

Note 1: External resistor between terminals 2 and 3. External capacitor between terminals 1 and 3.
Typical Implementation of External Countdown Option

$\mathrm{EXT}=(\mathrm{N}-1) \mathrm{t}_{\mathrm{A}}+\left(\mathrm{t}_{\mathrm{M}}+\mathrm{t}_{\mathrm{A}} / 2\right)$
FIGURE 1.

Absolute Maximum Ratings(Note 2) (Note 3)

DC Supply Voltage (V_{DD})	-0.5 V to $+18 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$
Storage Temperature Range ($\left.\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D})	
\quad Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature ($\left.\mathrm{T}_{\mathrm{L}}\right)$	
\quad (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 3)| DD | |
| :---: | :---: |
| Input Voltage (V | 0 to $V_{D D} V_{D C}$ |
| Operating Temperature R | $-55^{\circ} \mathrm{C}$ |
| Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation. | |
| Note 3: $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ unless otherwise specified. | |

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{ID}}$	Quiescent Device Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 5 \\ 10 \\ 20 \end{gathered}$			$\begin{gathered} \hline 5 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{gathered} \hline 2.25 \\ 4.5 \\ 6.75 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{IH}}}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} \hline 2.75 \\ 5.5 \\ 8.25 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
${ }_{\text {OL }}$	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$		$\begin{array}{r} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{array}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$		mA
$\overline{\mathrm{IOH}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline-0.51 \\ -1.3 \\ -3.4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.88 \\ & -2.25 \\ & -8.8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		mA
$\overline{I_{\mathrm{N}}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} \hline-1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$

Note 4: I_{OH} and l_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 5) $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Astable, Astable Astable to Osc Out	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 200 \\ 100 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 400 \\ & 200 \\ & 160 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Astable, $\overline{\text { Astable }}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 550 \\ & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 900 \\ & 500 \\ & 400 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$, tPLH	+ Trigger, - Trigger to $\overline{\mathrm{Q}}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 700 \\ & 300 \\ & 240 \\ & \hline \end{aligned}$	$\begin{array}{r} 1200 \\ 600 \\ 480 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {PHL }}$, tPLH	+ Trigger, Retrigger to $\overline{\mathrm{Q}}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 300 \\ & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 250 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$, tPLH	Reset to $\mathrm{Q}, \overline{\mathrm{Q}}$	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 300 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 250 \\ & 200 \end{aligned}$	ns
$\mathrm{t}_{\text {THL }}$, $\mathrm{t}_{\text {TLH }}$	Transition Time Q, $\overline{\mathrm{Q}}$, Osc Out	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} \hline 200 \\ 100 \\ 80 \end{gathered}$	ns
${ }_{\text {twL }} \mathrm{t}_{\mathrm{WW}}$	Minimum Input Pulse Duration	$\begin{aligned} & \hline \text { Any Input } \\ & V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 500 \\ & 200 \\ & 160 \\ & \hline \end{aligned}$	$\begin{array}{r} 1000 \\ 400 \\ 320 \\ \hline \end{array}$	ns
$\mathrm{t}_{\mathrm{RCL}}, \mathrm{t}_{\mathrm{FCL}}$	+ Trigger, Retrigger, Rise and Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$			$\begin{gathered} 15 \\ 5 \\ 5 \end{gathered}$	$\mu \mathrm{S}$
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance	Any Input		5	7.5	pF
Note 5: AC P	eters are guaranteed by DC correlated	sting.				

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
