Data Sheet December 1999

MC010-Series Power Modules: 18 Vdc to 36 Vdc Input; 10 W

The MC010-Series Power Modules use advanced, surfacemount technology and deliver high-quality, compact, dc-dc conversion at an economical price.

Applications

- Communication equipment
- Computer equipment
- Distributed power architectures

Options

Remote on/off

Description

Features

- Small size: 50.8 mm x 40.6 mm x 12.7 mm (2.00 in. x 1.60 in. x 0.50 in.)
- Wide input voltage range: 18 Vdc to 36 Vdc
- Operating ambient temperature range: -40 °C to +85 °C
- High reliability
- Input-to-output isolation
- No external filtering required
- Load regulation: 0.15% max (MC010A, B, C)
- Line regulation: 0.10% max (MC010A, B, C)
- Overcurrent protection
- Output overvoltage protection
- Input undervoltage lockout
- PC board mountable
- *UL** 1950 Recognized, *CSA*[†] C22.2 No. 950-95 Certified
- Within FCC Class A requirements
- * UL is a registered trademark of Underwriters Laboratories, Inc.
- † *CSA* is a registered trademark of Canadian Standards Association.

The MC010-Series Power Modules are dc-dc converters that operate over a wide input voltage range of 18 Vdc to 36 Vdc and provide precisely regulated dc outputs. The outputs are fully isolated from the inputs, allowing versatile polarity configurations and grounding connections. The modules have maximum power ratings of 10 W at typical full-load efficiencies of 80% to 83%.

The modules are encapsulated in nonconductive cases that mount on PC boards. In a natural convection environment, the modules are rated to full load at 85 °C with no heat sinking or external filtering.

For applications requiring remote on/off, the MC010A1, B1, C1, BK1, and CL1 Power Modules are available. These modules are equivalent to the previously described modules, except for the addition of the remote on/off and associated terminal.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Device	Symbol	Min	Max	Unit
Input Voltage:					
Continuous	All	Vi		36	Vdc
Transient (≤1 second)	All	VI, trans		47	V
Operating Ambient Temperature (At 0.3 ms ⁻¹ (60 ft./min.) natural convection; see Thermal Considerations section.)	All	TA	-40	85	°C
Storage Temperature	All	Tstg	-40	100	°C
I/O Isolation Voltage (1 minute)	All	—	_	500	Vdc

Electrical Specifications

Unless otherwise indicated, specifications apply to all devices over all operating input voltage, resistive load, and temperature conditions.

Table 1. Input Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	Vi	18	28	36	Vdc
Maximum Input Current (VI = 0 V to 36 V; Io = Io, max)	II, max	—	—	1.20	A
Inrush Transient	i ² t		0.1	0.4	A ² s
Input Reflected-ripple Current, Peak-to-peak (5 Hz to 20 MHz, 12 μ H source impedance; T _A = 25 °C; see Figure 1 and Design Considerations section.)	lı		25		mAp-p
Input Ripple Rejection (120 Hz)			44		dB
Input Inductance (see Design Considerations section.)	—	—	_	12	μH

Fusing Considerations

CAUTION: This power module is not internally fused. An input line fuse must always be used.

This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a normal-blow fuse with a maximum rating of 5 A in series with the input (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. However, for *UL* recognition, the dc rating of the fuse must not exceed 5 A. Refer to the fuse manufacturer's data for further information.

Electrical Specifications (continued)

Table 2. Output Specifications

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set Point	MC010A	VO, set	4.85	5.0	5.20	Vdc
(VI = 28 V; IO = IO, max; TA = 25 °C)	MC010B	VO, set	11.52	12.0	12.48	Vdc
	MC010C	VO, set	14.4	15.0	15.6	Vdc
	MC010BK	VO1, set	11.4	12.0	12.6	Vdc
		VO2, set	-11.4	-12.0	-12.6	Vdc
	MC010CL	VO1, set	14.25	15.0	15.75	Vdc
		VO2, set	-14.25	-15.0	-15.75	Vdc
Output Voltage	MC010A	Vo	4.80		5.25	Vdc
(Over all operating input voltage,	MC010B	Vo	11.4	—	12.6	Vdc
resistive load, and temperature	MC010C	Vo	14.25	—	15.75	Vdc
conditions until end of life. See	MC010BK	V01	10.08		13.2	Vdc
Figures 3 and 4.)		Vo2	-10.08	—	-13.2	Vdc
	MC010CL	Vo1	13.5		16.5	Vdc
		Vo2	-13.5		-16.5	Vdc
Output Regulation:						
Line ($V_1 = 18$ Vdc to 36 Vdc)	MC010A, B, C	-	_	0.02	0.10	%Vo
Load (IO = IO, min to IO, max)	MC010A, B, C	-	_	0.05	0.15	%Vo
	MC010A		-	15	70	mv
(1A = -40 °C to +85 °C)	MC010B		-	35	150	mv
	WICUTUC			45	190	mv
Output Ripple and Noise Voltage						
(With 0.1 µF ceramic bypass						
capacitor on output; see Figure 2.):	MOOADA				10	
RIVIS		_	_	_	10	mvrms m\/rmo
		_	_		20	m\/rmc
Peak-to-peak (5 Hz to 20 MHz)					20	m\/n_n
1 eak-10-peak (3 112 to 20 10112)	MC010B C				100	m\/n-n
	MC010BK CI		_		100	mVp-p
Output Current	MC010A		0.1		2.0	Δ
(At 0 < 10 min the modules may)	MC010B		0.04		0.83	A
exceed output ripple specifications	MC010C		0.03	_	0.67	A
and dual-output modules may	MC010BK	I01	0.04		0.42	A
exceed specified output voltages.)		l02	0.04		0.42	A
	MC010CL	lo1	0.03	_	0.33	А
		lo2	0.03	_	0.33	A
Output Current-limit Inception:						
Vo = 4.5 V	MC010A	lo	_	3.7	5.5	A
Vo = 10.8 V	MC010B	lo	_	1.5	2.5	A
Vo = 13.5 V	MC010C	lo	_	1.3	2.4	A
Vo1 or Vo2 = 10.2 V	MC010BK	lo	_	1.4	2.5	A
Vo1 or Vo2 = 12.75 V	MC010CL	lo		1.3	2.4	A
Output Current Limit:						
Vo = 1.0 V	MC010A	—		—	6.3	A
Vo = 1.0 V	MC010B, C	—	—	—	3.0	A
Vo1 or Vo2 = 1.0 V	MC010BK, CL	—		—	3.0	A

Electrical Specifications (continued)

Table 2. Output Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Short-circuit Current	MC010A	_	_	3.5		А
(Vo = 250 mV)	MC010B, C, BK, CL	_	_	1.0	—	А
Efficiency	MC010A	η	77	80	—	%
(VI = 28 V; Io = Io, max; TA = 25 °C; see Figures 3 and 4.)	MC010B, C, BK, CL	η	80	83		%
Dynamic Response $(\Delta Io/\Delta t = 1 \text{ A}/10 \mu\text{s}, V\text{i} = 28 V\text{,}$ TA = 25 °C; for MC010BK and CL, applies to Vo1 and Vo2 at Io = Io, max): Load Change from Io = 50% to 75% of Io, max:						
Peak Deviation	MC010A MC010B, BK MC010C, CL			140 200 180		mV mV mV
Settling Time (Vo < 10% peak deviation) Load Change from Io = 50% to 25% of Io, max:	All		_	3.0		ms
Peak Deviation	MC010A MC010B, BK MC010C, CL			140 200 180		mV mV mV
Settling Time (Vo < 10% of peak deviation)	All	—	—	3.0		ms

Table 3. Isolation Specifications

Parameter	Device	Min	Тур	Max	Unit
Isolation Capacitance	All		1200	_	pF
Isolation Resistance	All	10			MΩ

General Specifications

Parameter	Device	Min	Тур	Max	Unit
Calculated MTBF (Io = 80% of Io. max: Tc = 40 °C)	All	8,000,000			hours
Weight	All			45.4 (1.60)	g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for further information.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Remote On/Off						
(MC010A1, B1, C1, BK1, CL1 only;						
$V_1 = 0 V$ to 36 V; open collector or equivalent						
compatible; signal referenced to VI(-)						
terminal. See Figure 5 and Feature						
Descriptions section.):						
Logic Low—Module On						
Logic High—Module Off						
Module Specifications:						
On/Off Current—Logic Low	All	lon/off	—	_	1.0	mA
On/Off Voltage:						
Logic Low	All	Von/off	0	—	1.2	V
Logic High $(Ion/off = 0)$	All	Von/off	— —	—	18	V
Open Collector Switch Specifications:						
Leakage Current During Logic High	All	Ion/off	—		50	μA
(Von/off = 18 V)						
Output Low Voltage During Logic Low	All	Von/off	—	—	1.2	V
(Ion/off = 1 mA)						
Turn-on Time (@ 80% of Io, max; TA = 25 °C;	All	—	-	5	—	ms
Vo within ±1% of steady state)						
Output Overvoltage Protection (clamp)	MC010A	VO, clamp	—	6	7	V
	MC010B	VO, clamp	—	14	16	V
	MC010C	VO, clamp	—	17	19	V
	MC010BK	VO1, clamp	—	16	18	V
		VO2, clamp	—	-16	-18	V
	MC010CL	VO1, clamp	—	19	21	V
		VO2, clamp	—	-19	-21	V
Input Undervoltage Lockout:						
Module On	All	Vuvlo	—	16	18	V
Module Off	All	Vuvlo	12.0	15.5	—	V

Test Configurations

Note: Input reflected-ripple current is measured with a simulated source impedance of 12 µH. Capacitor Cs offsets possible battery impedance. Current is measured at the input of the module.

Note: Use a 0.1 µF ceramic capacitor. Scope measurement should be made using a BNC socket. Position the load between 50 mm and 75 mm (2 in. and 3 in.) from the module.

Figure 2. Peak-to-Peak Output Noise Measurement Test Setup

8-204(C)

Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance.

$$\eta = \begin{pmatrix} [Vo(+) - Vo(-)] & Io \\ \hline [Vi(+) - Vi(-)] & Ii \end{pmatrix} \times 100 \qquad \%$$

Figure 3. MC010A, B, C Output Voltage and Efficiency Measurement Test Setup

Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance.

$$\eta = \frac{\sum_{j=1}^{2} |[Vo_{j}(+) - Vcom] Io_{j}|}{[Vi(+) - Vi(-)] I_{i}} \times 100$$
%

Design Considerations

Input Source Impedance

The power module should be connected to a low-acimpedance input source. Source impedances greater than 12 μ H can affect the stability of the power module. When the source impedance exceeds 12 μ H, mount a 33 μ F electrolytic capacitor (ESR < 0.7 Ω at 100 kHz) close to the module input pins. This is also recommended to minimize reflected-ripple current as well as conducted and radiated electromagnetic interference (EMI).

Output Voltage Reversal

CAUTION: Applying a reverse voltage across the module output forward biases an internal diode. Attempting to start the module under this condition can damage the module.

Safety Considerations

For safety-agency approval of the system in which the power module is used, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standard, i.e., *UL* 1950, *CSA* C22.2 No. 950-95, and VDE 0805 (EN60950, IEC950).

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements.

The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a maximum 5 A normal-blow fuse in the ungrounded lead.

Feature Descriptions

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. If the output voltage is pulled very low during a severe fault, the current-limit circuit can exhibit either foldback or tailout characteristics (output current decrease or increase). The unit operates normally once the output current is brought back into its specified range.

Remote On/Off

(MC010A1, B1, C1, BK1, and CL1 only)

To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the VI(–) terminal (Von/off). The switch can be an open collector or equivalent (see Figure 5). A logic low is Von/off = 0 V to 1.2 V, during which the module is on. The maximum Ion/off during a logic low is 1 mA. The switch should maintain a logic-low voltage while sinking 1 mA.

During a logic high, the maximum V_{on/off} generated by the power module is 18 V. The maximum allowable leakage current of the switch at V_{on/off} = 18 V is 50 μ A.

Note: A PWB trace between the on/off terminal and the VI(–) terminal can be used to override the remote on/off.

Either the user-supplied switch or the override jumper should be wired into the circuit via individual traces not common with the $V_{I}(-)$ power current path. Connect the switch or jumper at the power module terminals (see Figure 5). Configuring the switch connection in this way prevents noise from falsely triggering the remote on/off.

Figure 5. Remote On/Off Wiring Configuration, Top View

Feature Descriptions (continued)

Output Overvoltage Protection

The output overvoltage clamp consists of control circuitry, independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop (see Feature Specifications table). This provides a redundant voltage-control that reduces the risk of output overvoltage.

Thermal Considerations

Although the power module is designed for an 85 °C maximum operating ambient temperature, the characterization of the local thermal environment becomes more critical as temperatures exceed 70 °C. The maximum operating ambient temperature for the module is based on the maximum safe operating temperature of the devices contained inside it. Variations in local temperature and airflow, as well as the methods and location of measurement for these parameters, can affect the resulting internal temperature rises for a given ambient temperature. For ambient temperatures exceeding 70 °C, call technical support for application assistance.

Outline Diagrams

Dimensions are in millimeters and (inches).

Module tolerances, unless otherwise indicated: $x.x \pm 0.5$ mm (0.02 in.), $x.xx \pm 0.25$ mm (0.010 in.).

Single-Output Module

Side View

50.8 (2.00) MAX

Single-Output Module with Remote On/Off

Side View

Bottom View

8-515(C).b

Bottom View

8-522(C).b

Outline Diagrams (continued)

Dimensions are in millimeters and (inches).

Module tolerances, unless otherwise indicated: $x.x \pm 0.5$ mm (0.02 in.), $x.xx \pm 0.25$ mm (0.010 in.).

Dual-Output Module

Top View

Bottom View

Dual-Output Module with Remote On/Off

Top View

8-588(C).b

8-589(C).b

Recommended Hole Patterns

Component-side footprint.

Dimensions are in millimeters and (inches).

Single-Output Module

Single-Output Module with Remote On/Off

Dual-Output Module

Dual-Output Module with Remote On/Off

Ordering Information

Input Voltage	Output Voltage	Output Power	Remote On/Off Logic	Device Code	Comcode
18 V—36 V	5 V	10 W	No	MC010A	106464159
18 V—36 V	5 V	10 W	Yes	MC010A1	106464209
18 V—36 V	12 V	10 W	No	MC010B	106464167
18 V—36 V	12 V	10 W	Yes	MC010B1	106464217
18 V—36 V	15 V	10 W	No	MC010C	106464175
18 V—36 V	15 V	10 W	Yes	MC010C1	106464282
18 V—36 V	+12 V, –12 V	10 W	No	MC010BK	106464316
18 V—36 V	+12 V, –12 V	10 W	Yes	MC010BK1	106464399
18 V—36 V	+15 V, –15 V	10 W	No	MC010CL	106464365
18 V—36 V	+15 V, –15 V	10 W	Yes	MC010CL1	106464407

Tyco Electronics Power Systems, Inc. 3000 Skyline Drive, Mesquite, TX 75149, USA +1-800-526-7819 FAX: +1-888-315-5182 (Outside U.S.A.: +1-972-284-2626, FAX: +1-972-284-2900) http://power.tycoelectronics.com

Tyco Electronics Corporation reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

 $\textcircled{\mbox{\sc op}}$ 2001 Tyco Electronics Corporation, Harrisburg, PA. All International Rights Reserved. Printed in U.S.A.

December 1999 DS98-304EPS (Replaces DS91-197EPS)

