SONY

CXD1172AM/AP

6-bit 20MSPS Video A/D Converter (CMOS)

Description

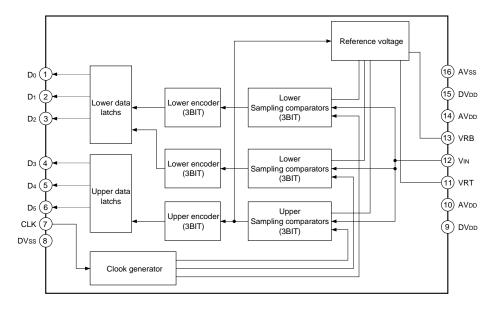
CXD1172AM/AP is a 6-bit CMOS A/D converter for video use. The adoption of a 2-step parallel system achieves low consumption at a maximum conversion speed of 20MSPS minimum, 35MSPS typical.

Features

- Resolution: 6-bit ± 1/2LSB
- Max. sampling frequency: 20MSPS
- Low power consumption: 40mW (at 20MSPS typ.)
 (Reference current excluded)
- Built-in sampling and hold circuit.
- 3-state TTL compatible output.
- Power supply: 5V single
- Low input capacitance: 4pF
- Reference impedance: 250Ω (typ.)

Applications

TV, VCR digital systems and a wide range of fields where high speed A/D conversion is required.


Structure

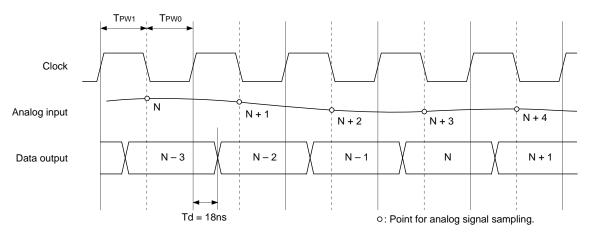
Silicon gate CMOS monolithic IC

CXD1172AM			CXD1172AP		
16 pin SOP (Plastic) 16		6 pin DIP (Plastic)			
a California	CERTRER A		SAMPAN		
Absolute Maxim	um Rating	js (T	a = 25°C)		
 Supply voltage 	Vdd		7	V	
Reference volta	ge				
	Vrt, Vrb	Vdd	o + 0.5 to Vss – 0	0.5 V	
 Input voltage (Analog) 	Vin	Vde	o + 0.5 to Vss−0	0.5 V	
 Input voltage (Digital) 	Vclk	Vde	o + 0.5 to Vss – 0	0.5 V	
• Output voltage (Digital)	Voh, Vol	Vde	o + 0.5 to Vss − 0	0.5 V	
Storage temperature	ature				
	Tstg		-55 to +150	°C	
Recommended (Operating	Con	ditions		
 Supply voltage 	AVDD, AV	/ss	4.75 to 5.25	V	
	DVdd, D'	Vss	4.75 to 5.25	V	
Reference input	voltage				
	Vrb		0 to 4.1	V	
	Vrt		0.9 to 5.0	V	
	Vrt – Vr	В	0.9 to AVDD	V	
Analog input vol	tage				
	Vin		Vrb to Vrt	V	
Clock pulse widt	th				
TPW1	, TPW0 2	3ns	(min.) to 1.1µs (i	max.)	
Operating temperating	erature				
	Topr		-20 to +75	°C	

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

PIn Description and Equivalent Circuits


No.	Symbol	Equivalent Circuit	Description
1 to 6	D₀ to D₅		D₀ (LSB) to D₅ (MSB) output
7	CLK	(7)W	Clock input
8	DVss		Digital GND
9, 15	DVdd		Digital +5V
10, 14	AVdd		Analog +5V
11	VRT		Reference voltage (Top)
13	VRB	AVss	Reference voltage (Bottom)
12	Vin		Analog input
16	AVss		Analog GND

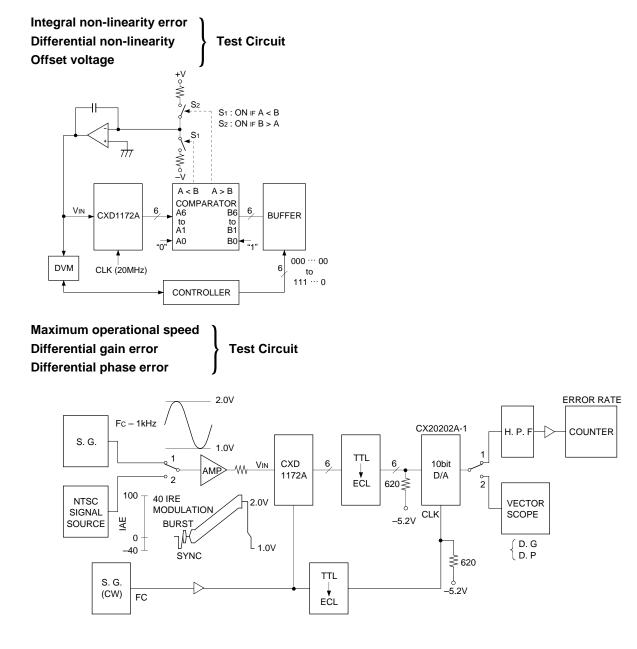
- 2 -

Digital Output

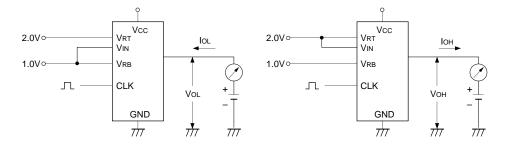
Compatibility between Analog input voltage and the digital output code is indicated in the chart below.

Input signal voltage	Step	Digital output code MSB LSB		
Vrt	0			
	31 32			
Vrb	: 63	: 0 0 0 0 0 0		

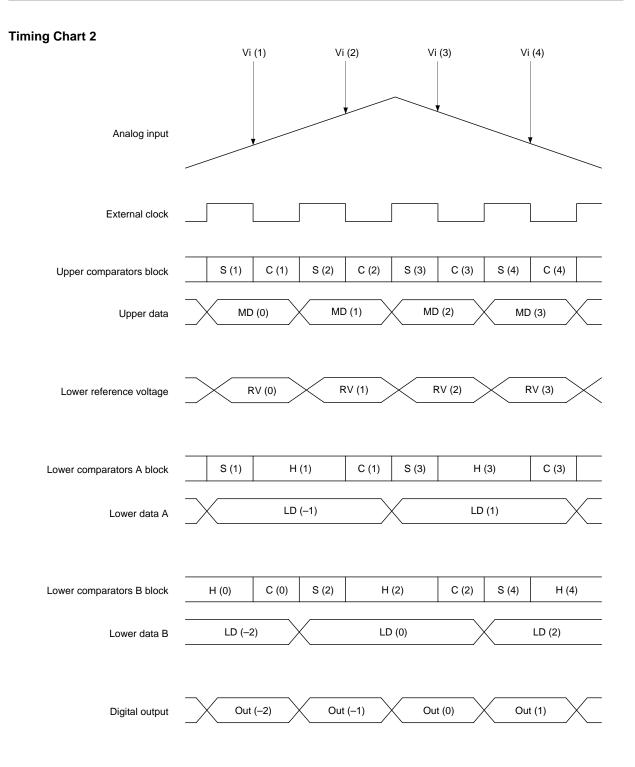
Timing Chart 1


Electrical Characteristics

(VDD = 5V, VRB = 1.0V, VRT = 2.0V, Ta = 25°C)


Item	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Conversion speed	Fc	VDD = 4.75 to 5.25V Ta = -20 to +75°C VIN = 1.0 to 2.0V fIN = 1kHz ramp		0.5		20	MSPS
Supply current	IDD	Fc = 20MSP NTSC ramp			7	12	mA
Reference pin current	IREF			3	4	5.7	
Analog input band width (–1dB)	BW	Envelope			18		MHz
Analog input capacitance	CIN	VIN = 1.5V +	0.07Vrms		4		pF
Reference resistance (VRT to VRB)	Rref			175	250	325	Ω
Offset voltage*1	Еот	Potential difference to VRT		0	-20	-40	- mV
Olisei voltage	Еов	Potential difference to VRB		15	35	55	
Digital input voltage	Viн	V _{DD} = 4.75 to 5.25V Ta = -20 to +75°C		4.0			v
Digital input voltage	VIL					1.0	V
Digital input current	Ін	- VDD = max.	Vih = Vdd			5	- μΑ
Digital input current	lı∟	$v_{DD} = max.$	VIL = 0V			5	
Digital output current	Іон	VDD = min.	Vон = Vdd + 0.5V	-1.1			— mA
Digital output current	lol	VDD = mm.	Vol = 0.4V	3.7			
Output data delay	Tdl	Ta = -20 to	With TTL 1 gate and 10pF load Ta = -20 to +75°C VDD = 4.75 to 5.25V		18	30	ns
Integral non-linearity error	EL	- End point			±0.3	±0.5	- LSB
Differential non-linearity error	ED				±0.3	±0.5	
Differential gain error	DG	NTSC 40 IRE mod ramp			1.0		%
Differential phase error	DP		Fc = 14.3MSPS		1.0		deg
Aperture jitter	Тај				40		ps
Sampling delay	Tsd				4		ns

*1 The offset voltage EOB is a potential difference between VRB and a point of position where the voltage drops equivalent to 1/2 LSB of the voltage when the output data changes from "00000000" to "00000001". EOT is a potential difference between VRT and a potential of point where the voltage rises equivalent to 1/2 LSB of the voltage when the output data changes from "11111111" to "11111110".


Electrical Characteristics Test Circuit

Digital output current test circuit

- 5 -

Operation (See Block Diagram and Timing Chart)

- CXD1172AM/AP is a 2-step parallel system A/D converter featuring a 3-bit upper comparators group and 2 lower comparators groups of 3-bit each. The reference voltage that is equal to the voltage between VRT-VRB/8 is constantly applied to the upper 3-bit comparator block. Voltage that corresponded to the upper data is fed through the reference supply to the lower data.
- 2. This IC uses an offset cancel type comparator and operates synchronously with an external clock. It features the following operating modes which are respectively indicated on the timing chart with S, H, C symbols. That is input sampling (auto zero) mode, input hold mode and comparison mode.
- 3. The operation of respective parts is as indicated in the chart. For instance input voltage Vi (1) is sampled with the falling edge of the first clock by means of the upper comparator block and the lower comparator A block. The upper comparators block finalizes comparison data MD (1) with the rising edge of the first clock. Simultaneously the reference supply generates the lower reference voltage RV (1) that corresponded to the upper results. The lower comparator block finalizes comparison data LD (1) with the rising edge of the 3rd clock. Accordingly there is a 2.5 clock delay from the analog input sampling point to the digital data output.

Operation Notes

1. VDD, Vss

To reduce noise effects, separate the analog and digital systems close to the device. For both the digital and analog VDD pins, use a ceramic capacitor of about 0.1μ F set as close as possible to the pin to bypass to the respective GND's.

2. Analog input

Compared with the flash type A/D converter, the input capacitance of the analog input is rather small. However it is necessary to conduct the drive with an amplifier featuring sufficient band and drive capability. When driving with an amplifier of low output impedance, parasite oscillation may occur. That may be prevented by inserting a resistance of about 100Ω in series between the amplifier output and A/D input.

Clock input

The clock line wiring should be as short as possible also, to avoid any interference with other signals, separate it from other circuits.

4. Reference input

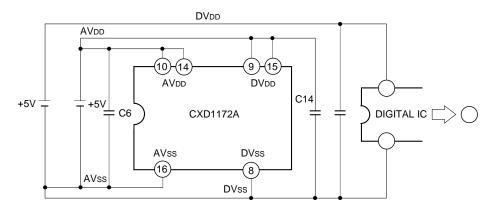
Voltage between VRT to VRB is compatible with the dynamic range of the analog input. Bypassing VRT and VRB pins to GND, by means of a capacitor about 0.1µF, stable characteristics are obtained.

5. Timing

Analog input is sampled with the falling edge of CLK and output as digital data with a delay of 2.5 clocks and with the following rising edge. The delay from the clock rising edge to the data output is about 18ns.

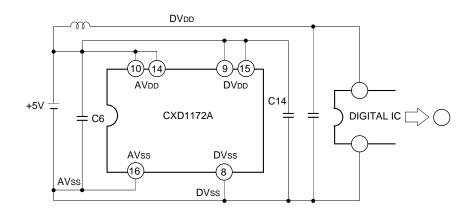
6. About latch up

It is necessary that AV_{DD} and DV_{DD} pins be the common source of power supply. This is to avoid latch up due to the voltage difference between AV_{DD} and DV_{DD} pins when power is ON. See "For latch up prevention" of CXD1172P/CXA1106P PCB description. (Page 6, 7)

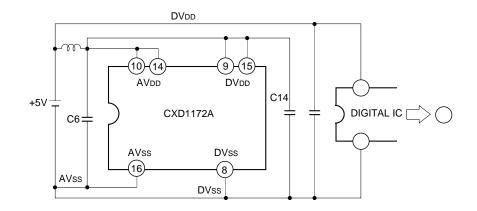

-7-

Latch Up Prevention

The CXD1172A is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AV_{DD} (Pins 10 and 14) and DV_{DD} (Pins 9 and 15), when power supply is ON.

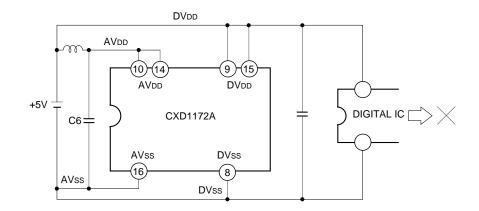

1. Correct usage

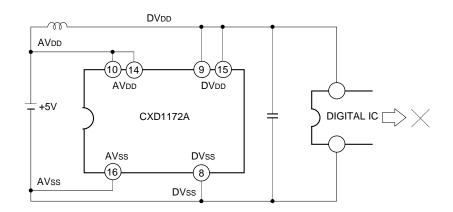
a. When analog and digital supplies are from different sources



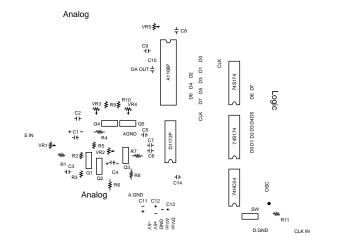
b. When analog and digital supplies are from a common source

(i)

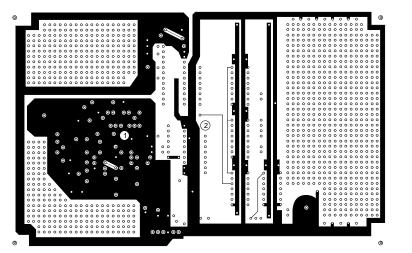

(ii)


- 2. Example when latch up easily occurs
- a. When analog and digital supplies are from different sources

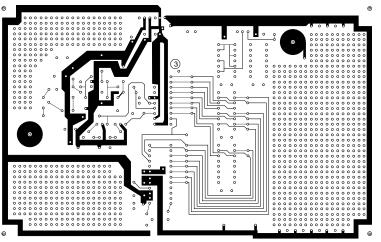
b. When analog and digital supplies are from common source (i)



(ii)



6-bit, 20MSPS ADC and DAC Evaluation Board


Silk Side

Component Side

Soldering Side

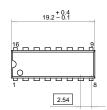


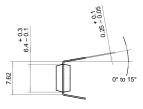
- 10 -

Package Outline Unit: mm

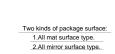
CXD1172AM

16PIN SOP (PLASTIC) 300mil




PACKAGE STRUCTURE	

		PACKAGE MATERIAL	EPOXY RESIN	
SONY CODE	SOP-16P-L01			
FIAL CODE	*SOP016-P-0300-A	LEAD TREATMENT	SOLDER PLATING	
		LEAD MATERIAL	COPPER ALLOY	
JEDEC CODE		PACKAGE WEIGHT	0.2g	
-		FAGRAGE WEIGHT	0.29	


CXD1172AP

16PIN DIP (PLASTIC)

	0.5 MIN + 0.4 3.7 - 0.1
0.5 ± 0.1	3.0 MIN
1.2 ± 0.15	

PACKAGE STRUCTURE

		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	DIP-16P-01	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE	DIP016-P-0300	LEAD MATERIAL	COPPER ALLOY
JEDEC CODE	Similar to MO-001-AE	PACKAGE MASS	1.0 g