Current Transducer LA 25-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

> 2002/95/EC 16080

CE

		10000					
EI	ectrical data						
PN	Primary nominal r.m.s. current				25		
P	Primary current, measuring range			0	± 36		A
R _M	Measuring resistance @	$\mathbf{T}_{A} = 7$	′0°C ∣	T _A =	= 85°(С	
			R_{Mmin}	R _{Mmax}	${\bf R}_{\rm Mmin}$	R _{Mmax}	¢
	with ± 15 V	@ ± 25 At _{max}	100	320	100	315	Ω
		@ ± 36 At _{max}	100	190	100	185	Ω
I _{SN}	Secondary nominal r.m.s	. current		25			mA
κ _N	Conversion ratio				1-2-3-4-5:10		
vc	Supply voltage (± 5 %)			± 1	5		N
I _c	Current consumption				10 + I _s		
V _d	-	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn					k∖
V _b	R.m.s. rated voltage ¹⁾ , safe separation				600		
	b	asic isolation		170	00		V
A	ccuracy - Dynamic pe	rformance data					
Х	Typical accuracy $@$ I _{PN} , T _A = 25°C				± 0.5		
e	Linearity error			< 0	.2		%
				Ту	p N	/lax	
0	Offset current ²⁾ @ $I_p = 0$,	T _A = 25°C			05 ±		mΑ
ом	Residual current ³⁾ @ I_P =				05 ±		mΑ
от	Thermal drift of I_{o}	0°C +			06 ±		mΑ
		+ 25°C +		± 0.	10 ±		mΑ
		- 25°C +				0.5	mA
		- 40°C +	85°C	ļ	l±	1.2	mΑ
t,	Response time 4) @ 90 %	of I _{PN}		< 1			μs
di/dt	di/dt accurately followed			> 5	0		A/µs
f	Frequency bandwidth (- 1	l dB)		DC	150)	kHz
G	eneral data						
T _A	Ambient operating tempe	erature		- 40) + 8	5	°C
T _s	Ambient storage tempera				5+9	0	°C
R _P	Primary resistance per tu	$\mathbf{T}_{A} = 25^{\circ}C$		< 1			mΩ
•	• • • • • • • • • • • • • • • • • • •	A T 7000		4 4 6	`		0

I_{PN} = 5-6-8-12-25 A

Features

- · Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

060327/13 Page 1/2

Notes : 1) Pollution class 2

Mass

Standards

²⁾ Measurement carried out after 15 mn functioning

³⁾ The result of the coercive field of the magnetic circuit

@ **T**_A = 70°C

@ **T**_A = 85°C

 $^{\rm 4)}$ With a di/dt of 100 A/µs.

Secondary coil resistance

Isolation resistance @ 500 V, $T_{A} = 25^{\circ}C$

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

110

115

22

> 1500

EN 50178 : 1997

Ω

Ω

g

MΩ

LEM

 \mathbf{R}_{s}

R_{IS}

m

www.lem.com

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary	nominal	current maximum	Nominal output current	Turns ratio	Primary resistance	Primary insertion inductance	Recommended connections
turns	I _{PN} [A]	Ι _Ρ [Α]	I _{sn} [mA]	K _N	\mathbf{R}_{P} [m Ω]	L _P [µH]	
1	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 0 0-0 0 0 0 0-0 0 OUT 6 7 8 9 10
5	5	7	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- Fastening & connection of secondary
- Recommended PCB hole

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

- ± 0.2 mm 10 pins 0.7 x 0.6 mm
- 3 pins Ø 1 mm
- 1.2 mm

Remarks

- ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060327/13 Page 2/2