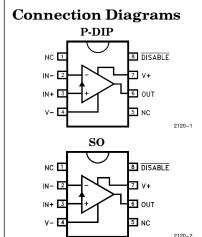

Features

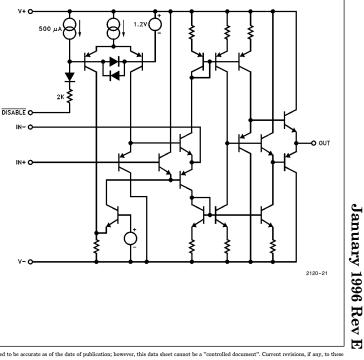

- Excellent differential gain and phase on $\pm 5V$ to $\pm 15V$ supplies
- 100 MHz -3 dB bandwidth from gains of ± 1 to ± 10
- 700 V/µs slew rate
- 0.1 dB flatness to 20 MHz
- Output disable in 50 ns remains high impedance even when driven with large slew rates
- Single +5V supply operation
- AC characteristics are lot and temperature stable
- Available in small SO-8 package

Applications

- Video gain block
- Residue amplifier
- Multiplexer
- Current to voltage converter
- Coax cable driver with gain of 2
- ADC driver

Ordering Information

Top View


General Description

The EL2120C is a wideband current feedback amplifier optimized for video performance. Its 0.01% differential gain and 0.03 degree differential phase performance when at \pm 5V supplies exceeds the performance of other amplifiers running on \pm 15V supplies. Operating on \pm 8 to \pm 15V supplies reduces distortions to 0.01% and 0.01 degrees and below. The EL2120C can operate with supplies as low as \pm 2.5V or a single \pm 5V supply.

Being a current feedback design, bandwidth is a relatively constant 100 MHz over the ± 1 to ± 10 gain range. The EL2120C has been optimized for flat gain over frequency and all characteristics are maintained at positive unity gain. Because the input slew rate is similar to the 700 V/ μ s output slew rate the part makes an excellent high-speed buffer.

The EL2120C has a superior output disable function. Time to enable or disable is 50 ns and does not change markedly with temperature. Furthermore, in disable mode the output does not draw excessive currents when driven with 1000 V/ μ s slew rates. The output appears as a 3 pF load when disabled.

Simplified Schematic

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.

©1991 Elantec, Inc.

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Voltage between V $+$ and V $-$	33V	Output Current	$\pm 50 \text{ mA}$
Voltage at $+IN$,		Internal Power Dissipation	See Curves
-IN, V _{OUT}	(V-) - 0.5V to $(V+) + 0.5V$	Operating Ambient	
Voltage between		Temperature Range	0° to 75°C
+IN and -IN	$\pm 5V$	Operating Junction Temperature	
Voltage at /Disable	(V+) - 10V to $(V+) + 0.5V$	P-DIP or SO	150°C
Current into + IN,		Storage Temperature Range	-65° C to $+150^{\circ}$ C
-IN, and /Disable	$\pm 5 \text{ mA}$		

Important Note:

All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore $T_J = T_C = T_A$.

Test Level	Test Procedure
Ι	100% production tested and QA sample tested per QA test plan QCX0002.
II	100% production tested at $T_{\rm A}=$ 25°C and QA sample tested at $T_{\rm A}=$ 25°C ,
	T_{MAX} and T_{MIN} per QA test plan QCX0002.
III	QA sample tested per QA test plan QCX0002.
IV	Parameter is guaranteed (but not tested) by Design and Characterization Data.
v	Parameter is typical value at $T_A = 25^{\circ}C$ for information purposes only.

Open Loop DC Electrical Characteristics

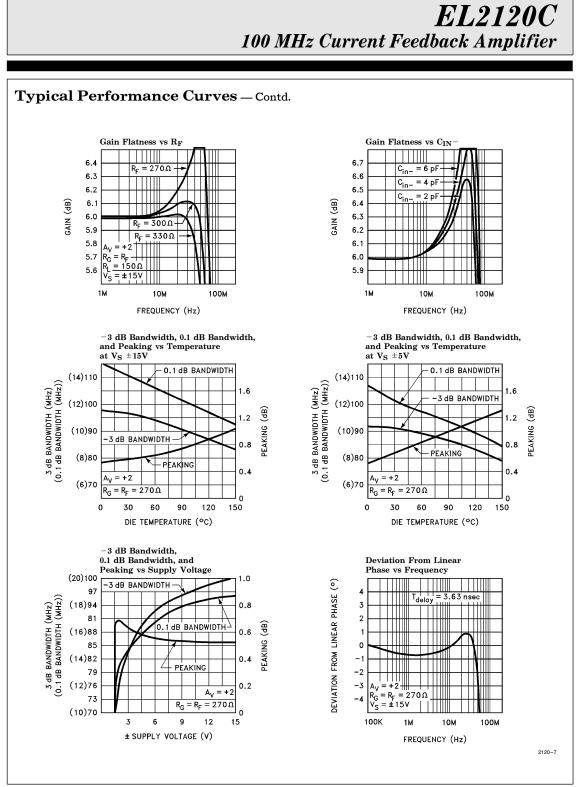
Parameter	Description	Temp	Min	Тур	Max	Test Level	Units
V _{OS}	Input Offset Voltage $V_S = \pm 15V$	Full Full		4 2	20 25	II II	mV mV
$\Delta V_{OS} / \Delta T$	Input Offset Drift	Full		20		v	μV/°C
I _{B+}	$+ V_{IN}$ Input Bias Current	Full		5	15	п	μΑ
I _B -	-V _{IN} Input Bias Current	Full		10	50	п	μΑ
CMRR	Common-Mode Rejection (Note 1)	Full	50	55		п	dB
-ICMR	– Input Current Common-Mode Rejection (Note 1)	Full		8	20	п	μA/V
PSRR	Power Supply Rejection (Note 2)	Full	65	80		п	dB
+ IPSR	+ Input Current Power Supply Rejection (Note 2)	25°C		0.03		v	μA/V
-IPSR	– Input Current Power Supply Rejection (Note 2)	Full		0.6	5	п	μΑ/ν
R _{OL}	Transimpedance	Full	70	140		II	kΩ
A _{VOL}	Voltage Gain	Full	58	66		II	dB
$+R_{IN}$	$+ V_{IN}$ Input Impedance	25°C		2		v	MΩ

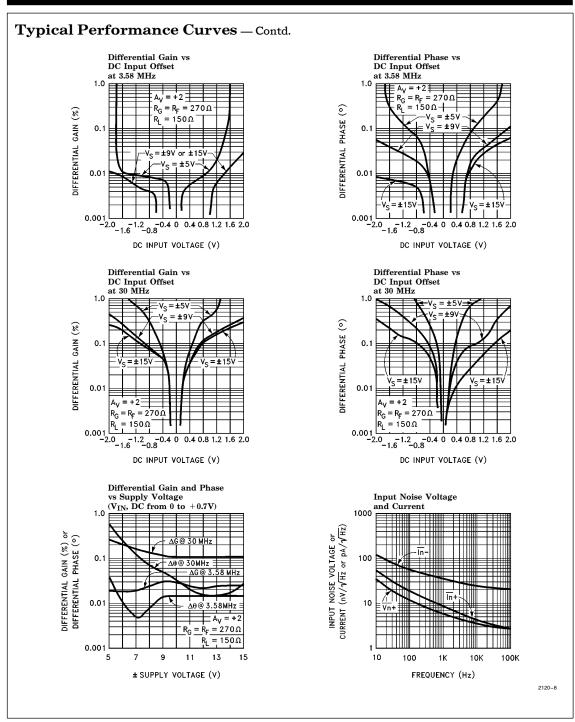
 $V_{S} = \pm 5V$; $R_{L} = 150\Omega$, $T_{A} = 25^{\circ}C$ unless otherwise specified

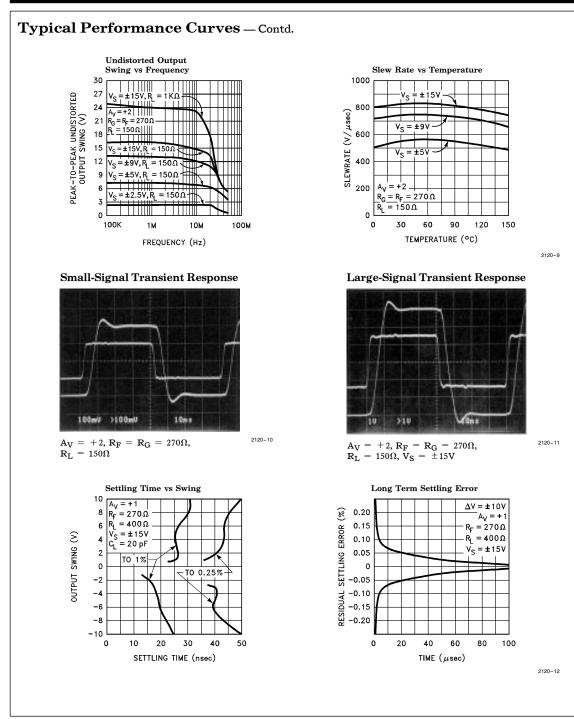
Parameter	Description	Temp	Min	Тур	Max	Test Level	Units
V _{IN}	$+V_{IN}$ Range	Full	± 3.0	±3.5		п	v
vo	Output Voltage Swing	Full	±3.0	± 3.5		II	v
I _{SC}	Output Short-Circuit Current	25°C		100		II	mA
I _{O,DIS}	Output Current, Disabled	Full		5	50	п	μΑ
V _{DIS,ON}	Disable Pin Voltage for Output Enabled	Full	(V+) - 1			п	v
V _{DIS,OFF}	Disable Pin Voltage for Output Disabled	Full			(V+) - 4	II	v
I _{DIS,ON}	Disable Pin Current for Output Enabled	Full			5	II	μΑ
I _{DIS,OFF}	Disable Pin Current for Output Disabled	Full	1.0			II	mA
IS	Supply Current ($V_S = \pm 15V$)	Full		17	20	II	mA

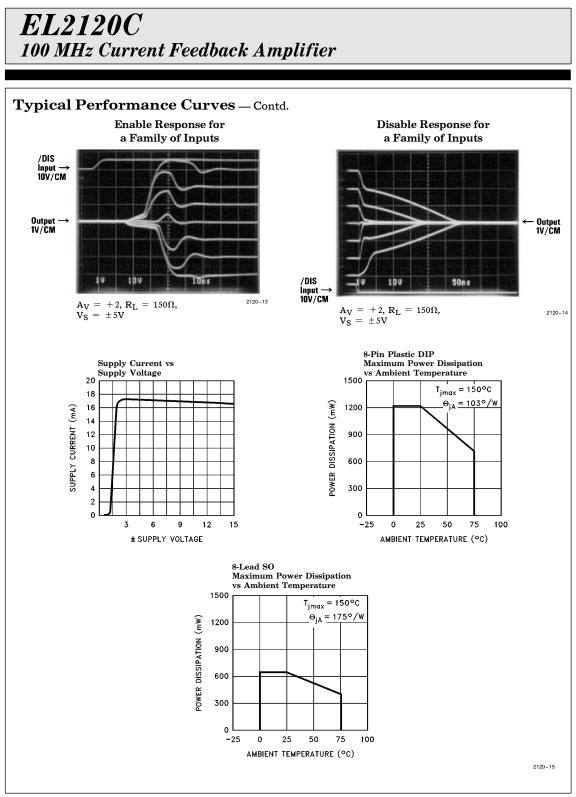
Open Loop DC Electrical Characteristics - Contd.

Note 1: The input is moved from -3V to +3V.


Note 2: The supplies are moved from $\pm 5V$ to $\pm 15V$.


Closed Loop AC Electrical Characteristics


 $V_{S} = \pm 15V$; $A_{V} = \pm 2 (R_{F} = R_{G} = 270\Omega)$; $R_{L} = 150\Omega$; $C_{L} = 7 \text{ pF}$; $C_{IN-} = 2 \text{ pF}$; $T_{A} = 25^{\circ}C$


Parameter	Descript	ion	Min	Тур	Max	Test Level	Units
SR	Slew Rate; V _{OUT} from – Measured at – 2V and +						
	Measured at 2 V and 1	$V_{S} = \pm 15V$ $V_{S} = \pm 5V$		750 550		v v	V/μs V/μs
t _S	Settling Time to 0.25% of 0 to +10V Swing; $A_V =$ $R_F = 270\Omega$, $R_G = \infty$, a	+1 with		50		V	ns
BW	Bandwidth	-3 dB $\pm 1 dB$ $\pm 0.1 dB$		95 50 16		V V V	MHz MHz MHz
BW@2.5V	Bandwidth at $V_{\rm S}=\pm 2.5 V$	$\begin{array}{c} -3 \text{ dB} \\ \pm 1 \text{ dB} \\ \pm 0.1 \text{ dB} \end{array}$		75 35 11		V V V	MHz MHz MHz
Peaking				0.5		v	dB

Parameter	Desc	ription		Min	Тур	Max	Test Level	Units
dG	Differential Gain; D	C Offset						
	from -0.7V through	+ 0.7V, AC	C					
	Amplitude 286 mVp	-p						
	$V_{S} = \pm 15V, f =$	$3.58 \mathrm{~MHz}$			< 0.01		v	%
	$V_{S} = \pm 15V, f =$			-	0.1		v	%
	$V_{\rm S} = \pm 5 V, f = 3$	3.58 MHz			0.01		v	%
dθ Differential Phase; DC Offset								
from $-0.7V$ through $+0.7V$, AC			C					
	Amplitude 286 mVp-	-p						
	$V_{S} = \pm 15V, f =$	$3.58 \mathrm{~MHz}$			0.01		v	•
	$V_{S} = \pm 15V, f =$				0.1		v	•
	$V_{\rm S} = \pm 5V, f = 3$	3.58 MHz			0.06		v	•
	R _{input} (optional. approx. 47		AC Test Ci μ^{F} μ^{F} μ^{F} R_{F}	ن ب ب ب	$\begin{array}{c} C_{\text{snubber}} \\ (approx. 33 \text{ pf} \\ S_{\text{snubber}} \\ (approx. 68 \Omega) \\ \hline \\ $	> snubber	-	
	Input (optional,				(approx.33pf ^R snubber (approx.68Ω)	} snubber network	-	
Freedow	Input (optional,		μ F μ F		(approx. 33 pf Snubber (approx. 68.0.) c_L c_L	} snubber	-	

Applications Information

The EL2120C represents the third generation of current-feedback amplifier design. It is designed to provide good high-frequency performance over wide supply voltage, load impedance, gain, temperature, and manufacturing lot variations. It is a well-behaved amplifier in spite of its 100 MHz bandwidth, but a few precautions should be taken to obtain maximum performance.

The power supply pins must be well bypassed. 0.01 μ F ceramic capacitors are adequate, but lead length should be kept below $\frac{1}{4}$ " and a ground plane is recommended. Bypassing with 4.7 μ F tantalum capacitors can improve settling characteristics, and smaller capacitors in parallel will not be needed. The lead length of sockets generally deteriorates the amplifier's frequency response by exaggerating peaking and increasing ringing in response to transients. Short sockets cause little degradation.

Load capacitance also increases ringing and peaking. Capacitance greater than 35 pF should be isolated with a series resistor. Capacitance at the V_{IN-} terminal has a similar effect, and should be kept below 5 pF. Often, the inductance of the leads of a load capacitance will be self-resonant at frequencies from 40 MHz to 200 MHz and can cause oscillations. A resonant load can be de-Q'ed with a small series or parallel resistor. A "snubber" can sometimes be used to reduce resonances. This is a resistor and capacitor in series connected from output to ground. Values of 68 Ω and 33 pF are typical. Increasing the feedback resistor can also improve frequency flatness.

The V_{IN+} pin can oscillate in the 200 MHz to 500 MHz realm if presented with a resonant or inductive source impedance. A series 27Ω to 68Ω resistor right on the V_{IN+} pin will suppress such oscillations without affecting frequency response.

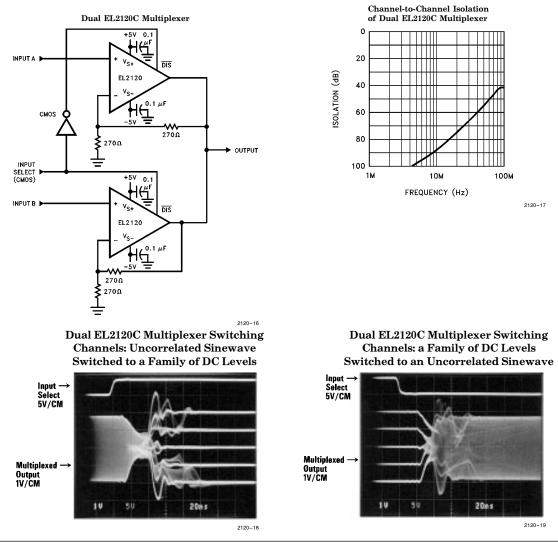
-3~dB bandwidth is inversely proportional to the value of feedback resistor $R_F.$ The EL2120C will tolerate values as low as 180 Ω for a maximum bandwidth of about 140 MHz, but peaking will increase and tolerance to stray capacitance will reduce. At gains greater than 5, -3~dB bandwidth begins to reduce, and a smaller R_F can be used to maximize frequency response.

The greatest frequency response flatness (to 0.1 dB, for instance) occurs with $R_{\rm F}=300\Omega$ to $330\Omega.$ Even the moderate peaking caused by lower values of $R_{\rm F}$ will cause the gain to peak out of the 0.1 dB window, and higher values of $R_{\rm F}$ will cause an overcompensated response where the gain falls below the 0.1 dB level. Parasitic capacitances will generally degrade the frequency flatness.

The EL2120C should not output a continuous current above 50 mA, as stated in the ABSO-LUTE MAXIMUM RATINGS table. The output current limit is set to 120 mA at a die temperature of 25°C and reduces to 85 mA at a die temperature of 150°C. This large current is needed to slew load capacitance and drive low impedance loads with low distortion but cannot be supported continuously. Furthermore, package dissipation capabilities cannot be met under short-circuit conditions. Current limit should not occur longer than a few seconds.

The output disable function of the EL2120C is optimized for video performance. While in disable mode, the feedthrough of the circuit can be modeled as a 0.2 pF capacitor from V_{IN+} to the output. No more than $\pm 5V$ can be placed between V_{IN+} and V_{IN-} in disable mode, but this is compatible with common video signal levels. In disabled state the output can withstand about 1000 V/ μ s slew rate signals impressed on it without the output transistors turning on.

The /Disable pin logic level is referred to V+. With $\pm 5V$ supplies, a CMOS or TTL driver with pull-up resistor will suffice. $\pm 15V$ supplies require a $\pm 14/\pm 11V$ drive span, or $\pm 15/\pm 10V$ nominally. Open-collector TTL with a tapped pull-up resistor can provide these spans. The impedance of the divider should be 1k or less for optimum enable/disable speed.


The EL2120C enables in 50 ns or less. When $V_{IN} = 0$, only a small switching glitch occurs at the output. When V_{IN} is some other value, the output overshoots by about 0.7V when settling toward its new enabled value.

Applications Information - Contd.

When the EL2120C disables, it turns off very rapidly for inputs of $\pm 1V$ or less, and the output sags more slowly for inputs larger than this. For inputs as large as $\pm 2.5V$ the output current can be absorbed by another EL2120C simultaneously enabled. Under these conditions, switching will be properly completed in 50 ns or less.

The greater thermal resistance of the SO-8 package requires that the EL2120C be operated from $\pm 10V$ supplies or less to maintain the 150°C maximum die temperature over the commercial temperature range. The P-DIP package allows the full $\pm 16.5V$ supply operation.

Typical Applications Circuit—A High Quality Two-Input Multiplexer

The EL2120C Macromodel

This macromodel has been developed to assist the user in simulating the EL2120C with surrounding circuitry. It was developed for the PSPICE simulator (copywritten by the Microsim corporation), and may need to be rearranged for other simulators, particularly the H operator. It approximates frequency response and small-signal transients as well, although the effects of load capacitance does not show. This model is slightly more complicated than the models used for low-frequency op-amps, but is much more accurate for AC.

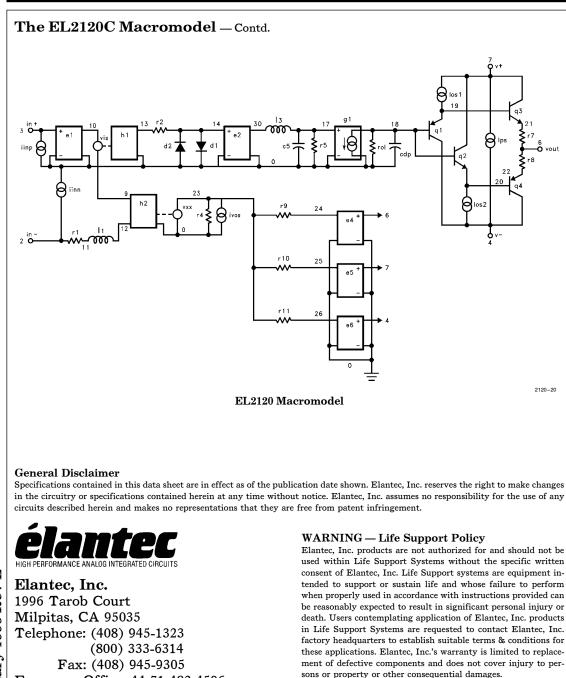
The model does not simulate these characteristics accurately:

noise	non-linearities
slew rate limitations	temperature effects
settling time	manufacturing variations
input or output resonances	CMRR and PSRR

* Revision A. March 1992

* Enhancements include PSRR, CMRR, and Slew Rate Limiting								
* Connections:	+ input							
*	-input							
*	+ Vsupply							

			-pac			
*			+v	supply	y	
*	Ì.	Ì		-v	supply	
*	i	i	i		output	
*	i	i	i	i		
.subckt M2120	3	2	7	4	6	
*						
* Input Stage						*
*						q1 4 18 19 qp
e1 10 0 3 0 1.0						q2 7 18 20 qn
vis 10 9 0V						q3 7 19 21 qn
h2 9 12 vxx 1.0						q4 4 20 22 qp
r1 2 11 25						r7 21 6 4
l1 11 12 20nH						r8 22 6 4
iinp 3 0 10μA						ios1 7 19 2.5mA
iinm 2 0 5µA						ios2 20 4 2.5mA
r12 3 0 2Meg						*
*						* Supply
* Slew Rate Limit	ing					
						ips 7 4 10mA
h1 13 0 vis 600						*
r2 13 14 1K						* Error Terms
d1 14 0 dclamp						
s2 0 14 dclamp						ivos 0 23 5mA
* High Frequency	D-1-					vxx 23 0 0V e4 24 0 6 0 1.0
*	Pole					e5 25 0 7 0 1.0
e2 30 0 14 0 0.0016	66666	566				e6 26 0 4 0 1.0
15 30 17 1μH	00000	000				r9 24 23 562
c5 17 0 0.5pF						r10 25 23 10K
r5 17 0 600						r11 26 23 10K
*						*
* Transimpedance	Stag	re				* Models
*						*
g1 0 18 17 0 1.0						.model qn npn (is = $5e - 15$ bf = 500 tf = $0.1n$ S)
rol 18 0 140K						.model qp pnp (is = $5e - 15$ bf = 500 tf = $0.1nS$)
cdp 18 0 7.9pF						.model dclamp d(is= $1e-30$ ibv= 0.02 bv= $4n=4$)
*						.ends
* Output Stage						


11

H

EL2120C

EL2120C

100 MHz Current Feedback Amplifier

January 1996 Rev E

European Office: 44-71-482-4596

12

Printed in U.S.A.