Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Notes: ${ }^{1)}$ Pollution class 2
${ }^{2)}$ Measurement carried out after 15 mn functioning
${ }^{3)}$ The result of the coercive field of the magnetic circuit
${ }^{4)}$ With a di/dt of $100 \mathrm{~A} / \mu \mathrm{s}$.

$I_{P N}=5-6-8-12-25 \mathrm{~A}$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LA 25-NP (in mm. $1 \mathrm{~mm}=0.0394$ inch)

Number of primary turns	Primary current		Nominal output current$\mathrm{I}_{\mathrm{SN}} \quad[\mathrm{~mA}]$	Turns ratio \mathbf{K}_{N}	$\begin{aligned} & \text { Primary } \\ & \text { resistance } \\ & \mathbf{R}_{\mathrm{p}} \quad[\mathrm{~m} \Omega] \end{aligned}$	Primary insertion inductance L_{p} [$\mu \mathrm{H}$]	Recommended connections		
	$\begin{aligned} & \text { nominal } \\ & \mathrm{I}_{\mathrm{PN}} \quad[\mathrm{~A}] \end{aligned}$	maximum $I_{P} \quad[A]$							
1	25	36	25	1/1000	0.3	0.023			IN
2	12	18	24	2/1000	1.1	0.09		$\begin{array}{llllll} 5 & 4 & 3 & 2 & 1 & 1 \\ 0-9 & 0-0-0 & 1 \\ 0-0 & 0-0-0 \\ 6 & 7 & 8 & 9 & 10 \end{array}$	in
3	8	12	24	3/1000	2.5	0.21		5432111 $0-0,0,0$ $0-\infty \quad 0 \quad 0-0$ UT 678910	in
4	6	9	24	4/1000	4.4	0.37		5 4 3 2 1 1 0 0 -9 9 0 0 0 - 0 0 6 7 8 9 10	IN
5	5	7	25	5/1000	6.3	0.58		5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 6 7 8 9 10	IN

Mechanical characteristics

- General tolerance
- Fastening \& connection of primary
- Fastening \& connection of secondary
- Recommended PCB hole $\pm 0.2 \mathrm{~mm}$
10 pins $0.7 \times 0.6 \mathrm{~mm}$
3 pins $\varnothing 1 \mathrm{~mm}$
1.2 mm

Remarks

- \mathbf{I}_{S} is positive when \mathbf{I}_{p} flows from terminals $1,2,3,4,5$ to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

