MINIATURE RELAY
 2 POLES-1 to 2 A (For signal switching)

RY SERIES

FEATURES

- Ultra high sensitivity
- UL, CSA recognized
- Conforms to FCC rules and regulations Part 68
-Surge strength $1,500 \mathrm{~V}$
- High dielectric strength type available (RY-WF type)
- Contact arrangement MBB type available (RY-D type)
- High reliability-bifurcated contacts
- Wide operating range
- DIL pitch terminals
- Plastic sealed type
- RoHS compliant since date code: 0438B9

Please see page 8 for more information

ORDERING INFORMATION

[Example]

$$
\mathrm{RY}-12 \mathrm{WF}-\mathrm{K}
$$

(a) (*) (b) (c) (d)

(a)	Series Name	RY : RY Series
(b)	Nominal Voltage	Refer to the COIL DATA CHART
		W : High sensitive type
		WZ : Nominal 0.5 W type
(c)	Coil and Contact Function	WF: High dielectric strength type
		WFZ:2 A type
		D : 2 FORM D (2 MBB type)
(d)	Enclosure	K : Plastic sealed type

Note: Actual marking omits the hyphen (-) of (*)
For movable and stationary contact with gold overlay type, add suffix " -OH ".

■ SAFETY STANDARD AND FILE NUMBERS

UL478, 508 (Flle No. E45026)
C22.2 No. 14 (File No. LR35579)
Please request when the approval markings are required on the cover.
Please note that UL/CSA ratings may differ from the standard ratings.

Type	Nominal voltage	Contact rating*1
$\begin{aligned} & \text { RY-W } \\ & \text { RY-WZ } \end{aligned}$	3 to 48 VDC	$\begin{array}{rr\|l} \hline 0.5 \mathrm{~A} & 120 \mathrm{VAC}-1 & \\ 1 \mathrm{~A} & 24 \mathrm{VDC} & \\ 0.3 \mathrm{~A} & 60 \mathrm{VDC} & \end{array}$
RY-WF	5 to 48 VDC	$\begin{array}{rr\|r} \hline 0.25 \mathrm{~A} & 120 \mathrm{VAC} \\ 1 \mathrm{~A} & 48 \mathrm{VDC} & \\ 0.3 \mathrm{~A} & 60 \mathrm{VDC} & \end{array}$
RY-WFZ	3 to 48 VDC	$\begin{array}{rr} 0.5 \mathrm{~A} & 120 \mathrm{VAC}-1 \\ 2 \mathrm{~A} & 30 \mathrm{VDC} \\ 0.6 \mathrm{~A} & 110 \mathrm{VDC} \end{array} \quad \text { resistive }$
RY-D	4.5 to 48 VDC	$\begin{array}{lr}0.3 \mathrm{~A} & 120 \mathrm{VAC}-\text { _-_ resistive } \\ 0.2 \mathrm{~A} & 60 \mathrm{VDC}\end{array}$

Note: *1 Contact ratings mentioned above are subject to same polarity.

SPECIFICATIONS

Item			High Sensitive Type	500 mW Type	High Dielectric Strength	2 A Type	Continuous (MBB) Type
			RY-() W-K R	RY-() WZ-K	RY-() WF-K	RY-() WFZ-K	RY-() D-K
Contact	Arrangement		2 form C (DPDT)				2 Form D (2 MBB)
	Material		Gold overlay silver-palladium			Gold overlay silver-nickel	Gold overlay silver-palladium
	Style		Bifurcated				Single
	Resistance (initial)		Maximum $100 \mathrm{~m} \Omega$ (at 1 A 6 VDC)				
	Maximum Carrying Current		1.25 A			2 A	0.6 A
	Rating		$\begin{aligned} & 1 \mathrm{~A} 24 \mathrm{VD} \\ & 0.5 \mathrm{~A} 120 \mathrm{VAC} \end{aligned}$		$\begin{aligned} & 1 \text { A } 24 \text { VDC } \\ & 0.25 \text { A } 120 \text { VAC } \end{aligned}$	$\begin{gathered} 2 \mathrm{~A} 30 \mathrm{VDC} \\ 0.5 \text { A } 125 \text { VAC } \end{gathered}$	0.15 A 48 VDC 0.3 A 120 VAC
	Maximum Switching Power		$60 \mathrm{VA} / 24 \mathrm{~W}$		$30 \mathrm{VA} / 24 \mathrm{~W}$	62.5 VA/60 W	$36 \mathrm{VA} / 7.2 \mathrm{~W}$
	Maximum Switching Voltage		120 VAC, 60 VDC			125 VAC, 150 VDC	$120 \mathrm{VAC}, 60 \mathrm{VDC}$
	Maximum Switching Current		1 A			2 A	0.6 A
	Minimum Switching Load*1		0.01 mA 10 mVDC				0.1 mA 10 mVDC
	Capacitance		Approx. 0.9 pF (between open contacts) 1.4 pF (adjacent contacts) Approx. 1.9 pF (between coil and contacts)				
Coil	Nominal Power (at $20^{\circ} \mathrm{C}$)		0.15 to 0.30 W 0.5 to 0.58 W		0.45 to 0.46 W	0.5 to 0.58W	0.45 to 0.48 W
	Operate Power (at $20^{\circ} \mathrm{C}$)		0.075 to 0.14 W	W 0.125 to 0.145	0.2 to 0.21 W	0.2 to 0.324 W	0.2 to 0.21 W
	Operating Temperature (No frost)		$-30^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (reer to the CHARACTERISTIC DATA)			$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Time Value	Operate (at nominal voltage)		Maximum 6 ms				
	Release (at nominal voltage)		Maximum 3 ms				
Insulation	Resistance (at 500 VDC)		Minimum 1,000 M				
	Dielectric Strength	between open contacts	AC 500 V 1 minute		1,000 VAC 1 minute	500 VAC 1 minute	
		between adjacent contacts	1,000 VAC 1 minute				
		between coil and contacts	1,000 VAC 1 minute				
	Surge Strength		1,500 V				
Life	Mechanical		2×10^{7} ops. min. 1×10^{7} operations minimum				1×10^{6} ops. min.
	Electrical (at contact rating)		$\begin{aligned} & \left.2 \times 10^{5} \mathrm{ops} \text {. min. (} 0.5 \mathrm{~A} 120 \mathrm{VAC}\right) \\ & 5 \times 10^{5} \mathrm{ops} . \mathrm{min} .\left(\begin{array}{c} \text { A } 24 \mathrm{VDC}) \end{array}\right. \end{aligned}$		$\begin{aligned} & 5 \times 10^{5} \text { ops. min. } \\ & (0.25 \text { A } 120 \text { VAC } \\ & 1 \text { A } 24 \text { VDC } \end{aligned}$	$\begin{aligned} & 1 \times 10^{5} \text { ops. min. } \\ & (2 \mathrm{~A} 30 \mathrm{VDC}) \end{aligned}$	2×10^{5} ops. min. (0.3 A 120 VAC) 5×10^{5} ops. min. (0.15 A 48 VDC)
Other	Vibration Resistance	Misoperation	10 to 55 Hz (double amplitude of 1.5 mm)				
		Endurance	10 to 55 Hz (double amplitude of 4.5 mm)				
	Shock Resistance	Misoperation	$100 \mathrm{~m} / \mathrm{s}^{2}(11 \pm 1 \mathrm{~ms})$				
		Endurance	$1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$				
	Weight		Approximately 5 g				

*1 Minimum switching loads mentioned above are reference values. Please perform the confirmation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.

■ COIL DATA CHART

MODEL		Nominal voltage	$\begin{gathered} \text { Coil resistance } \\ (\pm 10 \%) \\ \hline \end{gathered}$	Must operate voltage	Must release voltage	Nominal power
	RY-4.5 W-K	4.5 VDC	135Ω	3.2 VDC	0.23 VDC	150 mW
	RY- $5 \mathrm{~W}-\mathrm{K}$	5 VDC	165Ω	3.6 VDC	0.25 VDC	150 mW
	RY- 6 W-K	6 VDC	240Ω	4.3 VDC	0.3 VDC	150 mW
	RY- 9 W-K	9 VDC	540Ω	6.4 VDC	0.45 VDC	150 mW
	RY-12 W-K	12 VDC	960Ω	8.5 VDC	0.6 VDC	150 mW
	RY-18 W-K	18 VDC	1,620 ${ }^{\text {a }}$	12.6 VDC	0.9 VDC	200 mW
	RY- 24 W-K	24 VDC	2,880 Ω	16.8 VDC	1.2 VDC	200 mW
	RY-48 W-K	48 VDC	7,680 ${ }^{\text {a }}$	32.6 VDC	2.4 VDC	300 mW
$\begin{aligned} & \stackrel{\otimes}{2} \\ & \underset{\lambda}{\wedge} \\ & \underset{\xi}{3} \\ & 0 \\ & 0 \end{aligned}$	RY- 3 WZ-K	3 VDC	18Ω	1.5 VDC	0.15 VDC	500 mW
	RY-4.5 WZ-K	4.5 VDC	36Ω	2.25 VDC	0.23 VDC	560 mW
	RY- 5 WZ-K	5 VDC	45Ω	2.5 VDC	0.25 VDC	560 mW
	RY- 6 WZ-K	6 VDC	66Ω	3.0 VDC	0.3 VDC	550 mW
	RY- 9 WZ-K	9 VDC	140Ω	4.5 VDC	0.45 VDC	580 mW
	RY-12 WZ-K	12 VDC	280Ω	6.0 VDC	0.6 VDC	510 mW
	RY-18 WZ-K	18 VDC	560Ω	9.0 VDC	0.9 VDC	580 mW
	RY- 24 WZ-K	24 VDC	1,070 ${ }^{\text {a }}$	12.0 VDC	1.2 VDC	540 mW
	RY- 48 WZ-K	48 VDC	4,000 Ω	24.0 VDC	2.4 VDC	580 mW
	RY- 5 WF-K	5 VDC	56Ω	3.3 VDC	0.25 VDC	450 mW
	RY- 6 WF-K	6 VDC	80Ω	4.0 VDC	0.3 VDC	450 mW
	RY- 9 WF-K	9 VDC	180Ω	6.0 VDC	0.45 VDC	450 mW
	RY-12 WF-K	12 VDC	320Ω	8.0 VDC	0.6 VDC	450 mW
	RY-18 WF-K	18 VDC	720Ω	12.0 VDC	0.9 VDC	450 mW
	RY- 24 WF-K	24 VDC	1,260	15.9 VDC	1.2 VDC	450 mW
	RY-48 WF-K	48 VDC	$5,000 \Omega$	33.0 VDC	2.4 VDC	460 mW
$\begin{gathered} \stackrel{\otimes}{2} \\ \stackrel{\rightharpoonup}{\lambda} \\ \stackrel{y}{2} \end{gathered}$	RY- 3 WFZ-K	3 VDC	18Ω	1.9 VDC	0.15 VDC	500 mW
	RY-4.5 WFZ-K	4.5 VDC	36Ω	2.9 VDC	0.23 VDC	560 mW
	RY- 5 WFZ-K	5 VDC	45Ω	3.2 VDC	0.25 VDC	560 mW
	RY- 6 WFZ-K	6 VDC	66Ω	3.8 VDC	0.3 VDC	550 mW
	RY- 9 WFZ-K	9 VDC	140Ω	5.7 VDC	0.45 VDC	580 mW
	RY-12 WFZ-K	12 VDC	280Ω	7.6 VDC	0.6 VDC	510 mW
	RY-18 WFZ-K	18 VDC	560Ω	11.4 VDC	0.9 VDC	580 mW
	RY- 24 WFZ-K	24 VDC	1,070	15.2 VDC	1.2 VDC	540 mW
	RY -48 WFZ-K	48 VDC	$4,000 \Omega$	36.0 VDC	2.4 VDC	580 mW

Note : All values in the table are measured at $20^{\circ} \mathrm{C}$.

MODEL		Nominal voltage	Coil resistance ($\pm 10 \%$)	Must operate voltage	Must release voltage	Nominal power
	RY-4.5 D-K	4.5 VDC	45Ω	3.0 VDC	0.23 VDC	450 mW
	RY- 5 D-K	5 VDC	55Ω	3.3 VDC	0.25 VDC	450 mW
	RY- 6 D-K	6 VDC	80Ω	3.95 VDC	0.3 VDC	450 mW
	RY- 9 D-K	9 VDC	180Ω	5.9 VDC	0.45 VDC	450 mW
	RY-12 D-K	12 VDC	320Ω	7.9 VDC	0.6 VDC	450 mW
	RY-18 D-K	18 VDC	720Ω	11.8 VDC	0.9 VDC	450 mW
	RY- 24 D-K	24 VDC	1,280 ${ }^{\text {a }}$	15.8 VDC	1.2 VDC	450 mW
	RY-48 D-K	48 VDC	4,800 Ω	31.8 VDC	2.4 VDC	480 mW

Note : All values in the table are measured at $20^{\circ} \mathrm{C}$.

■ CHARACTERISTIC DATA

- REFERENCE DATA

- DIMENSIONS

- Dimensions

- Schematics
(Bottom view)

- PC board mounting hole layout

Unit: mm

RoHS Compliance and Lead Free Relay Information

1. General Information

- Relays produced after the specific date code that is indicated on each data sheet are lead-free now. Most of our signal and power relays are lead-free. Please refer to Lead-Free Status Info. (http://www.fcai.fujitsu.com/pdf/LeadFreeLetter.pdf)
- Lead free solder paste currently used in relays is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$. From February 2005 forward Sn -3.0Cu-Ni will be used for FTRB3 and FTR-B4 series relays.
- Most signal and some power relays also comply with RoHS. Please refer to individual data sheets. Relays that are RoHS compliant do not contain the 6 hazardous materials that are restricted by RoHS directive (lead, mercury, cadmium, chromium IV, PBB, PBDE).
- It has been verified that using lead-free relays in leaded assembly process will not cause any problems (compatible).
- "LF" is marked on each outer and inner carton. (No marking on individual relays).
- To avoid leaded relays (for lead-free sample, etc.) please consult with area sales office.

We will ship leaded relays as long as the leaded relay inventory exists.

2. Recommended Lead Free Solder Profile

- Recommended solder paste $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ and $\mathrm{Sn}-3.0 \mathrm{Cu}$-Ni (only FTR-B3 and FTR-B4 from February 2005)

Reflow Solder condtion

Flow Solder condtion:

Pre-heating: maximum $120^{\circ} \mathrm{C}$ Soldering: \quad dip within 5 sec . at $260^{\circ} \mathrm{C}$ soler bath

Solder by Soldering Iron:
Soldering Iron
Temperature: maximum $360^{\circ} \mathrm{C}$ Duration: maximum 3 sec.

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical realys.

4. Tin Whisker

- SnAgCu solder is known as low riskof tin whisker. No considerable length whisker was found by our in-house test.

5. Solid State Relays

- Each lead terminal will be changed from solder plating to Sn plating and Nickel plating. A layer of Nickel plating is between the terminal and the Sn plating to avoid whisker.

Japan

Fujitsu Component Limited
Gotanda-Chuo Building
3-5, Higashigotanda 2-chome, Shinagawa-ku
Fujitsu Components International Headquarter Offices

Tokyo 141, Japan
Tel: (81-3) 5449-7010
Fax: (81-3) 5449-2626
Email: promothq@ft.ed.fujitsu.com
Web: www.fcl.fujitsu.com
North and South America
Fujitsu Components America, Inc.
250 E. Caribbean Drive
Sunnyvale, CA 94089 U.S.A.
Tel: (1-408) 745-4900
Fax: (1-408) 745-4970
Email: marcom@fcai.fujitsu.com
Web: www.fcai.fujitsu.com

Europe

Fujitsu Components Europe B.V.
Diamantlaan 25
2132 WV Hoofddorp
Netherlands
Tel: (31-23) 5560910
Fax: (31-23) 5560950
Email: info@fceu.fujitsu.com
Web: www.fceu.fujitsu.com
Asia Pacific
Fujitsu Components Asia Ltd.
102E Pasir Panjang Road
\#04-01 Citilink Warehouse Complex
Singapore 118529
Tel: (65) 6375-8560
Fax: (65) 6273-3021
Email: fcal@fcal.fujitsu.com
www.fcal.fujitsu.com
© 2004 Fujitsu Components America, Inc. All company and product names are trademarks or registered trademarks of their respective owners. Rev. 12/07/2004.

