cycle: 0.256 ms to 8.3 s (when external clock $=4 \mathrm{MHz}$)					
Hardware/ software watchdog timer	Reset generation cycle - Main oscillation clock at $10 \mathrm{MHz}: 105 \mathrm{~ms}$ (Min) The sub-CR clock can be used as the source clock of the hardware watchdog timer.					
Wild register	It can be used to replace three bytes of data.					
8/10-bit A/D	17 channels (Ch. 16 is the channel for OPAMP output.)					
converter	8 -bit resolution and 10-bit resolution can be chosen.					
8/16-bit composite timer	1 channel					
	The timer can be configured as an " 8 -bit timer $\times 2$ channels" or a "16-bit timer $\times 1$ channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.					
External interrupt	8 channels					
	Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from different standby modes.					
On-chip debug	1-wire serial control It supports serial writing. (asynchronous mode)					
	1 channel					
UART/SIO	Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), a built-in baud rate generator and an error detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer is enabled.					

(Continued)
(Continued)

Part number Parameter	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K
	1 channel					
${ }^{12} \mathrm{C}$	Master/slave transmission and receiving It has a bus error function, an arbitration function, a transmission direction detection function and a wake-up function. It also has functions of generating and detecting repeated START conditions.					
16-bit PPG	PWM mode and single-shot mode are available to use. Ch. 0 can work with the multi-functional timer or individually.					
$\begin{aligned} & \hline \text { Output } \\ & \text { compare } \\ & \hline \end{aligned}$	1 channel of 16 -bit free-running timer with a compare buffer 2 channels of 16 -bit output compare					
Voltage comparator	4 channels					
OPAMP	This is an operational amplifier used in an induction heater. It contains 7 software (registers) select close loop gain selections for ground current sensing according to different sense resistor values. The OPAMP can also work as a standalone OPAMP. It selects closed loop gain for ground current sensing according to different sense resistor values of a standalone OPAMP.					
Watch prescaler	Eight different time intervals can be selected.					
Flash memory	It supports automatic programming, Embedded Algorithm, and write/erase/erase-suspend/ erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years Flash security feature for protecting the content of the Flash memory					
Standby mode	Sleep mode, stop mode, watch mode, time-base timer mode					
Package	$\begin{aligned} & \hline \text { FPT-32P-M30 } \\ & \text { DIP-32P-M06 } \end{aligned}$					

PACKAGES AND CORRESPONDING PRODUCTS

Part number	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K
Package						
FPT-32P-M30	O	O	O	O	O	O
DIP-32P-M06	O	O	O	O	O	0

O: Available

DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

－Current consumption
When using the on－chip debug function，take account of the current consumption of flash erase／write．
For details of current consumption，see＂■ ELECTRICAL CHARACTERISTICS＂．
－Package
For details of information on each package，see＂⿴囗十⿴囗十⿱一⿴⿻儿口一 PACKAGES AND CORRESPONDING PRODUCTS＂and ＂■ PACKAGE DIMENSIONS＂．
－Operating voltage
The operating voltage varies，depending on whether the on－chip debug function is used or not．
For details of the operating voltage，see＂■ ELECTRICAL CHARACTERISTICS＂．
－On－chip debug function
The on－chip debug function requires that V_{cc} ， $\mathrm{V}_{\text {ss }}$ and one serial wire be connected to an evaluation tool．

PIN ASSIGNMENT

PIN DESCRIPTION

Pin no.		Pin name	I/O circuit type*3	Function
LQFP32*1	SH-DIP32*2			
1	5	PG2	C	General-purpose I/O port
		PPG		16-bit PPG output pin
		X1A		Subclock I/O oscillation pin
		OUT1		Output compare ch. 1 output pin
2	6	PG1	C	General-purpose I/O port
		TRG		16-bit PPG trigger input pin
		ADTG		A/D converter trigger input pin
		X0A		Subclock I/O oscillation pin
		BZ		Buzzer output pin
		OUTO		Output compare ch. 0 output pin
3	7	Vcc	-	Power supply pin
4	8	C	-	Capacitor connection pin
5	9	P60	K	General-purpose I/O port
		OPAMP_P		Operational amplifier input pin
6	10	P61	K	General-purpose I/O port
		OPAMP_N		Operational amplifier input pin
7	11	P62	J	General-purpose I/O port
		OPAMP_O		Operational amplifier output pin
8	12	P12	H	General-purpose I/O port
		EC0		8/16-bit composite timer external clock input pin
		UI		UART/SIO data input pin
		SCL		${ }^{2} \mathrm{C}$ C clock I/O pin
		DBG		DBG input pin
9	13	P00	E	General-purpose I/O port
		INT00		External interrupt input pin
		AN00		A/D converter analog input pin
10	14	P01	E	General-purpose I/O port
		INT01		External interrupt input pin
		AN01		A/D converter analog input pin
		BZ		Buzzer output pin
11	15	P02	E	General-purpose I/O port
		INT02		External interrupt input pin
		AN02		A/D converter analog input pin
		UCK		UART/SIO clock I/O pin

(Continued)

Pin no.		Pin name	I/O circuit type*	Function
LQFP32*1	SH-DIP32*2			
12	16	P03	F	General-purpose I/O port
		INT03		External interrupt input pin
		AN03		A/D converter analog input pin
		UO		UART/SIO data output pin
		SDA		$1^{2} \mathrm{C}$ data I/O pin
13	17	P04	F	General-purpose I/O port
		INT04		External interrupt input pin
		AN04		A/D converter analog input pin
		UI		UART/SIO data input pin
		SCL		$1^{2} \mathrm{C}$ clock I/O pin
14	18	P05	E	General-purpose I/O port
		INT05		External interrupt input pin
		AN05		A/D converter analog input pin
		TOO		Timer output pin
15	19	P06	E	General-purpose I/O port
		INT06		External interrupt input pin
		AN06		A/D converter analog input pin
		TO1		Timer output pin
16	20	P07	E	General-purpose I/O port
		INT07		External interrupt input pin
		AN07		A/D converter analog input pin
		EC0		8/16-bit composite timer external clock input pin
17	21	P70	D	General-purpose I/O port
		CMPO_O		Comparator ch. 0 output pin
		OUTO		Output compare ch. 0 output pin
		TRG		16-bit PPG trigger input pin
18	22	P71	1	General-purpose I/O port
		CMPO_P		Comparator ch. 0 positive input pin
		AN08		A/D converter analog input pin
19	23	P72	1	General-purpose I/O port
		CMPO_N		Comparator ch. 0 negative input pin
		AN09		A/D converter analog input pin
20	24	P73	D	General-purpose I/O port
		CMP1_O		Comparator ch. 1 output pin
		OUT1		Output compare ch. 1 output pin
		PPG		16-bit PPG output pin

(Continued)
(Continued)

Pin no.		Pin name	$\begin{aligned} & \text { c/rcuit } \\ & \text { type }{ }^{* 3} \end{aligned}$	Function
LQFP32*1	SH-DIP32*2			
21	25	P74	1	General-purpose I/O port
		CMP1_P		Comparator ch. 1 positive input pin
		AN10		A/D converter analog input pin
22	26	P75	1	General-purpose I/O port
		CMP1_N		Comparator ch. 1 negative input pin
		AN11		A/D converter analog input pin
23	27	P76	D	General-purpose I/O port
		CMP2_O		Comparator ch. 2 output pin
		UCK		UART/SIO clock I/O pin
24	28	P63	1	General-purpose I/O port
		CMP2_P		Comparator ch. 2 positive input pin
		AN12		A/D converter analog input pin
25	29	P64	1	General-purpose I/O port
		CMP2_N		Comparator ch. 2 negative input pin
		AN13		A/D converter analog input pin
26	30	P65	L	General-purpose I/O port
		CMP3_O		Comparator ch. 3 output pin
		UO		UART/SIO data output pin
		SDA		${ }^{12} \mathrm{C}$ data I/O pin
27	31	P66	1	General-purpose I/O port
		CMP3_P		Comparator ch. 3 positive input pin
		AN14		A/D converter analog input pin
28	32	P67	1	General-purpose I/O port
		CMP3_N		Comparator ch. 3 negative input pin
		AN15		A/D converter analog input pin
29	1	PF2	A	General-purpose I/O port
		$\overline{\mathrm{RST}}$		Reset pin Dedicated reset pin in MB95F432H/F433H/F434H
30	2	PFO	B	General-purpose I/O port
		X0		Main clock I/O oscillation pin
31	3	PF1	B	General-purpose I/O port
		X1		Main clock I/O oscillation pin
32	4	Vss	-	Power supply pin (GND)

*1: Package code: FPT-32P-M30
*2: Package code: DIP-32P-M06
*3: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- N-ch open drain output - Hysteresis input - Reset output
B		- Oscillation circuit - High-speed side Feedback resistance: approx. $1 \mathrm{M} \Omega$ - CMOS output - Hysteresis input
C		- Oscillation circuit - Low-speed side Feedback resistance: approx. $10 \mathrm{M} \Omega$ - CMOS output - Hysteresis input - Pull-up control available

(Continued)

Type	Circuit	Remarks
D		- CMOS output - Hysteresis input
E		- CMOS output - Hysteresis input - Pull-up control available - Analog input
F		- CMOS output - Hysteresis input - CMOS input - Pull-up control available - Analog input - N-ch open drain output (as $\mathrm{I}^{2} \mathrm{C}$ output)
G		- CMOS output - Hysteresis input - Pull-up control available
H		- N-ch open drain output - Hysteresis input - CMOS input

(Continued)
(Continued)

Type	Circuit	Remarks
1		- CMOS output - Hysteresis input
J		- CMOS output - Hysteresis input
K		- CMOS output - Hysteresis input
L		- CMOS output - Hysteresis input - CMOS input - N-ch open drain output (as $\mathrm{I}^{2} \mathrm{C}$ output)

■ NOTES ON DEVICE HANDLING

- Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.
In a CMOS IC, if a voltage higher than $V_{c c}$ or a voltage lower than $V_{s s}$ is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "■ ELECTRICAL CHARACTERISTICS" is applied to the Vcc pin or the Vss pin, a latch-up may occur.
When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

- Stabilizing supply voltage

Supply voltage must be stabilized.
A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.
As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency $(50 \mathrm{~Hz} / 60 \mathrm{~Hz})$ does not exceed 10% of the standard $\mathrm{V} c \mathrm{c}$ value, and the transient fluctuation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at a momentary fluctuation such as switching the power supply.

- Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

■ PIN CONNECTION

- Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \mathrm{k} \Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

- Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.
It is also advisable to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between the V_{cc} pin and the Vss pin at a location close to this device.

- DBG pin

Connect the DBG pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{cc} or V_{ss} pin when designing the layout of the printed circuit board.
The DBG pin should not stay at "L" level after power-on until the reset output is released.

- $\overline{\text { RST }}$ pin

Connect the RST pin directly to an external pull-up resistor.
To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the $\overline{\text { RST }}$ pin and the V_{cc} or V_{ss} pin when designing the layout of the printed circuit board.
The $\overline{R S T} / P F 2$ pin functions as the reset input/output pin after power-on. In addition, the reset output of the $\overline{\text { RST/PF2 pin can be enabled by the RSTOE bit in the SYSC1 register, and the reset input function and the }}$ general purpose I/O function can be selected by the RSTEN bit in the SYSC1 register.

- C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. For the connection to a smoothing capacitor Cs, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C s and the distance between C s and the $\mathrm{V}_{\text {ss }}$ pin when designing the layout of a printed circuit board.

- DBG/RST/C pins connection diagram

BLOCK DIAGRAM

CPU CORE

- Memory Space

The memory space of the MB95430H Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95430H Series are shown below.

- Memory Maps

- I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	-	(Disabled)	-	-
0007н	SYCC	System clock control register	R/W	0000X011в
0008н	STBC	Standby control register	R/W	00000XXX
0009н	RSRR	Reset source register	R/W	ХХХХХХХХв
000Ан	TBTC	Time-base timer control register	R/W	00000000в
000Bн	WPCR	Watch prescaler control register	R/W	00000000в
000C ${ }_{\text {H }}$	WDTC	Watchdog timer control register	R/W	00XX0000в
000D ${ }_{\text {н }}$	SYCC2	System clock control register 2	R/W	XX100011в
000Ен to 0015	-	(Disabled)	-	-
0016н	PDR6	Port 6 data register	R/W	00000000в
0017 ${ }_{\text {H }}$	DDR6	Port 6 direction register	R/W	00000000в
0018н	PDR7	Port 7 data register	R/W	00000000в
0019н	DDR7	Port 7 direction register	R/W	00000000в
$\begin{aligned} & \text { 0020н } \\ & \text { to } \\ & 0027 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0028H	PDRF	Port F data register	R/W	00000000в
0029н	DDRF	Port F direction register	R/W	00000000в
002Ан	PDRG	Port G data register	R/W	00000000в
002Вн	DDRG	Port G direction register	R/W	00000000в
002C ${ }_{\text {H }}$	PUL0	Port 0 pull-up register	R/W	00000000в
$\begin{aligned} & \text { 002Dн } \\ & \text { to } \\ & 0034 \text { н } \end{aligned}$	-	(Disabled)	-	-
0035 ${ }^{\text {H }}$	PULG	Port G pull-up register	R/W	00000000в
0036 ${ }^{\text {¢ }}$	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	00000000в
0037 ${ }^{\text {H }}$	T00CR1	8/16-bit composite timer 00 status control register 1 ch .0	R/W	00000000в
0038н	BUZZ	Buzzer control register	R/W	00000000в
0039н	-	(Disabled)	-	-

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
003Ан	CMR0	Voltage comparator control register ch. 0	R/W	000X0001в
003Вн	CMR1	Voltage comparator control register ch. 1	R/W	000X0001в
003C	CMR2	Voltage comparator control register ch. 2	R/W	000X0001в
003D	CMR3	Voltage comparator control register ch. 3	R/W	000X0001в
003Ен	OPCR	OPAMP control register	R/W	00000011в
003FH to 0041н	-	(Disabled)	-	-
0042н	PCNTH0	16-bit PPG status control register upper ch. 0	R/W	00000000в
0043н	PCNTLO	16-bit PPG status control register lower ch. 0	R/W	00000000в
0044н	PTGS0	16-bit PPG trigger source control register ch. 0	R/W	00000000в
0045 ${ }^{\text {H }}$	-	(Disabled)	-	-
0046н	OCUOC	16-bit output compare stop trigger control register	R/W	00000000в
0047H	-	(Disabled)	-	-
0048н	EIC00	External interrupt circuit control register ch. 0/ch. 1	R/W	00000000в
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000в
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000в
004Вн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в
$\begin{aligned} & \text { 004Cн, } \\ & 004 \mathrm{D} \end{aligned}$	-	(Disabled)	-	-
004Eн	SYSC2	System control register 2	R/W	00000000в
004FH	-	(Disabled)	-	-
0050н	IBCR00	${ }^{2} \mathrm{C}$ bus control register 0	R/W	00000000в
0051н	IBCR10	$I^{2} \mathrm{C}$ bus control register 1	R/W	00000000в
0052н	IBSR0	$1^{2} \mathrm{C}$ bus status register	R/W	00000000в
0053н	IDDR0	${ }^{2} \mathrm{C}$ data register	R/W	00000000в
0054н	IAAR0	${ }^{12} \mathrm{C}$ address register	R/W	00000000в
0055 ${ }^{\text {¢ }}$	ICCR0	$1^{2} \mathrm{C}$ clock control register	R/W	00000000в
0056н	SMC10	UART/SIO serial mode control register 1 ch .0	R/W	00000000в
0057 ${ }_{\text {H }}$	SMC20	UART/SIO serial mode control register 2 ch .0	R/W	00100000в
0058H	SSR0	UART/SIO serial status and data register ch. 0	R/W	00000001в
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch. 0	R	00000000в
005Вн	-	(Disabled)	-	-
005CH	TCDTH	16-bit free-running timer data register (upper)	R/W	00000000в
005D	TCDTL	16-bit free-running timer data register (lower)	R/W	00000000в
005Eн	CPCLRH	16-bit free-running timer compare clear register (upper)	R	11111111в
005F\%	CPCLRL	16-bit free-running timer compare clear register (lower)	R	11111111в

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0060н	TCCSH	16-bit free-running timer control status register (upper)	R/W	01000000в
0061н	TCCSL	16-bit free-running timer control status register (lower)	R/W	00000000в
0062н	ETCCSH	16-bit free-running timer extended control status register (upper)	R/W	00000000в
0063H	ETCCSL	16-bit free-running timer extended control status register (lower)	R/W	00000000в
0064н	OCCPOH	16-bit output compare channel 0 register (upper)	R	00000000в
0065 ${ }^{\text {H }}$	OCCPOL	16-bit output compare channel 0 register (lower)	R	00000000в
0066н	OCCP1H	16-bit output compare channel 1 register (upper)	R	00000000в
0067 ${ }^{\text {H }}$	OCCP1L	16-bit output compare channel 1 register (lower)	R	00000000в
0068н	OCSH	16-bit output compare control status register (upper)	R/W	00000000в
0069н	OCSL	16-bit output compare control status register (lower)	R/W	00000000в
006Ан	OCMCR	16-bit output compare mode control register	R/W	00000000в
006В ${ }_{\text {н }}$	EOCS	16-bit output compare extended control status register	R/W	00000000в
006C ${ }_{\text {H }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006D	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper)	R/W	00000000в
006FH	ADDL	8/10-bit A/D converter data register (lower)	R/W	00000000в
0070 ${ }^{\text {H }}$	-	(Disabled)	-	-
0071н	FSR2	Flash memory status register 2	R/W	00000000в
0072н	FSR	Flash memory status register	R/W	000X0000в
0073 ${ }^{\text {¢ }}$	SWRE0	Flash memory sector write control register 0	R/W	00000000в
0074 ${ }_{\text {H }}$	FSR3	Flash memory status register 3	R	0000XXXX ${ }_{\text {в }}$
0075 ${ }^{\text {H }}$	-	(Disabled)	-	-
0076	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }_{\text {H }}$	WROR	Wild register data test setting register	R/W	00000000в
0078н	-	(Disabled)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007CH	ILR3	Interrupt level setting register 3	R/W	11111111в
007D	ILR4	Interrupt level setting register 4	R/W	11111111в
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в
$\begin{aligned} & 007 \mathrm{~F}_{\mathrm{H}} \\ & \text { to } \\ & 0 \mathrm{~F} 7 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000в
0F81н	WRARLO	Wild register address setting register (lower) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	00000000в
0F87н	WRARL2	Wild register address setting register (lower) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
0F89н	WRARH3	Wild register address setting register (upper) ch. 3	R/W	00000000в
0F8Ан	WRARL3	Wild register address setting register (lower) ch. 3	R/W	00000000в
0F8Bн	WRDR3	Wild register data setting register ch. 3	R/W	00000000в
$\begin{aligned} & \text { 0F8CH } \\ & \text { to } \\ & \text { 0F91 } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	00000000в
0F93 ${ }_{\text {¢ }}$	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	00000000в
0F94н	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	00000000в
0F95 ${ }^{\text {¢ }}$	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	00000000в
0F96	TMCRO	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0F97н } \\ & \text { to } \\ & \text { OFA9н } \end{aligned}$	-	(Disabled)	-	-
ОFААн	PDCRH0	16-bit PPG down counter register (upper) ch. 0	R/W	00000000в
0FABн	PDCRLO	16-bit PPG down counter register (lower) ch. 0	R/W	00000000в
0FACH	PCSRH0	16-bit PPG cycle setting buffer register (upper) ch. 0	R/W	11111111в
0FAD	PCSRLO	16-bit PPG cycle setting buffer register (lower) ch. 0	R/W	11111111в
0FAEн	PDUTH0	16-bit PPG duty setting buffer register (upper) ch. 0	R/W	11111111в
0FAFH	PDUTLO	16-bit PPG duty setting buffer register (lower) ch. 0	R/W	11111111в
	-	(Disabled)	-	-
0FBEн	PSSR0	UART/SIO prescaler select register ch. 0	R/W	00000000в
0FBFн	BRSR0	UART/SIO baud rate setting register ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0FCOH, } \\ & \text { OFC1н } \end{aligned}$	-	(Disabled)	-	-
0FC2н	AIDRH	A/D input disable register (upper)	R/W	00000000в
0FC3н	AIDRL	A/D input disable register (lower)	R/W	00000000в
$\begin{aligned} & \text { OFC4н } \\ & \text { to } \\ & \text { OFE3н } \end{aligned}$	-	(Disabled)	-	-

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
OFE4н	CRTH	Main CR clock trimming register (upper)	R/W	0XXXXXXX
OFE5	CRTL	Main CR clock trimming register (lower)	R/W	00XXXXXXв
0FE6н, 0FE7H	-	(Disabled)	-	-
0FE8н	SYSC1	System configuration register 1	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	00000000в
0FEAн	CMDR	Clock monitoring data register	R	00000000в
0FEBн	WDTH	Watchdog timer selection ID register (upper)	R	ХХХХХХХХв
0FECн	WDTL	Watchdog timer selection ID register (lower)	R	ХХХХХХХХв
0FED	-	(Disabled)	-	-
0FEEн	ILSR	Input level select register	R/W	00000000в
0FEFH	WICR	Interrupt pin control register	R/W	01000000в
$\begin{aligned} & \text { OFFOH } \\ & \text { to } \\ & \text { OFFFH }_{H} \end{aligned}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable / Writable
R : Read only
W : Write only

- Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$\mathrm{X} \quad$: The initial value of this bit is indeterminate.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

INTERRUPT SOURCE TABLE

Interrupt source	Interrupt request number	Vector table address		Bit name of interrupt level setting register	Priority order of interrupt sources of the same level (occurring simultaneously)
		Upper	Lower		
External interrupt ch. 0					High
External interrupt ch. 4					-
External interrupt ch. 1	IRQ01	FFF8	FFF		
External interrupt ch. 5	IRQ01	FF\%	FF'		
External interrupt ch. 2	IRQ02	FFF6	FFF7 ${ }^{\text {H }}$	L0	
External interrupt ch. 6			FF\%	L02 [1.0]	
External interrupt ch. 3		FF	FF		
External interrupt ch. 7	IRQ03	F	FF		
UART/SIO	IRQ04	FFF2н	FFF3H	L04 [1:0]	
8/16-bit composite timer ch. 0 (lower)	IRQ05	FFFOH	FFF1H	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	FFEE	FFEF ${ }_{\text {H }}$	L06 [1:0]	
Output compare ch. 0 match	IRQ07	FFEC ${ }_{\text {¢ }}$	FFED ${ }_{\text {н }}$	L07 [1:0]	
Output compare ch. 1 match	IRQ08	FFEAн	FFEB	L08 [1:0]	
-	IRQ09	FFE8н	FFE9 ${ }_{\text {н }}$	L09 [1:0]	
Voltage comparator ch. 0	IRQ10	FFE6 ${ }_{\text {¢ }}$	FFE7 ${ }_{\text {¢ }}$	L10 [1:0]	
Voltage comparator ch. 1	IRQ11	FFE4 ${ }_{\text {¢ }}$	FFE5	L11 [1:0]	
Voltage comparator ch. 2	IRQ12	FFE2н	FFE3н	L12 [1:0]	
Voltage comparator ch. 3	IRQ13	FFEOH	FFE1н	L13 [1:0]	
16-bit free-running timer (compare match/zero-detect/overflow)	IRQ14	FFDEн	FFDF ${ }_{\text {H }}$	L14 [1:0]	
16-bit PPG	IRQ15	FFDC ${ }_{\text {H }}$	FFDD ${ }_{\text {н }}$	L15 [1:0]	
$1^{2} \mathrm{C}$	IRQ16	FFDA	FFDB	L16 [1:0]	
-	IRQ17	FFD8 ${ }^{\text {¢ }}$	FFD9н	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6	FFD7н	L18 [1:0]	
Time-base timer	IRQ19	FFD4н	FFD5	L19 [1:0]	
Watch prescaler	IRQ20	FFD2 ${ }_{\text {н }}$	FFD3 ${ }_{\text {¢ }}$	L20 [1:0]	
-	IRQ21	FFDOH	FFD1н	L21 [1:0]	
-	IRQ22	FFCE,	FFCF	L22 [1:0]	∇
Flash memory	IRQ23	FFCCH	FFCD ${ }_{\text {н }}$	L23 [1:0]	Low

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6	V	
Input voltage*1	V	Vss - 0.3	Vss +6	V	*2
Output voltage*1	Vo	Vss - 0.3	Vss + 6	V	*2
Maximum clamp current	Iclamp	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	$\Sigma \mathrm{llclampl}$	-	20	mA	Applicable to specific pins*3
" L " level maximum output current	loL1	-	15	mA	Other than P05 and P06
	lol2		15		P05 and P06
"L" level average current	lolav1	-	4	mA	Other than P05 and P06 Average output current $=$ operating current \times operating ratio (1 pin)
	lolav2	-	12		P05 and P06 Average output current $=$ operating current \times operating ratio (1 pin)
"L" level total maximum output current	$\Sigma \mathrm{lob}$	-	100	mA	
"L" level total average output current	Σ Iolav	-	50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
"H" level maximum output current	Іон1	-	-15	mA	Other than P05 and P06
	Іон2	-	-15		P05 and P06
" H " level average current	Іohav1	-	-4	mA	Other than P05 and P06 Average output current $=$ operating current \times operating ratio (1 pin)
	Іohav2	-	-8		P05 and P06 Average output current $=$ operating current \times operating ratio (1 pin)
"H" level total maximum output current	Σ lon	-	-100	mA	
"H" level total average output current	Σ Iohav	-	-50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
Power consumption	Pd	-	320	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

(Continued)

(Continued)

*1: The parameter is based on $\mathrm{Vss}=0.0 \mathrm{~V}$.
*2: V_{1} and V_{0} must not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$. V_{1} must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the Iclamp rating is used instead of the V_{1} rating.
*3: Applicable to the following pins: P00 to P07, P60 to P67, P70 to P76, PF0 and PF1

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit
- Input/Output equivalent circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks	
		Min	Max			
Power supply voltage	Vcc	$2.4{ }^{\star 1 * 2}$	5.5*1	V	In normal operation	Other than on-chip debug mode
		2.3	5.5		Hold condition in stop mode	
		2.9	5.5		In normal operation	On-chip debug mode
		2.3	5.5		Hold condition in stop mode	
Smoothing capacitor	Cs	0.022	1	$\mu \mathrm{F}$	*3	
Operating	TA	-40	+85	${ }^{\circ} \mathrm{C}$	Other than on-chip debug mode	
temperature		+5	+35		On-chip debug mode	

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
*2: This value becomes 2.88 V when the low-voltage detection reset is used.
*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. For the connection to a smoothing capacitor Cs , see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the V ss pin when designing the layout of a printed circuit board.

- DBG / $\overline{\mathrm{RST}} / \mathrm{C}$ pins connection diagram

*: Since the DBG pin becomes a communication pin in on-chip debug mode, set a pull-up resistor value suiting the input/output specifications of P12/EC0/UI/SCL/DBG.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges.
Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ${ }^{\text {² }}$	Max		
"H" level input voltage	Vıн	$\begin{aligned} & \text { P03, P04, P12, } \\ & \text { P65 } \end{aligned}$	*1	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When CMOS input level (hysteresis input) is selected
	Vihs	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P12, } \\ & \text { P60 to P67, P70 } \\ & \text { to P76, } \\ & \text { PF0, PF1, PG1, } \\ & \text { PG2 } \end{aligned}$	*1	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
	Vінм	PF2	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
"L" level input voltage	VIL	$\begin{aligned} & \text { P03, P04, P12, } \\ & \text { P65 } \end{aligned}$	*1	Vss - 0.3	-	0.3 Vcc	V	When CMOS input level (hysteresis input) is selected
	Vils	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P12, } \\ & \text { P60 to P67, P70 } \\ & \text { to P76, } \\ & \text { PF0, PF1, PG1, } \\ & \text { PG2 } \end{aligned}$	*1	Vss - 0.3	-	0.2 Vcc	V	Hysteresis input
	VILM	PF2	-	Vss - 0.3	-	0.3 Vcc	V	Hysteresis input
Open-drain output application voltage	V ${ }_{\text {d }}$	$\begin{aligned} & \text { P03, P04, P12, } \\ & \text { P65, PF2 } \end{aligned}$	-	Vss - 0.3	-	Vss +5.5	V	P03, P04 and P65 are open-drain output pins when assigned as the SDA/SCL pin of $\mathrm{I}^{2} \mathrm{C}$.
"H" level output voltage	Vor1	Output pins other than P05, P06, P12 and PF2	$\mathrm{IO}=-4 \mathrm{~mA}$	V cc-0.5	-	-	V	
	Voh2	P05, P06	$\mathrm{IOH}=-8 \mathrm{~mA}$	V cc-0.5	-	-	V	
"L" level output voltage	Vol1	Output pins other than P05 and P06	$\mathrm{loL}=4 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P05, P06	$\mathrm{loL}=12 \mathrm{~mA}$	-	-	0.4	V	
Input leak current (Hi-Z output leak current)	ILı	All input pins	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+5	$\mu \mathrm{A}$	When pull-up resistance is disabled
Pull-up resistance	Rpull	$\begin{aligned} & \text { P00 to P07, } \\ & \text { PG1, PG2 } \end{aligned}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	When pull-up resistance is enabled
Input capacitance	Cin	Other than Vcc and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

(Continued)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ${ }^{\text {3 }}$	Max		
Power supply current ${ }^{* 2}$	Icc	$V_{c c}$ (External clock operation)	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	12.1	22	mA	Flash memory product (except writing and erasing)
				-	39.3	46.8	mA	Flash memory product (at writing and erasing)
				-	13.8	30.3	mA	At A/D conversion
				-	12.5	23.4	mA	When the voltage comparator is operating
				-	13.4	22.3	mA	When the OPAMP is operating
	Iccs		$\begin{array}{\|l} \hline V_{c c}=5.5 \mathrm{~V} \\ F_{c \mathrm{cH}}=32 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ \text { Main sleep mode } \\ \text { (divided by 2) } \end{array}$	-	5.1	13.2	mA	
	Iccı		$\begin{aligned} & \hline \mathrm{VcC}=5.5 \mathrm{~V} \\ & \mathrm{Fccm}_{\mathrm{cc}}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Subclock mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	57	168	$\mu \mathrm{A}$	
	Iccıs		$\begin{aligned} & \hline \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{FCL}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\text {MPL }}=16 \mathrm{kHz} \\ & \text { Subsleep mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	7.6	92	$\mu \mathrm{A}$	
	Ісст		$\begin{aligned} & \mathrm{V} \mathrm{VC}=5.5 \mathrm{~V} \\ & \mathrm{FCL}^{2}=32 \mathrm{kHz} \\ & \text { Watch mode } \\ & \text { Main stop mode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	4.2	33	$\mu \mathrm{A}$	
	Iccmcr		$\begin{array}{\|l\|} \hline V_{C C}=5.5 \mathrm{~V} \\ F_{C R H}=12.5 \mathrm{MHz} \\ \text { FMP }^{\mathrm{MP}} 12.5 \mathrm{MHz} \\ \text { Main CR clock mode } \end{array}$	-	9.6	18.2	mA	
	Iccscr		$\begin{array}{\|l} V_{C C}=5.5 \mathrm{~V} \\ \text { Sub-CR clock mode } \\ \text { (divided by 2) } \\ T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{array}$	-	107.4	550	$\mu \mathrm{A}$	

(Continued)
(Continued)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ${ }^{\text {* }}$	Max		
Power supply current*2	Iccts	Vcc (External clock operation)	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~F}_{\mathrm{cH}}=32 \mathrm{MHz} \end{aligned}$ Time-base timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.9	3.3	mA	
	Іссн		$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ Substop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	3.5	24.8	$\mu \mathrm{A}$	
	ILvD	Vcc	Current consumption for low-voltage detection circuit only	-	26.9	54	$\mu \mathrm{A}$	
	Icri		Current consumption for the main CR oscillator	-	0.2	0.6	mA	
	Icrl		Current consumption for the sub-CR oscillator oscillating at 100 kHz	-	64.7	72	$\mu \mathrm{A}$	

*1: The input levels of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.
*2: • The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (lıvo) to one of the value from Icc to Icch. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (Icra, Icrl) and a specified value. In on-chip debug mode, the CR oscillator (IcRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "4. AC Characteristics: (1) Clock Timing" for Fch $_{\text {ch }}$ Fcl.
- See "4. AC Characteristics: (2) Source Clock/Machine Clock" for Fmp and Fmpl.
*3: $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

4. AC Characteristics

(1) Clock Timing
($\mathrm{Vcc}=2.4 \mathrm{~V}$ to 5.5 V , V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fch	X0, X1	-	1	-	16.25	MHz	When the main oscillation circuit is used
		X0	X1: open	1	-	12	MHz	When the main external clock is used
		X0, X1	*	1	-	32.5	MHz	
	Fcrat	-	-	TBD	12.5	TBD	MHz	When the main CR clock is used
				TBD	10	TBD	MHz	
				TBD	8	TBD	MHz	
				TBD	1	TBD	MHz	
	Fcı	X0A, X1A	-	-	32.768	-	kHz	When the sub-oscillation circuit is used
				-	32.768	-	kHz	When the sub-external clock is used
	Fcrl	-	-	50	100	200	kHz	When the sub-CR clock is used
Clock cycle time	thcyl	X0, X1	-	61.5	-	1000	ns	When the main oscillation circuit is used
		X0	X1: open	83.4	-	1000	ns	When the external clock is used
		X0, X1	*	30.8	-	1000	ns	
	tıcy	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	When the subclock is used
Input clock pulse width	$\begin{aligned} & \text { twh1 } \\ & \text { twL1 } \end{aligned}$	X0	X1: open	33.4	-	-	ns	When the external clock is used, the duty ratio should range between 40% and 60%.
		X0, X1	*	12.4	-	-	ns	
	$\begin{aligned} & \text { twh2 } \\ & \text { twL2 } \end{aligned}$	XOA	-	-	15.2	-	$\mu \mathrm{s}$	
Input clock rise time and fall time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$	X0	X1: open	-	-	5	ns	When the external clock is used
		X0, X1	*	-	-	5	ns	
CR oscillation start time	tс尺ннк	-	-	-	-	80	$\mu \mathrm{s}$	When the main CR clock is used
	tcrıwk	-	-	-	-	10	$\mu \mathrm{s}$	When the sub-CR clock is used

*: The external clock signal is input to $\mathrm{X0}$ and the inverted external clock signal to X .

- Figure of main clock input port external connection

When a crystal oscillator or When the external clock is used When the external clock
a ceramic oscillator is used

is used

XOA

- Figure of subclock input port external connection

When a crystal oscillator or a ceramic oscillator is used

When the external clock
is used

(2) Source Clock/Machine Clock
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time*1	tsclk	-	61.5	-	2000	ns	When the main external clock is used Min: $\mathrm{F}_{\mathrm{ch}}=32.5 \mathrm{MHz}$, divided by 2 Max: $\mathrm{F}_{\mathrm{CH}}=1 \mathrm{MHz}$, divided by 2
			80	-	1000	ns	When the main CR clock is used Min: $\mathrm{F}_{\mathrm{CRH}}=12.5 \mathrm{MHz}$ Max: $F_{\text {CRH }}=1 \mathrm{MHz}$
			-	61	-	$\mu \mathrm{s}$	When the sub-oscillation clock is used $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$, divided by 2
			-	20	-	$\mu \mathrm{s}$	When the sub-CR clock is used $F_{\text {CRL }}=100 \mathrm{kHz}$, divided by 2
Source clock frequency	Fsp	-	0.5	-	16.25	MHz	When the main oscillation clock is used
			1	-	12.5	MHz	When the main CR clock is used
	FspL		-	16.384	-	kHz	When the sub-oscillation clock is used
			-	50	-	kHz	When the sub-CR clock is used $F_{C R L}=100 \mathrm{kHz}$, divided by 2
Machine clock cycle time*2 (minimum instruction execution time)	tmCLK	-	61.5	-	32000	ns	When the main oscillation clock is used Min: $\mathrm{Fsp}_{\text {sp }}=16.25 \mathrm{MHz}$, no division Max: Fsp $=0.5 \mathrm{MHz}$, divided by 16
			80	-	16000	ns	When the main CR clock is used Min: Fsp $=12.5 \mathrm{MHz}$ Max: Fsp $=1 \mathrm{MHz}$, divided by 16
			61	-	976.5	$\mu \mathrm{s}$	When the sub-oscillation clock is used Min: Fspl $=16.384 \mathrm{kHz}$, no division Max: FspL $=16.384 \mathrm{kHz}$, divided by 16
			20	-	320	$\mu \mathrm{s}$	When the sub-CR clock is used Min: Fspl $=50 \mathrm{kHz}$, no division Max: FspL $=50 \mathrm{kHz}$, divided by 16
Machine clock frequency	$\mathrm{F}_{\text {MP }}$	-	0.031	-	16.25	MHz	When the main oscillation clock is used
			0.0625	-	12.5	MHz	When the main CR clock is used
	FMPL		1.024	-	16.384	kHz	When the sub-oscillation clock is used
			3.125	-	50	kHz	When the sub-CR clock is used $F_{\text {CRL }}=100 \mathrm{kHz}$

*1: This is the clock before it is divided according to the division ratio set by the machine clock divide ratio select bits (SYCC:DIV1 and DIV0). This source clock is divided to become a machine clock according to the divide ratio set by the machine clock divide ratio select bits (SYCC:DIV1 and DIV0). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2
*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16
- Schematic diagram of the clock generation block

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) MB95430H (without the on-chip debug function)

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) MB95430H (with the on-chip debug function)

(3) External Reset
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
$\overline{R S T}$ " L " level pulse width	$t_{\text {RStL }}$	2 tmcLk*1	-	ns	In normal operation
		Oscillation time of the oscillator*2 +100	-	$\mu \mathrm{s}$	In stop mode, subclock mode, subsleep mode, watch mode, and power-on
		100	-	$\mu \mathrm{s}$	In time-base timer mode

*1: See "(2) Source Clock/Machine Clock" for tmclк.
*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms . The ceramic oscillator has an oscillation time of between hundreds of $\mu \mathrm{s}$ and several ms . The external clock has an oscillation time of 0 ms . The CR oscillator clock has an oscillation time of between several μ s and several ms .

- In normal operation
$\overline{\mathrm{RST}}$

- In stop mode, subclock mode, subsleep mode, watch mode and power-on

(4) Power-on Reset

Parameter	Symbol	Condition	$\left(\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$			
			Value		Unit	Remarks
			Min	Max		
Power supply rising time	t_{R}	-	-	50	ms	
Power supply cutoff time	toff	-	1	-	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within $30 \mathrm{mV} / \mathrm{ms}$ as shown below.

(5) Peripheral Input Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	tııı	INT00 to INT07, EC0, ADTG, TRG	2 tмськ*	-	ns
Peripheral input "L" pulse width	tiHIL		2 тмськ*	-	ns

*: See "(2) Source Clock/Machine Clock" for tmalк.

INT00 to INT07, EC0, ADTG, TRG

 0.2 Vcc
(6) UART/SIO, Serial I/O Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	UCK	Internal clock operation	4 tmalk*	-	ns
UCK $\downarrow \rightarrow$ UO time	tslov	UCK, UO		-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK, UI		2 tmack*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCK, UI		2 tmack*	-	ns
Serial clock "H" pulse width	tshSL	UCK	External clock operation	4 tmack*	-	ns
Serial clock "L" pulse width	tsLSH	UCK		4 tmack*	-	ns
UCK $\downarrow \rightarrow$ UO time	tsLov	UCK, UO		-	190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK, UI		2 tmack*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCK, UI		2 tmack*	-	ns

*: See "(2) Source Clock/Machine Clock" for tmalk.

- Internal shift clock mode

- External shift clock mode

(7) Low-voltage Detection

(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Release voltage	VDL+	2.52	2.7	2.88	V	At power supply rise
Detection voltage	V DL -	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	Vhys	70	100	-	mV	
Power supply start voltage	$\mathrm{V}_{\text {off }}$	-	-	2.3	V	
Power supply end voltage	Von	4.9	-	-	V	
Power supply voltage change time (at power supply rise)	tr	3000	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset release signal generates within the rating (VDL+)
Power supply voltage change time (at power supply fall)	$\mathrm{tf}^{\text {f}}$	300	-	-	$\mu \mathrm{s}$	Slope of power supply that the reset detection signal generates within the rating (VdL-)
Reset release delay time	$\mathrm{t}_{\mathrm{d} 1}$	-	-	300	$\mu \mathrm{s}$	
Reset detection delay time	td2	-	-	20	$\mu \mathrm{s}$	

(8) $\mathrm{I}^{2} \mathrm{C}$ Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin name	Condition	Value				Unit
				Standardmode		Fast-mode		
				Min	Max	Min	Max	
SCL clock frequency	fscl	SCL	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd; Sta	SCL, SDA		4.0	-	0.6	-	$\mu \mathrm{s}$
SCL clock "L" width	tıow	SCL		4.7	-	1.3	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh	SCL		4.0	-	0.6	-	$\mu \mathrm{s}$
(Repeated) START condition hold time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;STA	SCL, SDA		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time $\text { SCL } \downarrow \rightarrow \text { SDA } \downarrow \uparrow$	thd;DAT	SCL, SDA		0	3.45^{*}	0	$0.9{ }^{*}$	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;DAT	SCL, SDA		0.25	-	0.1	-	$\mu \mathrm{s}$
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	SCL, SDA		4	-	0.6	-	$\mu \mathrm{s}$
Bus free time between STOP condition and START condition	tbuf	SCL, SDA		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.
*2: The maximum thd;дат in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (tıow) does not extend.
*3: A Fast-mode $I^{2} \mathrm{C}$-bus device can be used in a Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, provided that the condition of tsu;DAT $\geq 250 \mathrm{~ns}$ is fulfilled.

(Continued)
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Ss}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Condition	Value*2		Unit	Remarks
				Min	Max		
SCL clock "L" width	tıow	SCL	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	($2+\mathrm{nm} / 2$) $\mathrm{tmcLk}-20$	-	ns	Master mode
SCL clock "H" width	thigh	SCL		($\mathrm{nm} / 2$) tmalk - $20^{\text {a }}$	($\mathrm{nm} / 2$) tmalk $^{\text {+ }} 20$	ns	Master mode
START conditionhold time	thd; Sta	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		$(-1+n m / 2)$ tmcLk -20	$(-1+n m)$ tmclk $^{+} 20$	ns	Master mode Maximum value is applied when $m, n=1,8$. Otherwise, the minimum value is applied.
STOP condition setup time	tsu;sto	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		$(1+n m / 2)$ tmclk -20	$(1+n m / 2)$ tmclk +20	ns	Master mode
START condition setup time	tsu;sta	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		$(1+n m / 2)$ tmclk -20	$(1+n m / 2)$ tmcle $^{+} 20$	ns	Master mode
Bus free time between STOP condition and START condition	tbuf	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		$(2 \mathrm{~nm}+4)$ tmclk -20	-	ns	
Data hold time	thd;Dat	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		3 tmсlк - 20	-	ns	Master mode
Data setup time	tsu;DAt	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		$(-2+n m / 2)$ tmclk -20	$(-1+n m / 2)$ tмськ +20	ns	Master mode When assuming that " L " of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	tsu;int	SCL		($\mathrm{nm} / 2$) tmalk - 20	$(1+n m / 2)$ tmclk +20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow. Maximum value is applied to the interrupt at the 8th SCL \downarrow.

(Continued)
(Continued)
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value*2		Unit	Remarks
				Min	Max		
SCL clock "L" width	tıow	SCL	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	4 tmсlк - 20	-	ns	At reception
SCL clock "H" width	thigh	SCL		4 tmсlк - 20	-	ns	At reception
START condition detection	thd; STA	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		2 tmclk - 20	-	ns	Undetected when 1 tmсLк is used at reception
STOP condition detection	tsu;sto	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		2 tmсlк - 20	-	ns	Undetected when 1 tmсlк is used at reception
RESTART condition detection condition	tsu;sta	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		2 tmсlк - 20	-	ns	Undetected when 1 tmсlк is used at reception
Bus free time	tbuf	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		2 tmсlк - 20	-	ns	At reception
Data hold time	thd; ${ }_{\text {dAt }}$	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		2 tmсlк - 20	-	ns	At slave transmission mode
Data setup time	tsu;dat	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		tıow - 3 tmcle - 20	-	ns	At slave transmission mode
Data hold time	thd;dat	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		0	-	ns	At reception
Data setup time	tsu;dat	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		tmalk - 20	-	ns	At reception
SDA $\downarrow \rightarrow$ SCL \uparrow (at wakeup function)	twakeup	$\begin{aligned} & \text { SCL, } \\ & \text { SDA } \end{aligned}$		Oscillation stabilization wait time +2 tмсlк - 20	-	ns	

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.
*2: • See "(2) Source Clock/Machine Clock" for tmсlк.

- m represents the CS4 bit and CS3 bit (bit 4 and bit 3) in the ${ }^{2} \mathrm{C}$ clock control register (ICCRO).
- n represents the CS2 bit to CS0 bit (bit 2 to bit 0) in the $\mathrm{I}^{2} \mathrm{C}$ clock control register (ICCR0).
- The actual timing of $I^{2} \mathrm{C}$ is determined by the values of m and n set by the machine clock (tmclк) and the CS4 to CS0 bits in the ICCR0 register.
- Standard-mode:
m and n can be set to values in the following range: $0.9 \mathrm{MHz}<\mathrm{t}_{\text {мськ }}$ (machine clock) < 10 MHz .
The usable frequencies of the machine clock are determined by the settings of m and n as shown below.
$(m, n)=(1,8)$
$0.9 \mathrm{MHz}<\mathrm{t}_{\text {мсLк }} \leq 1 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,22),(5,4),(6,4),(7,4),(8,4) \quad: 0.9 \mathrm{MHz}<$ tмськ $^{5} 2 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,38),(5,8),(6,8),(7,8),(8,8) \quad: 0.9 \mathrm{MHz}<$ tмськ $^{5} 4 \mathrm{MHz}$
$(m, n)=(1,98) \quad: 0.9 \mathrm{MHz}<$ tmclk $^{5} \leq 10 \mathrm{MHz}$
- Fast-mode:
m and n can be set to values in the following range: $3.3 \mathrm{MHz}<$ tмськ (machine clock) $<10 \mathrm{MHz}$.
The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

$(\mathrm{m}, \mathrm{n})=(1,8)$: $3.3 \mathrm{MHz}<\mathrm{tmCLK}^{5} 4 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,22),(5,4)$: $3.3 \mathrm{MHz}<\mathrm{tmcLk}^{5} 8 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(6,4)$: $3.3 \mathrm{MHz}<\mathrm{t}_{\text {mсıк }} \leq 10 \mathrm{MHz}$

(9) Voltage Compare Timing

Parameter	Pin name	Value			Unit	Remarks
		Min	Typ	Max		
Voltage range	CMPn_P, CMPn_N $(n=0,1,2,3)$	0	-	Vcc-1.3	V	
Offset voltage	CMPn_P, CMPn_N $(\mathrm{n}=0,1,2,3)$	-10	-	+10	mV	
Delay time	$\begin{aligned} & \text { CMPn_O } \\ & (\mathrm{n}=0,1,2,3) \end{aligned}$	-	650	1210	ns	5 mV overdrive
		-	140	420	ns	50 mV overdrive
Power down delay	CMPn_O$(\mathrm{n}=0,1,2,3)$	-	-	1210	ns	Power down recovery $\text { PD: } 1 \rightarrow 0$
		0	-	-	ns	Power down effective PD: $0 \rightarrow 1$ Output: "H" level
Power up stabilization time	$\begin{aligned} & \text { CMPn_O } \\ & (\mathrm{n}=0,1,2,3) \end{aligned}$	-	-	1210	ns	Output stabilization time at power up

(9) Operational Amplifier Timing

- Open Loop Configuration
$\left(\mathrm{Vcc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Pin name	Value			Unit	Remarks
		Min	Typ	Max		
Input voltage range	$\begin{aligned} & \text { OPAMP_P, } \\ & \text { OPAMP_N } \end{aligned}$	0.1	-	1.5	V	
Output voltage range	OPAMP_O	0.1	-	V cc-0.1	V	
Output resistor load	OPAMP_O	220k	-	-	ohm	Minimum driving resistor value
Output capacitor load	OPAMP_O	-	-	20	pF	AD loading (maximum ESR $=10 \mathrm{k}$)
Offset voltage	OPAMP_O	-	-	10	mV	
Open loop bandwidth	OPAMP_O	3	-	-	MHz	
Open loop gain	OPAMP_O	75	85	-	dB	AD loading
Common mode rejection ratio	OPAMP_O	60	-	-	dB	AD loading
Power supply rejection ratio	OPAMP_O	65	-	-	dB	
Power down recovery time	OPAMP_O	-	-	200	$\mu \mathrm{s}$	
Slew rate	OPAMP_O	0.3	-	-	V/ $/ \mathrm{s}$	
Large signal response	OPAMP_O	-	-	6	$\mu \mathrm{s}$	
Small signal response	OPAMP_O	-	-	500	ns	
Output stabilization time	OPAMP_O	-	-	60	$\mu \mathrm{s}$	After changes in values of RES0-RES2

MB95430H Series

- Closed Loop Configuration
$\left(\mathrm{Vcc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Pin name	Value			Unit	Remarks
		Min	Typ	Max		
Minimum input voltage range $(10 x, 20 x, 60 x)$	$\begin{aligned} & \text { OPAMP_P, } \\ & \text { OPAMP_N } \end{aligned}$	-	0.07	0.09	V	
Minimum input voltage range (30x, 40x, 50x)	$\begin{aligned} & \text { OPAMP_P, } \\ & \text { OPAMP_N } \end{aligned}$	-	0.07	0.10	V	
Maximum input voltage range (10x, 20x, 30x, 40x, 50x, 60x)	$\begin{aligned} & \text { OPAMP_P, } \\ & \text { OPAMP_N } \end{aligned}$	-	-	Vcc/Gain	V	
Output voltage range	OPAMP_O	0.1	-	V cc-0.1	V	
Output capacitor load	OPAMP_O	-	-	20	pF	AD loading (maximum ESR = 10k)
Closed loop bandwidth	OPAMP_O	1	-	-	MHz	AD loading
Closed loop gain	OPAMP_O	10	-	60	V/V	Selectable
Closed loop gain error* $(10 x, 20 x, 30 x, 40 x, 50 x)$	OPAMP_O	-	-	$\pm 10 \%$	-	
Closed loop gain error* (60x)	OPAMP_O	-	-	$\pm 15 \%$	-	
Power down recovery time	OPAMP_O	-	-	200	$\mu \mathrm{s}$	
Slew rate	OPAMP_O	0.3	-	-	V/ $\mu \mathrm{s}$	
Large signal response	OPAMP_O	-	-	6	$\mu \mathrm{s}$	
Small signal response	OPAMP_O	-	-	500	ns	
Output stabilization time	OPAMP_O	-	-	60	$\mu \mathrm{s}$	After changes in values of RES0-RES2

*: Gain error = 1 - (actual gain / design gain)
5. A/D Converter
(1) A/D Converter Electrical Characteristics
$\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to 5.5 V , V ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		-3	-	+3	LSB	
Linearity error		-2.5	-	+2.5	LSB	
Differential linear error		-1.9	-	+1.9	LSB	
Zero transition voltage	Vот	Vss - 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	
Full-scale transition voltage	V ${ }_{\text {fSt }}$	Vcc - 4.5 LSB	Vcc - 2 LSB	$\mathrm{Vcc}+0.5 \mathrm{LSB}$	V	
Compare time	-	0.9	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
		1.8	-	16500	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$
Sampling time	-	0.6	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{cc} \leq 5.5 \mathrm{~V}, \\ & \text { with external } \\ & \text { impedance }<5.4 \mathrm{k} \Omega \end{aligned}$
		1.2	-	∞	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$, with external impedance < $2.4 \mathrm{k} \Omega$
Analog input current	Iain	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$	Vss	-	Vcc	V	

(2) Notes on Using the A/D Converter

- External impedance of analog input and its sampling time
- The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input equivalent circuit

$\mathbf{V c c}$	\mathbf{R}	\mathbf{C}
$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$	$1.95 \mathrm{k} \Omega(\operatorname{Max})$	$17 \mathrm{pF}(\operatorname{Max})$
$4.0 \mathrm{~V} \leq \mathrm{Vcc}<4.5 \mathrm{~V}$	$8.98 \mathrm{k} \Omega(\operatorname{Max})$	$17 \mathrm{pF}(\operatorname{Max})$

Note: The values are reference values.

- Relationship between external impedance and minimum sampling time

- A/D conversion error

As IVcc-Vssl decreases, the A/D conversion error increases proportionately.

(3) Definitions of A/D Converter Terms

- Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10, analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB) It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device to the full-scale transition point ("11 1111 1111" $\leftarrow \rightarrow$ "1111111110") of the same device.
- Differential linear error (unit: LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)
(Continued)

N : A/D converter digital output value
VNT : Voltage at which the digital output transits from ($\mathrm{N}-1$) H to NH
Vот (ideal value) $=\mathrm{VsS}+0.5 \mathrm{LSB}[\mathrm{V}]$
VFST (ideal value) $=\mathrm{Vcc}-2$ LSB [V]
6. Flash Memory Write/Erase Characteristics

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector erase time (2 Kbyte sector)	-	$0.2^{\star 1}$	$0.5^{\star 2}$	s	The time of writing 00H prior to erasure is excluded.
Sector erase time (16 Kbyte sector)	-	$0.5^{\star 1}$	$7.5^{\star 2}$	s	The time of writing 00H prior to erasure is excluded.
Byte writing time	-	21	$6100^{\star 2}$	$\mu \mathrm{~s}$	System-level overhead is excluded.
Erase/write cycle	100000	-	-	cycle	
Power supply voltage at erase/ write	3.0	-	5.5	V	
Flash memory data retention time	$20^{\star 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$

*1: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}, 100000$ cycles
${ }^{*} 2: \mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}, 100000$ cycles
*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being $+85^{\circ} \mathrm{C}$).

MB95430H Series

MASK OPTIONS

No.	Mart Number	MB95F432H	
		MB95F434H	MB95F433K
	Selectable/Fixed		MB95F434K
1	Low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset	With dedicated reset input	Without dedicated reset input

ORDERING INFORMATION

Part Number	Package
MB95F432HPMC-G-SNE2	
MB95F432KPMC-G-SNE2	32-pin plastic LQFP
MB95F433HPMC-G-SNE2	(FPT-32P-M30)
MB95F433KPMC-G-SNE2	
MB95F434HPMC-G-SNE2	
MB95F434KPMC-G-SNE2	
MB95F432HP-G-SH-SNE2	
MB95F432KP-G-SH-SNE2	32-pin plastic SH-DIP
MB95F433HP-G-SH-SNE2	(DIP-32P-M06)
MB95F433KP-G-SH-SNE2	
MB95F434HP-G-SH-SNE2	
MB95F434KP-G-SH-SNE2	

PACKAGE DIMENSION

32-pin plastic LQFP	Lead pitch	0.80 mm
Package width \times package length	$7.00 \mathrm{~mm} \times 7.00 \mathrm{~mm}$	
Lead shape	Gullwing	
Sealing method	Plastic mold	
Mounting height	1.60 mm MAX	

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/
(Continued)
(Continued)

32-pin plastic SDIP	Lead pitch	1.778 mm
	Low space	10.16 mm
(DIP-32P-M06)		Plastic mold

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

MB95430H Series

MEMO

MEMO

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,
Kohoku-ku Yokohama Kanagawa 222-0033, Japan
Tel: +81-45-415-5858
http://jp.fujitsu.com/fsl/en/
For further information please contact:

North and South America
FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/
FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited: Sales Promotion Department

