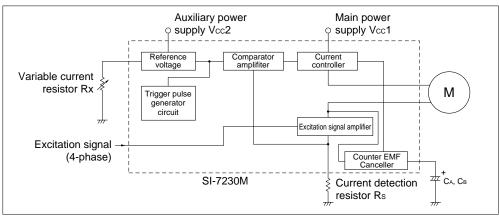
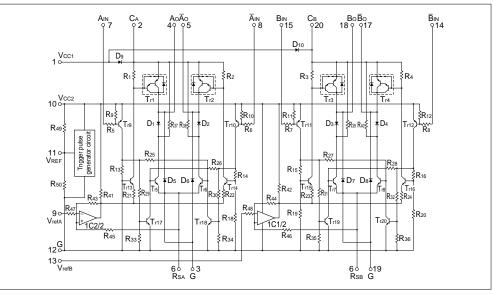
Bipolar Driver IC

SI-7230M

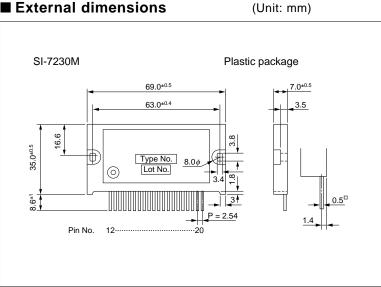
Ratings

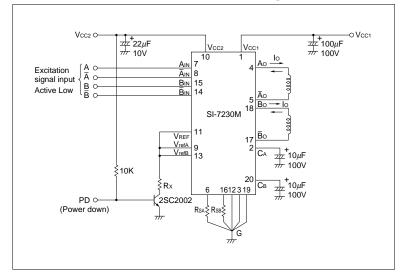

	U							(Ta = 25°C)	
	Absolute maximum	Supply	voltage	Peak voltage of pins CA and CB	Output current	Junction temperature	Operating ambient	Storage temperature	
	rating	(V)	(V)	(A)	(°C)	temperature (°C)	(°C)	
Type No.		Vcc1	Vcc2	Vsp	lo	Tj	Тор	Tstg	
SI-7230N	1	50	7	70	3.2	+125	-20 to +80	-30 to +100	

Characteristics


Electrical charac- teristics							Output current				*Comparator threshold voltage					Excitation signal input voltage				Excitation signal input current	Oscillation frequency		сy	Vcc2 input current		
	(V)				(mA/ø)				(V)					(V)			(mA)	(kHz)			(mA)					
	Vcc1 Vcc2		Іо Іом			Vthf Vthpd				VIL(ON) VIH(OFF)			lı∟	F			Icc2									
Type No.	min	typ	max	min	typ	max	min	max	min	typ	max	min	typ	max	min	typ	max	min	max	min	max	max	min	typ	max	max
SI-7230M	15	30	45	4.5	5	5.5	200	3000	535	580	625	1.025	1.125	1.225	0.515	0.555	0.595	0	0.5	Vcc2 -0.4	Vcc2 +2	1.6	19	21	25	150

*VTHF : Conditions shown in the standard external connection diagram with $V_{CC2} = 5V$ and $R_S = 1\Omega$ VTHPD: Conditions shown in the standard external connection diagram with $R_X = 1k\Omega$, $V_{CC2} = 5V$ and $R_S = 1\Omega$


Block diagram


Equivalent circuit diagram

External dimensions

■ Standard external connection diagram

* For details on the characteristics and thermal design, refer to the technical manual.

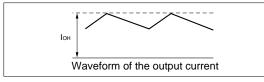
Application Note

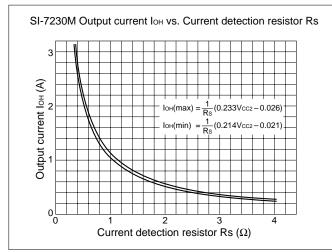
Determining the output current lo (motor coil current)

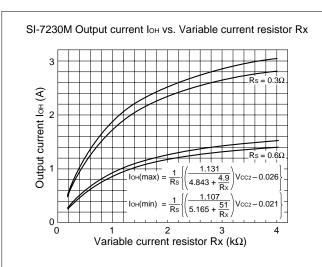
The output current, lo is fixed by the following elements:

Rs : Current detection resistor

Vcc2 : Supply voltage

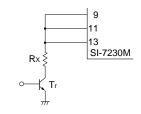

Rx : Variable current resistor


To operate a motor at maximum current level, set Rx to infinity (open).


To compute Io when different values are used for Rs and V_{CC2}, use the approximation formula below. The maximum ripple value IOH of the output current waveform can be computed as follows:

$$I_{OH(max)} = \frac{1}{Rs} \quad (0.233 \bullet V_{CC2} - 0.026) \text{ [A]}$$
$$I_{OH(min)} = \frac{1}{Rs} \quad (0.214 \bullet V_{CC2} - 0.021) \text{ [A]}$$

The graph of the equations above is shown below.



Power down mode

SI-7230M can be operated in power down mode. The circuit is shown below. When transistor Tr is switched on, the reference voltage drops and the output current can be decreased.

■ Surge absorption capacitor ■ CA and CB and capacitance

The upper diagram shown on the next page is the flow of the counter EMF produced by the motor coils when it charges C_A and C_B and the lower diagram shows the direction of the energy discharged by C_A and C_B . When phase \overline{A} shown in the figure is off, the counter EMF (energy built-up by the coil inductance) produced by the motor coils passes through the path shown by the dotted lines and charges C_A and C_B .

When phase \overline{A} is on, the energy stored by the capacitors are discharged in the direction shown by the dotted lines in the lower left diagram on the next page. The capacitors are discharged until the voltage across their pins equal the supply voltage Vcc. The peak voltage VsP across the capacitors is given by the equation:

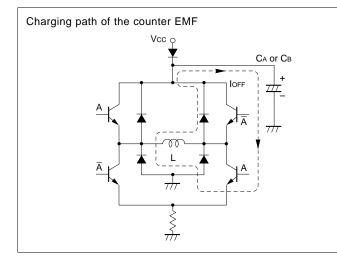
$$V_{SP} = \sqrt{\frac{L}{C}} \bullet I_{O} + V_{CC}$$

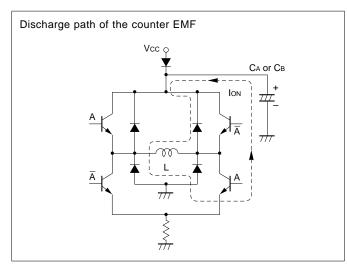
where, L : Motor coil inductance between pins 4 and 5 or pins 18 and 17

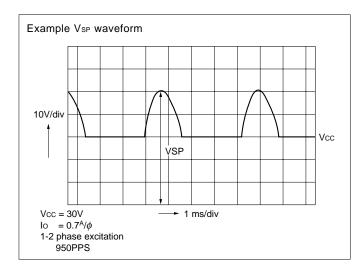
C : Capacitance of CA and CB

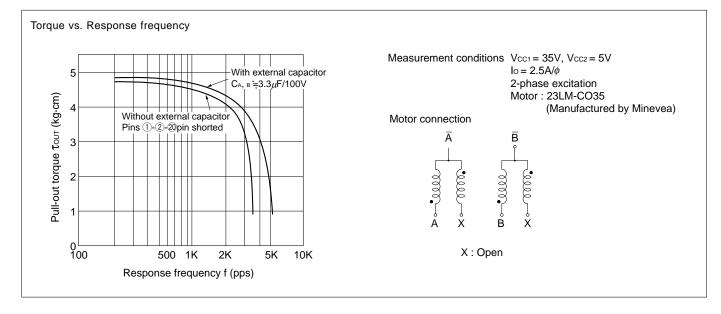
Io: Output current

An example waveform of $V_{\mbox{\scriptsize SP}}$ is shown in the middle figure on the next page.


A V_{SP} that can be obtained when high voltage is applied can also be produced by using the counter EMF when the coil current rises.


Notes in selecting CA and CB.


- VsP must not exceed the breakdown voltage of the hybrid IC (70V).
- (2) CA and CB are charged/discharged in the same rate as the phase is switched. Hence, a capacitor with excellent anti-ripple characteristics should be selected.


52

Application Note

SI-7200M, SI-7230M, SI-7115B, SI-7300A, SI-7330A, SI-7500A and SI-7502

Handling Precautions

(Note: The SI-7502 is applicable for item (2) only.)

For details, refer to the relevant product specifications.

(1) Tightening torque:

The torque to be applied in tightening screws when mounting the IC on a heatsink should be below $49N\bullet m$.

(2) Solvent:

Do not use the following solvents:

Substances that dissolve the package	Chlorine-based solvents : Trichloroethylene, Trichloroethane, etc. Aromatic hydrogen compounds: Benzene, Toluene, Xylene, etc. Ketone and Acetone group solvents
Substances that weaken the package	Gasoline, Benzine and Kerosene

(3) Silicone grease:

The silicone grease to be used between the aluminum base plate of the hybrid IC and the heatsink should be any of the following:

- G-746 SHINETSU CHEMICAL INDUSTRIES CO., LTD.
- YG6260 TOSHIBA SILICONE CO., LTD.
- SC102 DOW CORNING TORAY SILICONE CO., LTD.

Please pay sufficient attention in selecting silicone grease since oil in some grease may penetrate the product, which will result in an extremely short product life.

Others

• Resistance against radiation

Resistance against radiation was not considered in the development of these ICs because it is assumed that they will be used in ordinary environment.