Surface Mount RF Schottky Barrier Diodes

Technical Data

Features

- Surface Mount Packages
- Low Flicker Noise
- Low FIT (Failure in Time) Rate*
- Six-sigma Quality Level
- Single, Dual and Quad Versions
- Tape and Reel Options Available
- Lead-free Option Available
* For more information see the Surface Mount Schottky Reliability Data Sheet.

Description/Applications

These Schottky diodes are specifically designed for both analog and digital applications. This series offers a wide range of specifications and package configurations to give the designer wide flexibility. The HSMS-281x series of diodes features very low flicker (1/f) noise.

Note that Agilent's manufacturing techniques assure that dice found in pairs and quads are taken from adjacent sites on the wafer, assuring the highest degree of match.

HSMS-281x Series

Package Lead Code Identification, SOT-363
(Top View)

Pin Connections and Package Marking

Notes:

1. Package marking provides orientation and identification.
2. See "Electrical Specifications" for appropriate package marking.

Absolute Maximum Ratings ${ }^{[1]} \mathbf{T}_{\mathbf{C}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Unit	SOT-23/SOT-143	SOT-323/SOT-363
I_{f}	Forward Current $(1 \mu \mathrm{~s}$ Pulse $)$	Amp	1	1
P_{V}	Peak Inverse Voltage	V	Same as V_{BR}	Same as V_{BR}
T_{j}	Junction Temperature	${ }^{\circ} \mathrm{C}$	150	150
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	${ }^{\circ} \mathrm{C}$	-65 to 150	-65 to 150
θ_{jc}	Thermal Resistance ${ }^{[2]}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	500	150

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to the device.
2. $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, where T_{C} is defined to be the temperature at the package pins where contact is made to the circuit board.

ESD WARNING:

Handling Precautions Should Be Taken To Avoid Static Discharge.

Electrical Specifications $\mathbf{T}_{\mathrm{C}}=\mathbf{2 5}^{\boldsymbol{}} \mathbf{C}$, Single Diode ${ }^{[4]}$

Part Number HSMS ${ }^{[5]}$	Package Marking Code	Lead Code	Configuration	Minimum Breakdown Voltage V_{BR} (V)	Maximum Forward Voltage $V_{F}(\mathrm{mV})$	Maximum Forward Voltage $\begin{aligned} & \mathbf{V}_{\mathbf{F}}(\mathbf{V}) @ \\ & \mathbf{I}_{\mathbf{F}}(\mathrm{mA}) \end{aligned}$	Maximum Reverse Leakage $\begin{gathered} \mathbf{I}_{\mathrm{R}}(\mathbf{n A}) @ \\ \mathbf{V}_{\mathrm{R}}(\mathbf{V}) \end{gathered}$	Maximum Capacitance C_{T} (pF)	Typical Dynamic Resistance $\mathbf{R}_{\mathrm{D}}(\Omega)^{[6]}$
2810	$\mathrm{B} 0^{[3]}$	0	Single	20	400	1.035	20015	1.2	15
2812	$\mathrm{B} 2^{[3]}$	2	Series						
2813	$\mathrm{B} 3{ }^{[3]}$	3	Common Anode						
2814	$\mathrm{B} 4^{[3]}$	4	Common Cathode						
2815	B5 ${ }^{[3]}$	5	Unconnected Pair						
2817	$\mathrm{B} 7{ }^{[3]}$	7	Ring Quad ${ }^{[5]}$						
2818	$\mathrm{B} 8{ }^{[3]}$	8	Bridge Quad ${ }^{[5]}$						
281B	$\mathrm{B} 0^{[7]}$	B	Single						
281C	$B 2^{[7]}$	C	Series						
281E	$\mathrm{B} 3{ }^{[7]}$	E	Common Anode						
281F	B4 ${ }^{[7]}$	F	Common Cathode						
281K	$\mathrm{BK}^{[7]}$	K	High Isolation Unconnected Pair						
281L	$\mathrm{BL}^{[7]}$	L	Unconnected Trio						
Test Con	ditions			$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$			$\begin{gathered} \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$

[^0]
Quad Capacitance

Capacitance of Schottky diode quads is measured using an HP4271 LCR meter. This instrument effectively isolates individual diode branches from the others, allowing accurate capacitance measurement of each branch or each diode. The conditions are: 20 mV R.M.S. voltage at 1 MHz . Agilent defines this measurement as "CM", and it is equivalent to the capacitance of the diode by itself. The equivalent diagonal and adjacent capacitances can then be calculated by the formulas given below.

In a quad, the diagonal capacitance is the capacitance between points A and B as shown in the figure below. The diagonal capacitance is calculated using the following formula

$$
\mathrm{C}_{\text {DIAGONAL }}=\frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+\frac{\mathrm{C}_{3} \times \mathrm{C}_{4}}{\mathrm{C}_{3}+\mathrm{C}_{4}}
$$

The equivalent adjacent capacitance is the capacitance between points A and C in the figure below. This capacitance is calculated using the following formula

$$
\mathrm{C}_{\mathrm{ADJACENT}}=\mathrm{C}_{1}+\frac{1}{\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\frac{1}{\mathrm{C}_{4}}}
$$

Linear Equivalent Circuit, Diode Chip

$\mathrm{R}_{\mathrm{S}}=$ series resistance (see Table of SPICE parameters)
$\mathrm{C}_{\mathrm{j}}=$ junction capacitance (see Table of SPICE parameters)
$R_{j}=\frac{8.33 \times 10^{-5} n T}{I_{b}+I_{s}}$
where
$\mathrm{I}_{\mathrm{b}}=$ externally applied bias current in amps
$I_{S}=$ saturation current (see table of SPICE parameters)
$\mathrm{T}=$ temperature, ${ }^{\circ} \mathrm{K}$
$\mathrm{n}=$ ideality factor (see table of SPICE parameters)
Note:
To effectively model the packaged HSMS-281x product, please refer to Application Note AN1124.

Typical Performance, $\mathrm{T}_{\mathrm{C}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise noted), Single Diode

Figure 1. Forward Current vs. Forward Voltage at Temperatures.

Figure 4. Total Capacitance vs. Reverse Voltage.

Figure 2. Reverse Current vs. Reverse Voltage at Temperatures.

Figure 3. Dynamic Resistance vs. Forward Current.

Figure 5. Typical V_{f} Match, Pairs and Quads.

Applications Information IntroductionProduct Selection
 Agilent's family of Schottky products provides unique solutions to many design problems.

The first step in choosing the right product is to select the diode type. All of the products in the HSMS-282x family use the same diode chip, and the same is true of the HSMS-281x and HSMS-280x families. Each family has a different set of characteristics which can be compared most easily by consulting the SPICE parameters in Table 1.

A review of these data shows that the HSMS-280x family has the highest breakdown voltage, but at the expense of a high value of series resistance (R_{S}). In applications which do not require high voltage the HSMS-282x family, with a lower value of series
resistance, will offer higher current carrying capacity and better performance. The HSMS281x family is a hybrid Schottky (as is the HSMS-280x), offering lower 1/f or flicker noise than the HSMS-282x family.

In general, the HSMS-282x family should be the designer's first choice, with the -280x family reserved for high voltage applications and the HSMS-281x family for low flicker noise applications.

Assembly Instructions SOT-323 PCB Footprint

A recommended PCB pad layout for the miniature SOT-323 (SC-70) package is shown in Figure 6 (dimensions are in inches). This layout provides ample allowance for package placement by automated assembly equipment without adding parasitics that could impair the performance.

Table 1. Typical SPICE Parameters.

Parameter	Units	HSMS-280x	HSMS-281x	HSMS-282x
B_{V}	V	75	25	15
$\mathrm{C}_{\mathrm{J} 0}$	pF	1.6	1.1	0.7
E_{G}	eV	0.69	0.69	0.69
I_{B}	A	$1 \mathrm{E}-5$	$1 \mathrm{E}-5$	$1 \mathrm{E}-4$
I_{S}	A	$3 \mathrm{E}-8$	$4.8 \mathrm{E}-9$	$2.2 \mathrm{E}-8$
N		1.08	1.08	1.08
R_{S}	Ω	30	10	6.0
$\mathrm{P}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{J}}\right)$	V	0.65	0.65	0.65
$\mathrm{P}_{\mathrm{T}}(\mathrm{XTI})$		2	2	2
M		0.5	0.5	0.5

Figure 6. PCB Pad Layout (dimensions in inches).

Assembly Instructions SOT-363 PCB Footprint

A recommended PCB pad layout for the miniature SOT-363 (SC-70, 6 lead) package is shown in Figure 7 (dimensions are in inches). This layout provides ample allowance for package placement by automated assembly equipment without adding parasitics that could impair the performance.

Figure 7. PCB Pad Layout (dimensions in inches).

SMT Assembly

Reliable assembly of surface mount components is a complex process that involves many material, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.) circuit board material, conductor thickness and pattern, type of solder alloy, and the thermal conductivity and thermal mass of components. Components with a low mass, such as the SOT package, will reach solder reflow temperatures faster than those with a greater mass.

Agilent's SOT diodes have been qualified to the time-temperature profile shown in Figure 8. This profile is representative of an IR reflow type of surface mount assembly process.

After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste) passes through one or more preheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporating solvents from the solder paste. The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder.

The rates of change of temperature for the ramp-up and cooldown zones are chosen to be low enough to not cause deformation of the board or damage to components due to thermal shock. The maximum temperature in the reflow zone (TMAX) should not exceed $235^{\circ} \mathrm{C}$.

Figure 8. Surface Mount Assembly Profile.

Part Number Ordering Information

Part Number	No. of Devices	Container
HSMS-281x-TR2 *	10000	$13^{\prime \prime}$ Reel
HSMS-281x-TR1 *	3000	$7^{\prime \prime}$ Reel
HSMS-281x-BLK *	100	antistatic bag

$\mathrm{x}=0,2,3,4,5,7,8, \mathrm{~B}, \mathrm{C}, \mathrm{E}, \mathrm{F}, \mathrm{K}, \mathrm{L}$
For lead-free option, the part number will have the character "G" at the end, eg. HSMS-281x-TR2G for a 10,000 lead-free reel.

Package Dimensions

Outline 23 (SOT-23)

Outline 143 (SOT-143)

Outline SOT-323 (SC-70 3 Lead)

dIMENSIONS ARE IN MILLIMETERS (INCHES)

Outline SOT-363 (SC-70 6 Lead)

Device Orientation

For Outline SOT-143

Note: "AB" represents package marking code. " C " represents date code.

For Outlines SOT-23, -323

For Outline SOT-363

Note: "AB" represents package marking code. "C" represents date code.

Tape Dimensions and Product Orientation For Outline SOT-23

For Outline SOT-143

DESCRIPTION		SYMB0L	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A_{0} B_{0} K_{0} D_{1}	$\begin{aligned} & 3.19 \pm 0.10 \\ & 2.80 \pm 0.10 \\ & 1.31 \pm 0.10 \\ & 4.00 \pm \mathbf{0 . 1 0} \\ & \mathbf{1 . 0 0}+\mathbf{0 . 2 5} \end{aligned}$	$\begin{aligned} & 0.126 \pm 0.004 \\ & 0.110 \pm 0.004 \\ & 0.052 \pm 0.004 \\ & 0.157 \pm 0.004 \\ & 0.039+0.010 \end{aligned}$
PERFORATION	DIAMETER PITCH POSITION	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P}_{0} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 1.50+0.10 \\ & 4.00 \pm 0.10 \\ & 1.75 \pm 0.10 \end{aligned}$	$\begin{aligned} & 0.059+0.004 \\ & 0.157 \pm 0.004 \\ & 0.069 \pm 0.004 \end{aligned}$
CARRIER TAPE	WIDTH THICKNESS	$\begin{gathered} \text { W } \\ \text { t1 } \end{gathered}$	$\begin{aligned} & 8.00+0.30-0.10 \\ & 0.254 \pm 0.013 \end{aligned}$	$\begin{aligned} & 0.315+0.012-0.004 \\ & 0.0100 \pm 0.0005 \end{aligned}$
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P_{2}	$\begin{aligned} & 3.50 \pm 0.05 \\ & 2.00 \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.138 \pm 0.002 \\ & 0.079 \pm 0.002 \end{aligned}$

Tape Dimensions and Product Orientation

For Outlines SOT-323, -363

DESCRIPTION		SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	$\begin{aligned} & \mathrm{A}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~K}_{0} \\ & \mathrm{P} \\ & \mathrm{D}_{1} \end{aligned}$	$\begin{aligned} & 2.40 \pm 0.10 \\ & 2.40 \pm 0.10 \\ & 1.20 \pm 0.10 \\ & 4.00 \pm 0.10 \\ & 1.00+0.25 \end{aligned}$	$\begin{aligned} & 0.094 \pm 0.004 \\ & 0.094 \pm 0.004 \\ & 0.047 \pm 0.004 \\ & 0.157 \pm 0.004 \\ & 0.039+0.010 \end{aligned}$
PERFORATION	DIAMETER PITCH POSITION	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{aligned} & 1.55 \pm 0.05 \\ & 4.00 \pm 0.10 \\ & 1.75 \pm 0.10 \end{aligned}$	$\begin{aligned} & 0.061 \pm 0.002 \\ & 0.157 \pm 0.004 \\ & 0.069 \pm 0.004 \end{aligned}$
CARRIER TAPE	WIDTH THICKNESS	$\begin{aligned} & w \\ & t_{1} \end{aligned}$	$\begin{aligned} & 8.00 \pm 0.30 \\ & 0.254 \pm 0.02 \end{aligned}$	$\begin{aligned} & 0.315 \pm 0.012 \\ & 0.0100 \pm 0.0008 \end{aligned}$
COVER TAPE	WIDTH TAPE THICKNESS	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~T}_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & 5.4 \pm 0.10 \\ & 0.062 \pm 0.001 \end{aligned}$	$\begin{aligned} & 0.205 \pm 0.004 \\ & 0.0025 \pm 0.00004 \end{aligned}$
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION)	F P_{2}	$\begin{aligned} & 3.50 \pm 0.05 \\ & 2.00 \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.138 \pm 0.002 \\ & 0.079 \pm 0.002 \end{aligned}$
ANGLE	FOR SOT-323 (SC70-3 LEAD) FOR SOT-363 (SC70-6 LEAD)	An	$8^{\circ} \mathrm{C}$ MAX $10^{\circ} \mathrm{C}$ MAX	

www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or (916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (65) 67562394
India, Australia, New Zealand: (65) 67551939
Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)
Korea: (65) 67551989
Singapore, Malaysia, Vietnam, Thailand, Philippines,
Indonesia: (65) 67552044
Taiwan: (65) 67551843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5968-7649E
M arch 24, 2004
5989-0475EN

[^0]: Notes:

 1. $\Delta \mathrm{V}_{\mathrm{F}}$ for diodes in pairs and quads in 15 mV maximum at 1 mA .
 2. $\Delta \mathrm{C}_{\mathrm{TO}}$ for diodes in pairs and quads is 0.2 pF maximum.
 3. Package marking code is in white.
 4. Effective Carrier Lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA .
 5. See section titled "Quad Capacitance."
 6. $\mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{S}}+5.2 \Omega$ at $25^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{f}}=5 \mathrm{~mA}$.
 7. Package marking code is laser marked.
