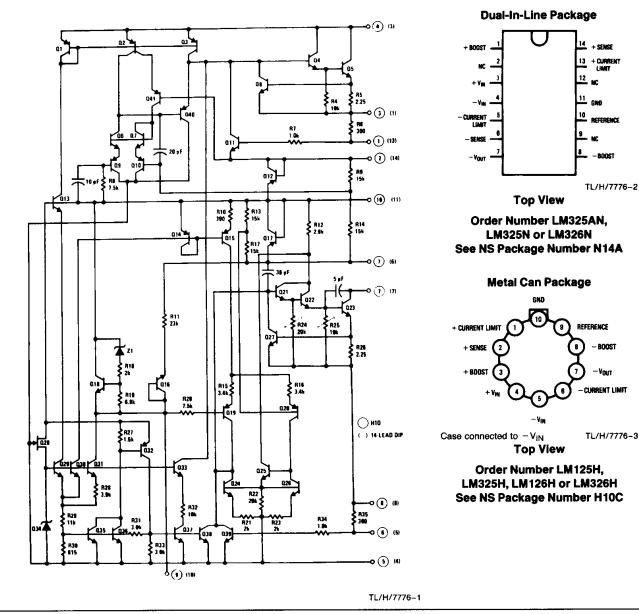


National Semiconductor


LM125/LM325/LM325A, LM126/LM326 Voltage Regulators

General Description

These are dual polarity tracking regulators designed to provide balanced positive and negative output voltages at current up to 100 mA, the devices are set for \pm 15V and \pm 12V outputs respectively. Input voltages up to \pm 30V can be used and there is provision for adjustable current limiting. These devices are available in two package types to accommodate various power requirements and temperature ranges.

Features

- ±15V and ±12V tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 1% (LM125, LM126, LM325A)
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

±30V
-0.5V
+ 0.5V
P _{MAX}
Continuous

Operating Conditions

Operating Free Temperature Range LM125 LM325, LM325A Storage Temperature Range

Lead Temperature (Soldering, 10 sec.)

-55°C to +125°C 0°C to +70°C -65°C to +150°C 300°C LM125/LM325/LM325A/LM126/LM326

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	$T_{j} = 25^{\circ}C$				
LM125/LM325A		14.8	15	15.2	V
LM325		14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$V_{IN} = 18V$ to 30V, $I_L = 20$ mA, $T_j = 25^{\circ}C$		2.0	10	mV
Line Regulation Over Temperature Range	$V_{IN} = 18V$ to 30V, $I_L = 20$ mA,		2.0	20	mV
Load Regulation	$l_{\rm L} = 0$ to 50 mA, $V_{\rm IN} = \pm 30V$,				
Vo ⁺	$T_i = 25^{\circ}C$		3.0	10	mV
V _O -			5.0	10	mV
Load Regulation Over Temperature Range	$I_L = 0$ to 50 mA, $V_{1N} = \pm 30V$				
V _O +			4.0	20	mV
V _O -			7.0	20	mV
Output Voltage Balance	$T_i = 25^{\circ}C$				
LM125, LM325A				±150	mV
LM325				±300	mV
Output Voltage Over Temperature Range	$P \leq P_{MAX}, 0 \leq I_O \leq 50 mA,$				
LM125, LM325A	$18V \leq V_{IN} \leq 30$	14.65		15.35	V
LM325		14.27		15.73	V
Temperature Stability of V_O			±0.3		%
Short Circuit Current Limit	T _j = 25°C		260		mA
Output Noise Voltage	$T_j = 25^{\circ}C, BW = 100 - 10 \text{ kHz}$		150		μVrms
Positive Standby Current	T _j = 25°C		1.75	3.0	mA
Negative Standby Current	T _j = 25°C		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to					
Case (Note 4)					
LM125H, LM325H			20		°C/W
Junction to Ambient	(Still Air)		215		°C/W
Junction to Ambient	(400 Lf/min Air Flow)		82		°C/W
Junction to Ambient	(Still Air)		90		°C/W
LM325AN, LM325N			30		0/44

Note 2: Unless otherwise specified these specifications apply for $T_j = 55^{\circ}C$ to $+150^{\circ}C$ on LM125, $T_j = 0^{\circ}C$ to $+125^{\circ}C$ on LM325A, $T_j = 0^{\circ}C$ to $+125^{\circ}C$ on LM325A, $T_j = 0^{\circ}C$ to $+125^{\circ}C$ on LM325, $V_{IN} = \pm 20V$, $I_L = 0$ mA, $I_{MAX} = 100$ mA, $P_{MAX} = 100$ mA, $P_{MAX} = 1.0W$ for the DIP N Package. Note 3: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.

Note 4: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

Note 5: Refer to RETS125X drawing for military specification of LM125.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

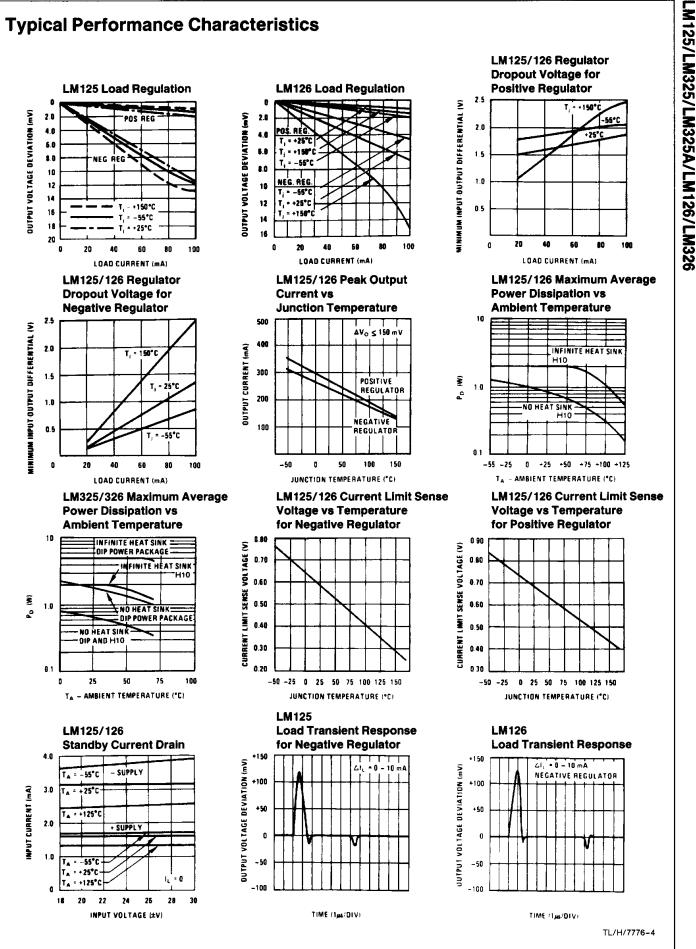
Input Voltage	±30V
Forced V _O + (Min) (Note 1)	-0.5V
Forced V _O ⁻ (Max) (Note 1)	+ 0.5V
Power Dissipation (Note 2)	Internally Limited
Output Short-Circuit Duration (Note 3)	Continuous

Operating Conditions

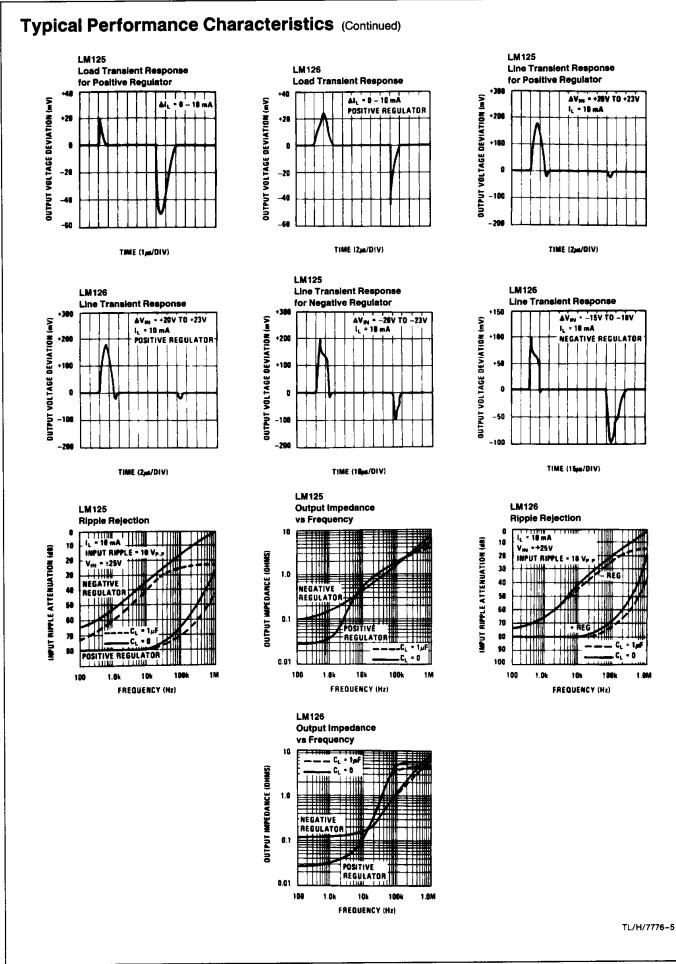
Operating Free Temperature Range	
LM126	-55°C to +125°C
LM326	0°C to + 70°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	300°C

Electrical Characteristics LM126/LM326 (Note 2)

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage LM126/LM326	T _j = 25°C	11.8 11.5	12	12.2 12.5	v v
Input-Output Differential		2.0			V
Line Regulation	$V_{IN} = 15V \text{ to } 30V$ $I_L = 20 \text{ mA}, T_j = 25^{\circ}\text{C}$		2.0	10	mV
Line Regulation Over Temperature Range	$V_{IN} = 15V \text{ to } 30V, I_{L} = 20 \text{ mA}$		2.0	20	mV
Load Regulation Vo ⁺ Vo ⁻	$I_L = 0$ to 50 mA, $V_{IN} = \pm 30V$, $T_j = 25^{\circ}C$		3.0 5.0	10 10	mV mV
Load Regulation Over Temperature Range V_{O}^{+} V_{O}^{-}	$I_{L} = 0$ to 50 mA, $V_{IN} = \pm 30V$		4.0 7.0	20 20	m∨ mV
Output Voltage Balance LM126, LM326	T _i = 25°C			± 125 ± 250	mV mV
Output Voltage Over Temperature Range LM126 LM326	$P \le P_{MAX}, 0 \le I_O \le 50 \text{ mA},$ 15V $\le V_{IN} \le 30$	11.68 11.32		12.32 12.68	v v
Temperature Stability of V _O			±0.3		%
Short Circuit Current Limit	T _j = 25°C		260		mA
Output Noise Voltage	$T_{j} = 25^{\circ}C, BW = 100 - 10 \text{ kHz}$		100		μVrms
Positive Standby Current	$T_{j} = 25^{\circ}C, I_{L} = 0$		1.75	3.0	mA
Negative Standby Current	$T_{j} = 25^{\circ}C, I_{L} = 0$		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to Case (Note 4) LM126H, LM326H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		20 155 62		°C/W °C/W °C/W
Junction to Ambient LM326N			150		°C/W

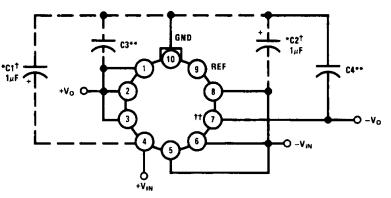

Note 1: That voltage to which the output may be forced without damage to the device.

Note 2: Unless otherwise specified these specifications apply for $T_j = 55^{\circ}C$ to $+ 150^{\circ}C$ on LM126, $T_j = 0^{\circ}C$ to $+ 125^{\circ}C$ on LM326, $V_{IN} = \pm 20V$, $I_L = 0$ mA, $I_{MAX} = 100$ mA, $P_{MAX} = 2.0W$ for the H10 Package. $I_{MAX} = 100$ mA, $I_{MAX} = 1.0W$ for the DIP N Package.


Note 3: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.

Note 4: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.

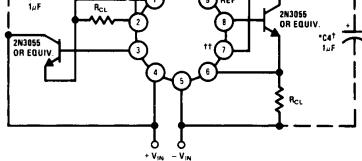
Note 5: Refer to RETS126X drawing for military specification of LM126.



1-65

Typical Applications

Basic Regulator^{†††}

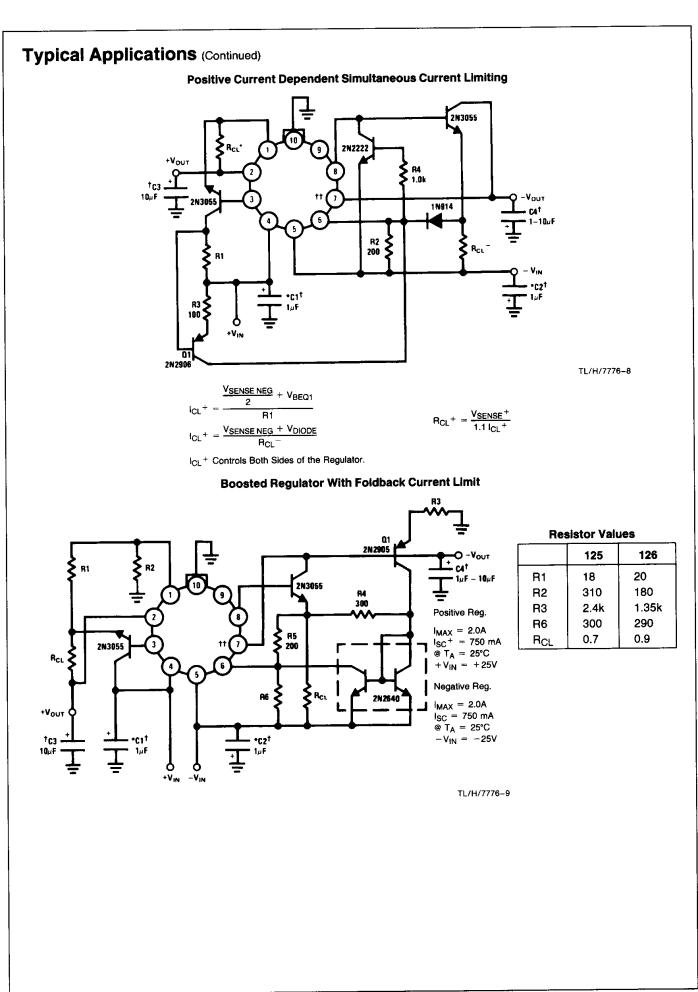

TL/H/7776-6

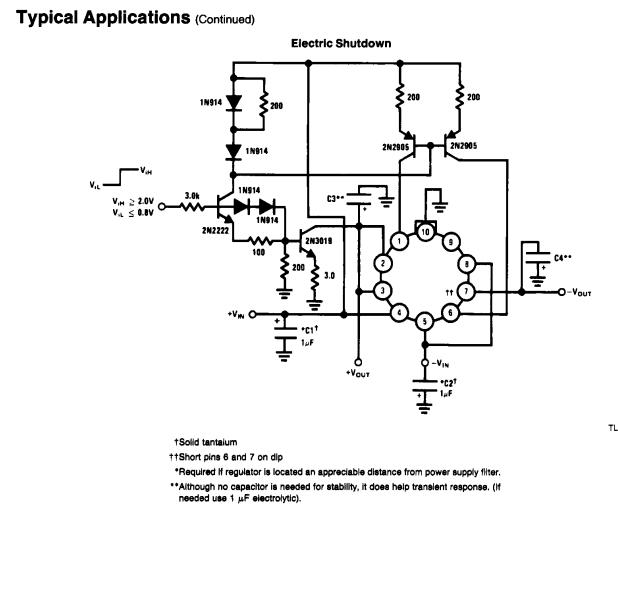
LM125/LM325/LM325A/LM126/LM326

C2*** C3** GND 10 O - Vo *C1† REF 9 R_{CL} 2N3055 OR EQUIV.

2.0 Amp Boosted Regulator With Current Limit

TL/H/7776-7


Note: Metal can (H) packages shown.


$$I_{CL} = \frac{Current Limit Sense Voltage (See Curve)}{R_{CL}}$$

†Solid tantalum

††Short pins 6 and 7 on dip

- †† current limit.
 - *Required if regulator is located an appreciable distance from power supply filter.
- **Although no capacitor is needed for stability, it does help transient response. (If needed use 1 µF electrolytic).
- ***Although no capacitor is needed for stability, it does help transient response. (If needed use 10 μ F electrolytic).

TL/H/7776-10