20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

\qquad
The MAX3293/MAX3294/MAX3295 low-power, highspeed transmitters for RS-485/RS-422 communication operate from a single +3.3 V power supply. These devices contain one differential transmitter. The MAX3295 transmitter operates at data rates up to 20Mbps, with an output skew of less than 5 ns, and a guaranteed driver propagation delay below 25 ns . The MAX3293 (250kbps) and MAX3294 (2.5Mbps) are slew-rate limited to minimize EMI and reduce reflections caused by improperly terminated cables.
The MAX3293/MAX3294/MAX3295 output level is guaranteed at +1.5 V with a standard 54Ω load, compliant with RS-485 specifications. The transmitter draws 5mA of supply current when unloaded, and $1 \mu \mathrm{~A}$ in lowpower shutdown mode ($\mathrm{DE}=\mathrm{GND}$).
Hot-swap circuitry eliminates false transitions on the data cable during circuit initialization or connection to a live backplane, and short-circuit current limiting and thermalshutdown circuitry protect the driver against excessive power dissipation.
The MAX3293/MAX3294/MAX3295 are offered in a 6 -pin SOT23 package, and are specified over the automotive temperature range.

Applications
RS-485/RS-422 Communications
Clock Distribution
Telecom Equipment
Automotive
Security Equipment
Point-of-Sale Equipment
Industrial Control

Pin Configuration

Features

- Space-Saving 6-Pin SOT23 Package
- $250 \mathrm{kbps} / 2.5 \mathrm{Mbps} / 20 \mathrm{Mbps}$ Data Rates Available
- Operate from a Single +3.3V Supply
- ESD Protection
$\pm 9 \mathrm{kV}$-Human Body Model
- Slew-Rate Limited for Errorless Data

Transmission (MAX3293/MAX3294)

- $1 \mu \mathrm{~A}$ Low-Current Shutdown Mode
- -7 V to +12 V Common-Mode Input Voltage Range
- Current Limiting and Thermal Shutdown for Driver-Overload Protection
- Hot-Swap Inputs for Telecom Applications
- Automotive Temperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE
MAX3293AUT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX3294AUT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6
MAX3295AUT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23-6

Selector Guide

PART	MAXIMUM DATA RATE (Mbps)	SLEW-RATE LIMITED	TOP MARK
MAX3293AUT-T	0.25	Yes	ABNI
MAX3294AUT-T	2.5	Yes	ABNJ
MAX3295AUT-T	20	No	ABNK

Typical Operating Circuit

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.) Supply Voltage (VCC)..
DE, DI ...-0.3V to +6V Y, Z..-7V to +12.5 V Maximum Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 6 -Pin SOT23 (derate $6.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 500 mW

Operating Temperature Ranges
MAX32_ _AUT... $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Junction Temperature .. $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{C C}=+3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Supply Voltage	$V_{C C}$		3.135	3.300	3.465	V
Supply Current in Normal Operation	IQ	No load, DI = VCC or GND, DE = VCC		5	mA	
Supply Current in Shutdown Mode	ISHDN	No load, DE = GND		1	10	$\mu \mathrm{~A}$

DRIVER

Differential Driver Output	VOD	Figure 1, $D E=V_{C c}$, DI = GND or VCC	$\begin{aligned} & \mathrm{R}=50 \Omega(\mathrm{RS}-422), \\ & \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	2.0	VCC	V
			$\begin{aligned} & \mathrm{R}=27 \Omega(\mathrm{RS}-485), \\ & \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	1.5	VCC	
Change in Magnitude of Differential Output Voltage	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1, $R=27 \Omega$ or DE $=\mathrm{V}_{\mathrm{CC}}$ (Note 3)	$50 \Omega,$		0.2	V
Driver Common-Mode Output Voltage	Voc	Figure $1, R=27 \Omega$ or $D E=V_{C C}, D I=V_{C C}$	$\begin{aligned} & 50 \Omega, \\ & \text { or GND } \end{aligned}$	-1	+3	V
Change in Magnitude of CommonMode Voltage	$\Delta \mathrm{V}$ OC	Figure 1, R = 27Ω or	50Ω (Note 3)		0.2	V
DRIVER LOGIC						
Input High Voltage	V_{IH}	DE, DI		2.0		V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	DE, DI			0.8	V
Input Current	IIN	DE, DI		-2	+2	$\mu \mathrm{A}$
Output Leakage	Io	$\begin{aligned} & \mathrm{Y}, \mathrm{Z} \\ & \mathrm{DE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND} \text { or } \\ & +3.3 \mathrm{~V} \end{aligned}$	V IN $=+12 \mathrm{~V}$	-20	+20	$\mu \mathrm{A}$
			$\mathrm{VIN}=-7 \mathrm{~V}$	-20	+20	
Driver Short-Circuit Foldback Output Current	IOSFD	$\left(\mathrm{V}_{\text {CC }}-1 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$, output high		+25		mA
		$-7 \mathrm{~V} \leq$ VOUT $\leq 1 \mathrm{~V}$, output high			-25	
Driver Short-Circuit Output Current	IOSD	$0 \leq$ VOUT $\leq+12 \mathrm{~V}$, output low		-250		mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, output high			+250	
Thermal-Shutdown Threshold	TTS					${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TTSH					${ }^{\circ} \mathrm{C}$
ESD Protection		Y, Z	Human Body Model			kV

2

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

SWITCHING CHARACTERISTICS (MAX3293)

($\mathrm{VCC}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tPLH	$\begin{aligned} & \text { Figures 2, 3; RDIFF }=54 \Omega \text {, } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	400	1300	ns
	tPHL		400	1300	
Driver Differential Output Rise or Fall Time	tR	$\begin{aligned} & \text { Figures 2, 3; RDIFF }=54 \Omega \text {, } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	400	1200	ns
	tF		400	1200	
Driver Output Skew	tSKEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$, tSKEW $=1$ tPLH - tPHLI (Note 5)	-400	+400	ns
Differential Driver Output Skew	tDSKEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$	-100	+100	ns
Maximum Data Rate		Figures 2, 3; RDIFF $=54 \Omega$, $\mathrm{CL}_{\text {L }}=50 \mathrm{pF}$	250		kbps
Driver Enable to Output High	tz ${ }^{\text {l }}$	Figures 4, 5; S2 closed, RL=500 Ω, $C_{L}=100 \mathrm{pF}$		2000	ns
Driver Enable to Output Low	tZL	Figures 4, 5; S1 closed, RL=500 Ω, $C L=100 \mathrm{pF}$		2000	ns
Driver Disable Time from Low	tLZ	Figures 4, 5; S1 closed, RL=500 Ω, $C L=100 \mathrm{pF}$		1000	ns
Driver Disable Time from High	thz	Figures 4, 5; S2 closed, $\mathrm{RL}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		1000	ns
Device-to-Device Propagation Delay Matching		Same power supply, maximum temperature difference between devices $=+30^{\circ} \mathrm{C}$ (Note 5)		900	ns

SWITCHING CHARACTERISTICS (MAX3294)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tPLH	$\begin{aligned} & \text { Figures 2, 3; RDIFF }=54 \Omega, \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	24	70	ns
	tPHL		24	70	
Driver Differential Output Rise or Fall Time	tR	Figures 2, 3; RDIFF $=54 \Omega$, $C L=50 \mathrm{pF}$	10	70	ns
	tF		10	70	
Driver Output Skew	tSkEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$, tSKEW $=1$ tple - tphl I (Note 5)	-40	+40	ns
Differential Driver Output Skew	tDSKEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$	-6	+6	ns
Maximum Data Rate		Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$	2.5		Mbps
Driver Enable to Output High	tzH	Figures 4, 5; S2 closed, $R \mathrm{~L}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		400	ns
Driver Enable to Output Low	tZL	Figures 4, 5; S1 closed, $R \mathrm{~L}=500 \Omega$, $C_{L}=100 \mathrm{pF}$		400	ns
Driver Disable Time from Low	tLZ	Figures 4, 5; S1 closed, $R \mathrm{~L}=500 \Omega$, $C L=100 \mathrm{pF}$		100	ns
Driver Disable Time from High	thz	Figures 4, 5; S2 closed, RL = 500 , $C_{L}=100 \mathrm{pF}$		100	ns
Device-to-Device Propagation Delay Matching		Same power supply, maximum temperature difference between devices $=+30^{\circ} \mathrm{C}$ (Note 5)		46	ns

20Mbps, +3.3V, SOT23 RS-485/
 RS-422 Transmitters

SWITCHING CHARACTERISTICS (MAX3295)

($\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
Driver Propagation Delay	tPLH	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$			25	ns
	tPHL				25	
Driver Differential Output Rise or Fall Time		Figures 2, 3; RDIFF $=54 \Omega$, $C_{L}=50 \mathrm{pF}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		18.5	ns
	tR		$\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$		15	
	tF		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		18.5	
			$\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$		15	
Driver Output Skew	tSKEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$, tSKEW $=1$ tPLH - tPHL \mid			5	ns
Differential Driver Output Skew	tDSKEW	Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$			5	ns
Maximum Data Rate		$\begin{aligned} & \text { Figures 2, 3; RDIFF }=54 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$		20		Mbps
		Figures 2, 3; RDIFF $=54 \Omega, C_{L}=50 \mathrm{pF}$		16		
Driver Enable to Output High	tZH	Figures 4, 5; S2 closed, RL=500 , $C L=100 \mathrm{pF}$			400	ns
Driver Enable to Output Low	tZL	Figures 4, 5; S1 closed, RL=500 , $C_{L}=100 \mathrm{pF}$			400	ns
Driver Disable Time from Low	tLZ	Figures 4, 5; S1 closed, RL = 500 ,$C_{L}=100 \mathrm{pF}$			100	ns
Driver Disable Time from High	thz	Figures 4, 5; S2 closed, RL=500 ,$C_{L}=100 \mathrm{pF}$			100	ns
Device-to-Device Propagation Delay Matching		Same power supply, maximum temperature difference between devices $=+30^{\circ} \mathrm{C}$ (Note 5)			25	ns

Note 1: Devices production tested at $+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.
Note 2: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.
Note 3: $\Delta \mathrm{V}_{O D}$ and $\Delta \mathrm{V}_{O C}$ are the changes in $\mathrm{V}_{O D}$ and $\mathrm{V}_{O C}$, respectively, when the DI input changes state.
Note 4: The maximum current applies to peak current just prior to foldback current limiting.
Note 5: Not production tested. Guaranteed by design.

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

Test Circuits and Timing Diagrams

Figure 1. Driver DC Test Load

Figure 2. Driver Timing Test Circuit

Figure 4. Enable/Disable Timing Test Load

Figure 5. Driver Enable and Disable Times

Figure 3. Driver Propagation Delays

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

6 \qquad

20Mbps, +3.3V, SOT23 RS-485/
 RS-422 Transmitters

Typical Operating Characteristics (continued)
$\overline{\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text {, unless otherwise noted.) }\right.}$

Pin Description

PIN	NAME	FUNCTION
1	DI	Driver Input. A logic low on DI forces the noninverting output (Y) low and the inverting output (Z) high. A logic high on DI forces the noninverting output (Y) high and the inverting output (Z) low.
2	VCC	Positive Supply. VCC $=+3.3 \mathrm{~V} \pm 5 \%$. Bypass VCC to GND with a 0.1 1 F capacitor.
3	DE	Driver Output Enable. Force DE high to enable driver. Pull DE low to disable the driver. Hot-swap input, see the Hot-Swap Capability section.
4	Z	Inverting RS-485/RS-422 Output
5	GND	Ground
6	Y	Noninverting RS-485/RS-422 Output

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

Detailed Description
The MAX3293/MAX3294/MAX3295 are low-power transmitters for RS-485/RS-422 communication. The MAX3295 operates at data rates up to 20Mbps, the MAX3294 up to 2.5 Mbps (slew-rate limited), and the MAX3293 up to 250 kbps (slew-rate limited). These devices are enabled using an active-high driver enable (DE) input. When disabled, outputs enter a high-impedance state, and the supply current reduces to $1 \mu \mathrm{~A}$.
The MAX3293/MAX3294/MAX3295 have a hot-swap input structure that prevents disturbance on the differential signal lines when a circuit board is plugged into a "hot" backplane (see the Hot-Swap Capability section). Drivers are also short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry.

Driver

The driver accepts a single-ended, logic-level input (DI) and translates it to a differential RS-485/RS-422 level output (Y and Z). Driving DE high enables the driver, while pulling DE low places the driver outputs (Y and Z) into a high-impedance state (see Table 1).

Low-Power Shutdown

Force DE low to disable the MAX3293/MAX3294/ MAX3295. In shutdown mode, the device consumes a maximum of $10 \mu \mathrm{~A}$ of supply current.

Hot-Swap Capability

Hot-Swap Input
When circuit boards are inserted into a "hot" or powered backplane, disturbances to the enable can lead to data errors. Upon initial circuit board insertion, the processor undergoes its power-up sequence. During this period, the output drivers are high impedance and are unable to drive the DE input of the MAX3293/ MAX3294/MAX3295 to a defined logic level. Leakage currents up to $10 \mu \mathrm{~A}$ from the high-impedance output could cause DE to drift to an incorrect logic state. Additionally, parasitic circuit board capacitance could

Table 1. MAX3293/MAX3294/ MAX3295 (RS-485/RS-422) Transmitting Function Table

INPUTS		OUTPUTS	
DE	DI	\mathbf{Y}	\mathbf{Z}
0	X	Shutdown	Shutdown
1	0	0	1
1	1	1	0

[^0]cause coupling of V_{cc} or GND to DE. These factors could improperly enable the driver.
The MAX3293/MAX3294/MAX3295 eliminate all above issues with hot-swap circuitry. When Vcc rises, an internal pulldown circuit holds DE low for approximately $10 \mu \mathrm{~s}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

Figure 6. Simplified Structure of the Driver Enable Input (DE)

Figure 7. Differential Power-Up Glitch (0.1V/ $/ \mathrm{s}$)

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

Hot-Swap Input Circuitry

The MAX3293/MAX3294/MAX3295 enable input features hot-swap capability. At the input, there are two NMOS devices, M1 and M2 (Figure 6). When VcC ramps from zero, an internal 10μ s timer turns on M 2 and sets the SR latch, which also turns on M1. Transistors M2, a $2 m A$ current sink, and M1, a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M2 is designed to pull DE to the disabled state against an external parasitic capacitance up to 100 pF that may drive DE high. After $10 \mu \mathrm{~s}$, the timer deactivates M2 while M1 remains on, holding DE low against threestate leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resets and M1 turns

Figure 8. Differential Power-Up Glitch (1V/us)

Figure 9. Differential Power-Up Glitch (10V/ μs)
off. When M1 turns off, DE reverts to a standard, highimpedance CMOS input. Whenever Vcc drops below 1 V , the hot-swap input is reset.

Hot-Swap Line Transient
During a hot-swap event when the driver is connected to the line and is powered up, the driver must not cause the differential signal to drop below 200 mV . Figures 7,8 , and 9 show the results of the MAX3295 during power-up for three different V_{CC} ramp rates $(0.1 \mathrm{~V} / \mu \mathrm{s}, 1 \mathrm{~V} / \mu \mathrm{s}$, and $10 \mathrm{~V} / \mu \mathrm{s}$). The photos show the V_{CC} ramp, the singleended signal on each side of the 100Ω termination, as well as the differential signal across the termination.

ESD Protection
Human Body Model
Figure 10 shows the Human Body Model, and Figure 11 shows the current waveform it generates when discharged into low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 10. Human Body ESD Test

Figure 11. Current Waveform

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

Reduced EMI and Reflections
 (MAX3293/MAX3294)

The MAX3293/MAX3294 are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows Fourier analysis of the MAX3295 transmitting a 125 kHz signal. High-frequency harmonics with large amplitudes are evident. Figure 13 shows the same information, but for the slew-rate-limited MAX3293, transmitting the same signal. The high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3293 and MAX3294 are more tolerant of imperfect termination.

Figure 12. Driver Output Waveform and FFT Plot of MAX3295 Transmitting a 125 kHz Signal

Driver Output Protection
Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a foldback current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics). The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+160^{\circ} \mathrm{C}$.

Chip Information
TRANSISTOR COUNT: 263
PROCESS: BiCMOS

Figure 13. Driver Output Waveform and FFT Plot of MAX3293 Transmitting a 125 kHz Signal

20Mbps, +3.3V, SOT23 RS-485/ RS-422 Transmitters

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

[^0]: $x=$ Don't care.

