

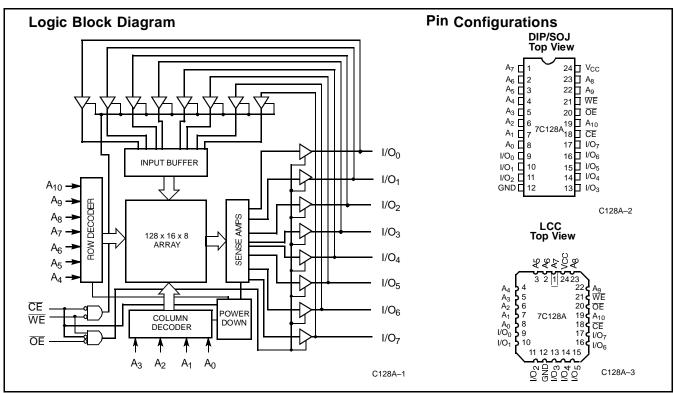
# 2K x 8 Static RAM

#### **Features**

- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- · High speed
  - -15 ns
- · Low active power
  - -440 mW (commercial)
  - -550 mW (military)
- · Low standby power
  - -110 mW
- · TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- V<sub>IH</sub> of 2.2V

#### **Functional Description**

The CY7C128A is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ( $\overline{\text{CE}}$ ), and active LOW output enable ( $\overline{\text{OE}}$ ) and three-state drivers. The CY7C128A has an automatic power-down feature, reducing the power consumption by 83% when deselected.


Writing to the device is accomplished when the chip enable  $(\overline{CE})$  and write enable  $(\overline{WE})$  inputs are both LOW.

Data on the eight I/O pins (I/O $_0$  through I/O $_7$ ) is written into the memory location specified on the address pins (A $_0$  through A $_{10}$ ).

Reading the device is accomplished by taking chip enable  $(\overline{CE})$  and output enable  $(\overline{OE})$  LOW while write enable  $(\overline{WE})$  remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I/O pins.

The I/O pins remain in high-impedance state when chip enable  $(\overline{CE})$  or output enable  $(\overline{OE})$  is HIGH or write enable  $(\overline{WE})$  is LOW.

The CY7C128A utilizes a die coat to insure alpha immunity.



#### **Selection Guide**

|                          |            | 7C128A-15 | 7C128A-20 | 7C128A-25 | 7C128A-35 | 7C128A-45 |
|--------------------------|------------|-----------|-----------|-----------|-----------|-----------|
| Maximum Access Time (ns) |            | 15        | 20        | 25        | 35        | 45        |
| Maximum Operating        | Commercial | 120       | 100       | 100       | 100       |           |
| Current (mA)             | Military   |           | 125       | 125       | 100       | 100       |
| Maximum Standby          | Commercial | 40/40     | 40/20     | 20        | 20        |           |
| Current (mA)             | Military   |           | 40/20     | 40        | 20        | 20        |



## **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ......-65°C to +150°C

Ambient Temperature with

Power Applied.......55°C to +125°C

Supply Voltage to Ground Potential

(Pin 28 to Pin 14) ...... –0.5V to +7.0V

DC Voltage Applied to Outputs

in High Z State ...... -0.5V to +7.0V

| Output Current into Outputs (LOW)                      | 20 mA   |
|--------------------------------------------------------|---------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-Up Current                                       | >200 mA |

## **Operating Range**

| Range                   | Ambient<br>Temperature | V <sub>CC</sub> |
|-------------------------|------------------------|-----------------|
| Commercial              | 0°C to +70°C           | 5V ± 10%        |
| Military <sup>[1]</sup> | −55°C to +125°C        | 5V ± 10%        |

## Electrical Characteristics Over the Operating Range<sup>[2]</sup>

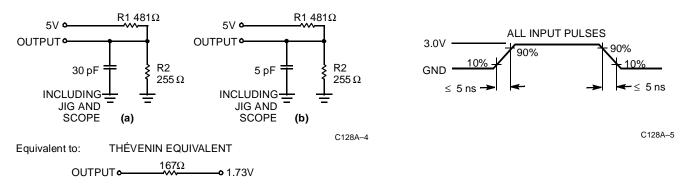
|                                       |                                                | Test Conditions                                                             |        | 7C12 | 8A-15           | 7C12 | 8A-20           | 7C12 | 8A-25           | 7C128/ | A-35,45         |      |
|---------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|--------|------|-----------------|------|-----------------|------|-----------------|--------|-----------------|------|
| Parameter                             | Description                                    |                                                                             |        | Min. | Max.            | Min. | Max.            | Min. | Max.            | Min.   | Max.            | Unit |
| V <sub>OH</sub>                       | Output HIGH<br>Voltage                         | $V_{CC} = Min.,$<br>$I_{OH} = -4.0 \text{ mA}$                              |        | 2.4  |                 | 2.4  |                 | 2.4  |                 | 2.4    |                 | V    |
| V <sub>OL</sub>                       | Output LOW<br>Voltage                          | V <sub>CC</sub> = Min., I <sub>OL</sub> =                                   | 8.0 mA |      | 0.4             |      | 0.4             |      | 0.4             |        | 0.4             | V    |
| V <sub>IH</sub>                       | Input HIGH<br>Voltage                          |                                                                             |        | 2.2  | V <sub>CC</sub> | 2.2  | V <sub>CC</sub> | 2.2  | V <sub>CC</sub> | 2.2    | V <sub>CC</sub> | V    |
| V <sub>IL</sub>                       | Input LOW<br>Voltage <sup>[3]</sup>            |                                                                             |        | -0.5 | 0.8             | -0.5 | 0.8             | -0.5 | 0.8             | -0.5   | 0.8             | V    |
| I <sub>IX</sub>                       | Input Load<br>Current                          | $GND \leq V_I \leq V_CC$                                                    |        | -10  | +10             | -10  | +10             | -10  | +10             | -10    | +10             | μА   |
| I <sub>OZ</sub>                       | Output Leakage<br>Current                      | $\begin{array}{l} GND \leq V_I \leq V_{CC} \\ Output\ Disabled \end{array}$ |        | -10  | +10             | -10  | +10             | -10  | +10             | -10    | +10             | μΑ   |
| I <sub>OS</sub>                       | Output Short<br>Circuit Current <sup>[4]</sup> | $V_{CC} = Max.,$<br>$V_{OUT} = GND$                                         |        |      | -300            |      | -300            |      | -300            |        | -300            | mA   |
| I <sub>CC</sub>                       | V <sub>CC</sub> Operating                      | V <sub>CC</sub> = Max.                                                      | Com'l  |      | 120             |      | 100             |      | 100             |        | 100             | mA   |
|                                       | Supply Current                                 | $I_{OUT} = 0 \text{ mA}$                                                    | Mil    |      |                 |      | 125             |      | 125             |        | 100             | i    |
| I <sub>SB1</sub>                      | Automatic CE                                   | Max. V <sub>CC</sub> ,                                                      | Com'l  |      | 40              |      | 40              |      | 20              |        | 20              | mA   |
|                                       | Power-Down<br>Current                          | CE ≥ V <sub>IH,</sub><br>Min. Duty Cycle<br>= 100%                          | Mil    |      |                 |      | 40              |      | 40              |        | 20              |      |
| Automatic CE<br>Power-Down<br>Current | Power-Down                                     | ower-Down CE <sub>1</sub> ≥V <sub>CC</sub> −0.3V,                           | Com'l  |      | 40              |      | 20              |      | 20              |        | 20              | mA   |
|                                       | Current                                        | $V_{IN} \ge V_{CC} - 0.3V$<br>or $V_{IN} \le 0.3V$                          | Mil    |      |                 |      | 20              |      | 20              |        | 20              |      |

# Capacitance<sup>[5]</sup>

| Parameter        | Description        | Test Conditions                                                           | Max. | Unit |
|------------------|--------------------|---------------------------------------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}\text{C}, f = 1 \text{ MHz}, $<br>$V_{CC} = 5.0\text{V}$ | 10   | pF   |
| C <sub>OUT</sub> | Output Capacitance |                                                                           | 10   | pF   |

#### Notes:

- T<sub>A</sub> is the "instant on" case temperature.
- 2.
- In a site install of case temperature.


  See the last page of this specification for Group A subgroup testing information.

  V<sub>IL</sub> (min.) = -3.0V for pulse durations less than 30 ns.

  Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. Tested initially and after any design or process changes that may affect these parameters.



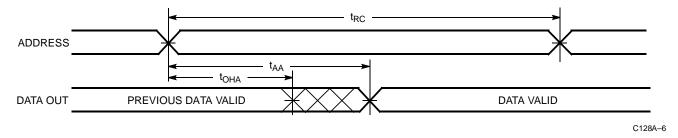
#### **AC Test Loads and Waveforms**



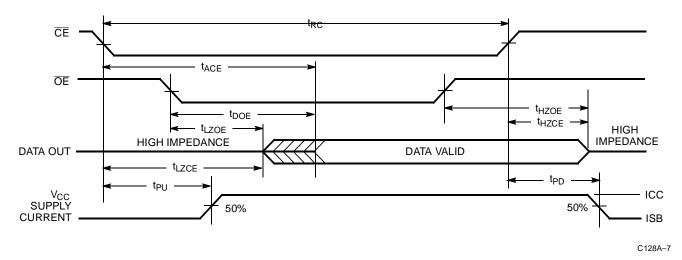
## Switching Characteristics Over the Operating Range<sup>[2,6]</sup>

|                   |                                    | 7C128A-15 |      | 7C12 | 8A-20 | 7C128A-25 |      | 7C128A-35 |      | 7C128A-45 |      |      |
|-------------------|------------------------------------|-----------|------|------|-------|-----------|------|-----------|------|-----------|------|------|
| Parameter         | Description                        | Min.      | Max. | Min. | Max.  | Min.      | Max. | Min.      | Max. | Min.      | Max. | Unit |
| READ CYC          | LE                                 |           |      |      |       |           |      | 1         |      | ı         | ı    |      |
| t <sub>RC</sub>   | Read Cycle Time                    | 15        |      | 20   |       | 25        |      | 35        |      | 45        |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid              |           | 15   |      | 20    |           | 25   |           | 35   |           | 45   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change      | 5         |      | 5    |       | 5         |      | 5         |      | 5         |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid               |           | 15   |      | 20    |           | 25   |           | 35   |           | 45   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid               |           | 10   |      | 10    |           | 12   |           | 15   |           | 20   | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z                    | 3         |      | 3    |       | 3         |      | 3         |      | 3         |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[7]</sup>   |           | 8    |      | 8     |           | 10   |           | 12   |           | 15   | ns   |
| t <sub>LZCE</sub> | CE LOW to Low Z <sup>[8]</sup>     | 5         |      | 5    |       | 5         |      | 5         |      | 5         |      | ns   |
| t <sub>HZCE</sub> | CE HIGH to High Z <sup>[7,8]</sup> |           | 8    |      | 8     |           | 10   |           | 15   |           | 15   | ns   |
| t <sub>PU</sub>   | CE LOW to Power-Up                 | 0         |      | 0    |       | 0         |      | 0         |      | 0         |      | ns   |
| t <sub>PD</sub>   | CE HIGH to Power-Down              |           | 15   |      | 20    |           | 20   |           | 20   |           | 25   | ns   |
| WRITE CYC         | CLE <sup>[9]</sup>                 |           |      |      |       |           |      |           |      |           |      |      |
| t <sub>WC</sub>   | Write Cycle Time                   | 15        |      | 20   |       | 20        |      | 25        |      | 40        |      | ns   |
| t <sub>SCE</sub>  | CE LOW to Write End                | 12        |      | 15   |       | 20        |      | 25        |      | 30        |      | ns   |
| t <sub>AW</sub>   | Address Set-Up to Write End        | 12        |      | 15   |       | 20        |      | 25        |      | 30        |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End        | 0         |      | 0    |       | 0         |      | 0         |      | 0         |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start      | 0         |      | 0    |       | 0         |      | 0         |      | 0         |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                     | 12        |      | 15   |       | 15        |      | 20        |      | 20        |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End           | 10        |      | 10   |       | 10        |      | 15        |      | 15        |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End           | 0         |      | 0    |       | 0         |      | 0         |      | 0         |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[7]</sup>    |           | 7    |      | 7     |           | 7    |           | 10   |           | 15   | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z                   | 5         |      | 5    |       | 5         |      | 5         |      | 5         |      | ns   |

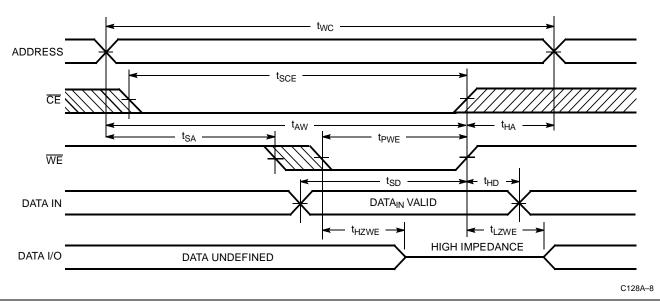
## Notes:


Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $I_{OL}/I_{OH}$  and 30-pF load capacitance.

 $<sup>1</sup>_{OL}/O_{OH}$  and 30-pr load capacitance.  $1_{HZOE}$ , the constraint  $1_{HZOE}$  are specified with  $C_L = 5$  pF as in part (b) of AC Test Loads. Transition is measured  $\pm 500$  mV from steady state voltage. At any given temperature and voltage condition,  $1_{HZOE}$  is less than  $1_{LZOE}$  for any given device. The internal write time of the memory is defined by the overlap of  $\overline{CE}$  LOW and  $\overline{WE}$  LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.




# **Switching Waveforms**


# Read Cycle No. $\mathbf{1}^{[10,11]}$

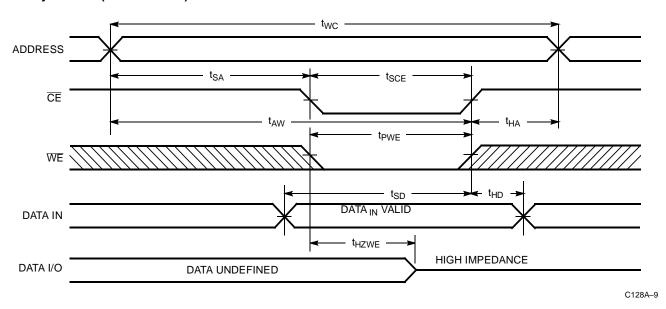


# **Read Cycle No. 2**[10,12]



## Write Cycle No. 1 (WE Controlled)[9,13]

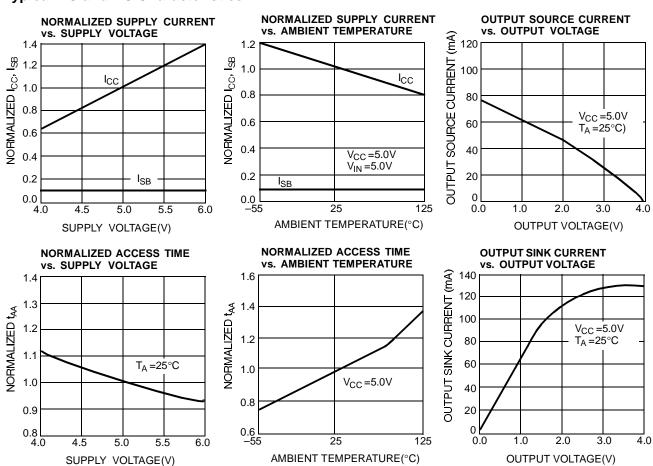



#### Notes:

- WE is HIGH for read cycle.
   Device is continuously selected. OE, CE = V<sub>IL</sub>.
   Address valid prior to or coincident with CE transition LOW.
   Data I/O pins enter high-impedance state, as shown, when OE is held LOW during write.

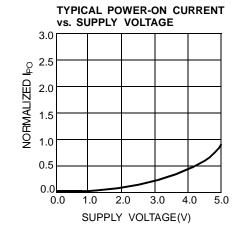


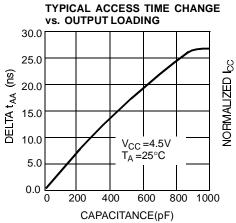
# Switching Waveforms (continued)

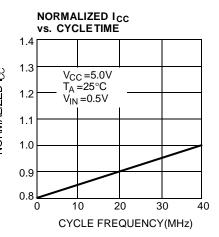

Write Cycle No. 2 (CE Controlled)[9,13,14]



#### Notes


14. If  $\overline{\text{CE}}$  goes HIGH simultaneously with  $\overline{\text{WE}}$  HIGH, the output remains in a high-impedance state.


## Typical DC and AC Characteristics






# **Typical DC and AC Characteristics** (continued)







# **Ordering Information**

| Speed<br>(ns) | Ordering Code  | Package<br>Name | Package Type                             | Operating<br>Range |
|---------------|----------------|-----------------|------------------------------------------|--------------------|
| 15            | CY7C128A-15PC  | P13             | 24-Lead (300-Mil) Molded DIP             | Commercial         |
|               | CY7C128A-15VC  | V13             | 24-Lead Molded SOJ                       |                    |
| 20            | CY7C128A-20PC  | P13             | 24-Lead (300-Mil) Molded DIP             | Commercial         |
|               | CY7C128A-20VC  | V13             | 24-Lead Molded SOJ                       |                    |
|               | CY7C128A-20DMB | D14             | 24-Lead (300-Mil) CerDIP                 | Military           |
|               | CY7C128A-20LMB | L53             | 24-Pin Rectangular Leadless Chip Carrier |                    |
| 25            | CY7C128A-25PC  | P13             | 24-Lead (300-Mil) Molded DIP             | Commercial         |
|               | CY7C128A-25VC  | V13             | 24-Lead Molded SOJ                       |                    |
|               | CY7C128A-25DMB | D14             | 24-Lead (300-Mil) CerDIP                 | Military           |
|               | CY7C128A-25LMB | L53             | 24-Pin Rectangular Leadless Chip Carrier |                    |
| 35            | CY7C128A-35PC  | P13             | 24-Lead (300-Mil) Molded DIP             | Commercial         |
|               | CY7C128A-35VC  | V13             | 24-Lead Molded SOJ                       |                    |
|               | CY7C128A-35DMB | D14             | 24-Lead (300-Mil) CerDIP                 | Military           |
|               | CY7C128A-35LMB | L53             | 24-Pin Rectangular Leadless Chip Carrier |                    |
| 45            | CY7C128A-45DMB | D14             | 24-Lead (300-Mil) CerDIP                 | Military           |
|               | CY7C128A-45LMB | L53             | 24-Pin Rectangular Leadless Chip Carrier |                    |

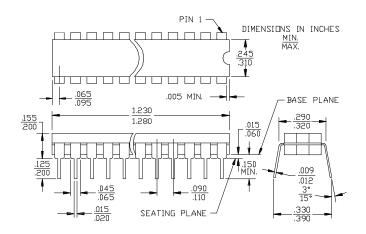


# MILITARY SPECIFICATIONS Group A Subgroup Testing

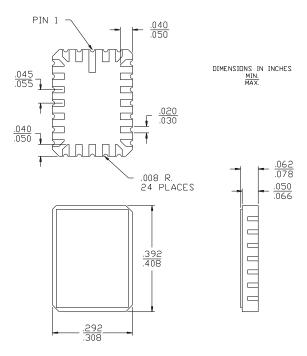
# **DC Characteristics**

| Parameter            | Subgroups |
|----------------------|-----------|
| V <sub>OH</sub>      | 1, 2, 3   |
| V <sub>OL</sub>      | 1, 2, 3   |
| V <sub>IH</sub>      | 1, 2, 3   |
| V <sub>IL</sub> Max. | 1, 2, 3   |
| I <sub>IX</sub>      | 1, 2, 3   |
| I <sub>OZ</sub>      | 1, 2, 3   |
| I <sub>CC</sub>      | 1, 2, 3   |
| I <sub>SB</sub>      | 1, 2, 3   |

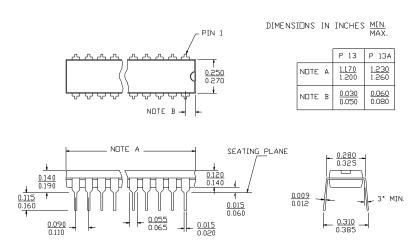
# **Switching Characteristics**


| Parameter        | Subgroups       |
|------------------|-----------------|
| READ CYCLE       |                 |
| t <sub>RC</sub>  | 7, 8, 9, 10, 11 |
| t <sub>AA</sub>  | 7, 8, 9, 10, 11 |
| t <sub>OHA</sub> | 7, 8, 9, 10, 11 |
| t <sub>ACE</sub> | 7, 8, 9, 10, 11 |
| t <sub>DOE</sub> | 7, 8, 9, 10, 11 |
| WRITE CYCLE      |                 |
| t <sub>WC</sub>  | 7, 8, 9, 10, 11 |
| t <sub>SCE</sub> | 7, 8, 9, 10, 11 |
| t <sub>AW</sub>  | 7, 8, 9, 10, 11 |
| t <sub>HA</sub>  | 7, 8, 9, 10, 11 |
| t <sub>SA</sub>  | 7, 8, 9, 10, 11 |
| t <sub>PWE</sub> | 7, 8, 9, 10, 11 |
| t <sub>SD</sub>  | 7, 8, 9, 10, 11 |
| t <sub>HD</sub>  | 7, 8, 9, 10, 11 |

Document #: 38-00094-B



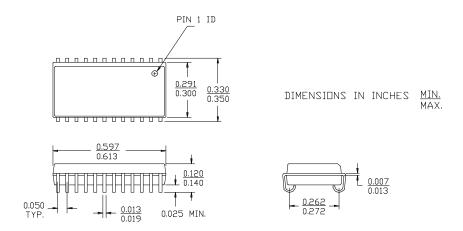

## **Package Diagrams**


#### 24-Lead (300-Mil) CerDIP D14 MIL-STD-1835 D-9 Config.A



## 24-Pin Rectangular Leadless Chip Carrier L53




## 24-Lead (300-Mil) Molded DIP P13/P13A





## Package Diagrams (continued)

#### 24-Lead Molded SOJ V13



<sup>©</sup> Cypress Semiconductor Corporation, 1993. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfurnion or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.