

128K x 8 Static RAM

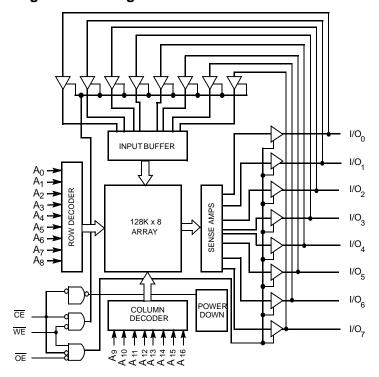
Features

- Pin and function compatible with CY7C1019BV33
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · CMOS for optimum speed/power
- Data retention at 2.0V
- Center power/ground pinout
- · Automatic power-down when deselected
- Easy memory expansion with CE and OE options
- Available in Pb-free and non Pb-free 48-ball VFBGA, 32-pin TSOP II and 400-mil SOJ package

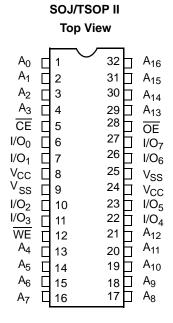
Functional Description

The CY7C1019CV33 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. This

device has an automatic power-down feature that significantly reduces power consumption when deselected.

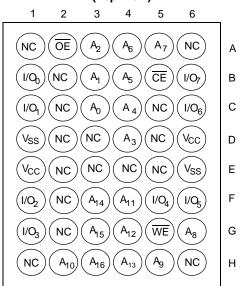

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₆).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1019CV33 is available in Standard 48-ball FBGA, 32-pin TSOP II and 400-mil-wide SOJ packages

Logic Block Diagram


Pin Configuration

Pin Configuration^[1]

48-ball VFBGA (Top View)

Selection Guide

	-10	-12	-15	Unit
Maximum Access Time	10	12	15	ns
Maximum Operating Current	80	75	70	mA
Maximum Standby Current	5	5	5	mA

Note:

[+] Feedback

NC pins are not connected on the die.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C

Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[2]}$ –0.5V to +4.6V

DC Input Voltage^[2].....-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

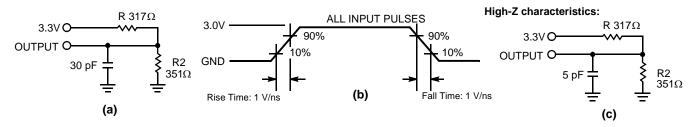
Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	$3.3V\pm10\%$
Industrial	-40°C to +85°C	3.3V ± 10%

Electrical Characteristics Over the Operating Range

				10	_	-12	-	-15	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	V
V_{IL}	Input LOW Voltage[2]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC},$ Output Disabled	-1	+1	–1	+1	–1	+1	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		80		75		70	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$		15		15		15	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{split} & \underline{\text{Max}}. \ V_{\text{CC}}, \\ & \text{CE} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \\ & \text{or} \ V_{\text{IN}} \leq 0.3 \text{V}, \ \text{f} = 0 \end{split}$		5		5		5	mA

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.

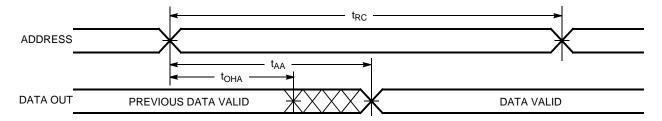
Document #: 38-05130 Rev. *F

AC Test Loads and Waveforms^[4]

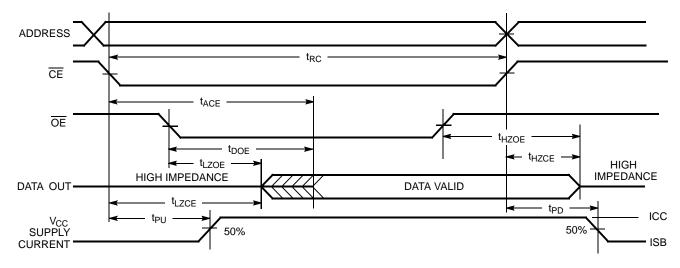
Switching Characteristics Over the Operating Range^[5]

			10	-12		-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	-	l .	1		I		-I	
t _{RC}	Read Cycle Time	10		12		15		ns
t _{AA}	Address to Data Valid		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		5		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		5		6		7	ns
t _{PU} ^[8]	CE LOW to Power-Up	0		0		0		ns
t _{PD} ^[8]	CE HIGH to Power-Down		10		12		15	ns
Write Cycle	9, 10]			•	1	•		•
t _{WC}	Write Cycle Time	10		12		15		ns
t _{SCE}	CE LOW to Write End	8		9		10		ns
t _{AW}	Address Set-Up to Write End	8		9		10		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	7		8		10		ns
t _{SD}	Data Set-Up to Write End	5		6		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		5		6		7	ns

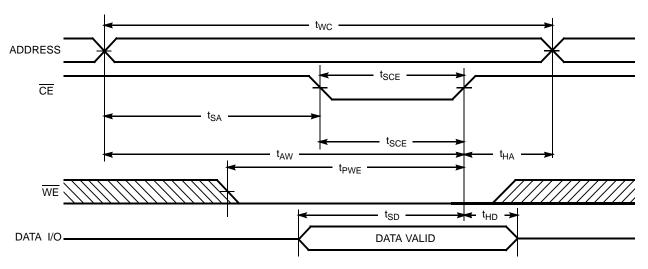
- 4. AC characteristics (except High-Z) for all speeds are tested using the Thevenin load shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).
- 5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
- 6. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
- 8. This parameter is guaranteed by design and is not tested.
- 9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.


 10. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of the sum of the signal that terminates the write.

[+] Feedback



Switching Waveforms

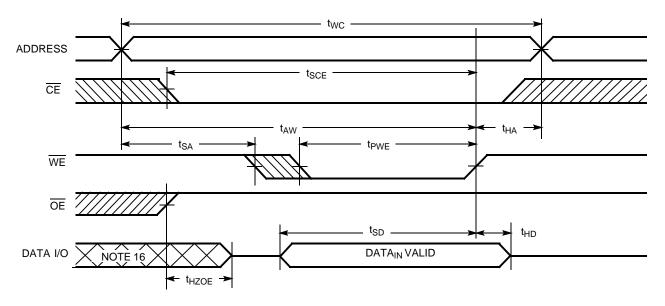

Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]

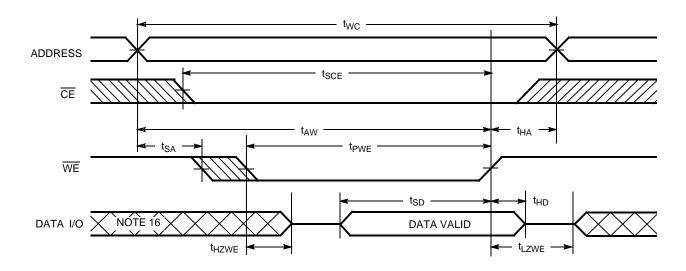
Write Cycle No. 1 (CE Controlled)[14, 15]

- 11. <u>Dev</u>ice is continuously selected. OE, CE = V_{IL}. 12. WE is HIGH for read cycle.

- 13. Address valid prior to or coincident with \overline{CE} transition LOW.


 14. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

 15. If \overline{CE} goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15]

Write Cycle No. 3 (WE Controlled, OE LOW)[15]

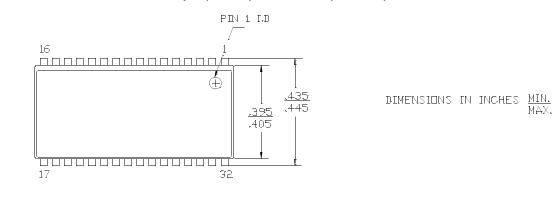
Truth Table

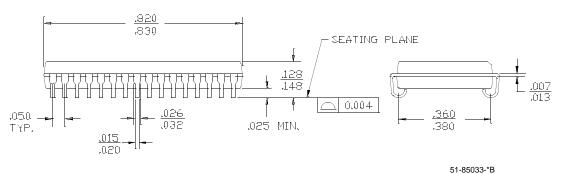
CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Note:

[+] Feedback

^{16.} During this period the I/Os are in the output state and input signals should not be applied.

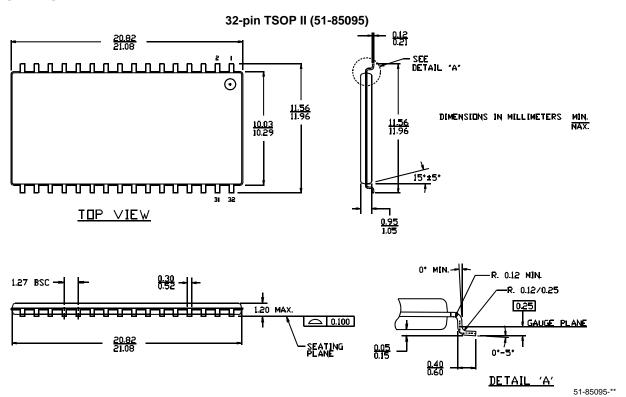



Ordering Information

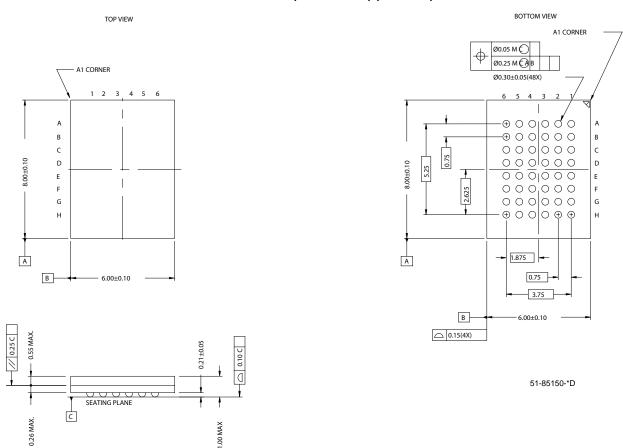
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1019CV33-10VC	51-85033	32-pin 400-Mil Molded SOJ	Commercial
	CY7C1019CV33-10ZXC	51-85095	32-pin TSOP II (Pb-Free)	
	CY7C1019CV33-10ZXI		32-pin TSOP II (Pb-Free)	Industrial
12	CY7C1019CV33-12VC	51-85033	32-pin 400-Mil Molded SOJ	Commercial
	CY7C1019CV33-12ZC	51-85095	32-pin TSOP II	
	CY7C1019CV33-12ZXC		32-pin TSOP II (Pb-Free)	
	CY7C1019CV33-12VI	51-85033	32-pin 400-Mil Molded SOJ	Industrial
	CY7C1019CV33-12BVXI	51-85150	48-ball VFBGA (Pb-Free)	
15	CY7C1019CV33-15VC	51-85033	32-pin 400-Mil Molded SOJ	Commercial
	CY7C1019CV33-15VXC	51-85033	32-pin 400-Mil Molded SOJ (Pb-Free)	
	CY7C1019CV33-15ZXC	51-85095	32-pin TSOP II (Pb-Free)	
	CY7C1019CV33-15ZXI	51-85095	32-pin TSOP II (Pb-Free)	Industrial

Package Diagrams

32-pin (400-Mil) Molded SOJ (51-85033)



Document #: 38-05130 Rev. *F Page 7 of 10


Package Diagrams (continued)

Package Diagrams (continued)

48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109245	12/16/01	HGK	New Data Sheet
*A	113431	04/10/02	NSL	AC Test Loads split based on speed
*B	115047	08/01/02	HGK	Added TSOP II Package and I Temp. Improved I _{CC} limits
*C	119796	10/11/02	DFP	Updated standby current from 5 nA to 5 mA
*D	123030	12/17/02	DFP	Updated Truth Table to reflect single Chip Enable option
*E	419983	See ECN	NXR	Added 48-ball VFBGA Package Added lead-free parts in Ordering Information Table Replaced Package Name column with Package Diagram in the Orderin Information Table
*F	493543	See ECN	NXR	Removed 8 ns speed bin from Product offering Added note #1 on page #2 Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information

Document #: 38-05130 Rev. *F