

Current Transducer LA 25-NP/SP14

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 0.25 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		0.25		Α
I _P	Primary current, measuring range		0 ± 0.36		Α
\mathbf{R}_{M}	Measuring resistance		$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	\mathbf{R}_{Mmax}	
	with ± 15 V	@ $\pm 0.25 A_{max}$	100	320	Ω
		@ ± 0.36 A max	100	190	Ω
I_{SN}	Secondary nominal r.m.s. current		25		mΑ
K_{N}	Conversion ratio		100 : 1000		
$V_{\rm c}$	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		10 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5		kV
V _b	R.m.s. rated voltage 1), safe separation		600		V
b	b	asic isolation	1700		V

Accuracy - Dynamic performance data

X e ∟	Typical accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.5 < 0.2		% %
			Тур	Max	
I_{\circ}	Offset current 2) @ $I_p = 0$, $T_A = 25$ °C		± 0.05	Max ± 0.15	mΑ
I _{OM}	Residual current 3) @ $I_p = 0$, after an		± 0.05		mΑ
I _{OT}	Thermal drift of \mathbf{I}_{\odot}	- 10°C + 70°C	± 0.10	± 0.35	mΑ
t _r	Response time $^{4)}$ @ 90 % of $\mathbf{I}_{\text{P max}}$		< 1		μs
f	Frequency bandwidth (- 1 dB)		DC 1	50	kHz

General data

т	Ambient operating temperature	- 10 + 70	°C
T _A	Ambient storage temperature	- 25 + 85	°C
T _s	Primary coil resistance @ T_{Δ} = 25°C	< 745	mΩ
R _P		110	
R _s	Secondary coil resistance @ T _A = 70°C		Ω
L _P	Primary insertion inductance	496	μH
R_{IS}	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$
m	Mass	22	g
	Standards 5)	EN 50178	

Notes: 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functionning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- 5) A list of corresponding tests is available

Features

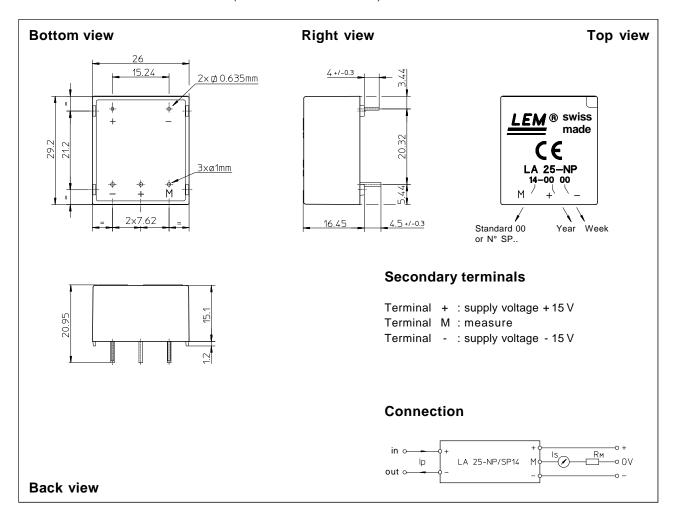
- Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_{PN} = 0.25 \text{ A}$
- $I_D = 0.. \pm 0.36 \text{ A}$
- $\mathbf{K}_{N} = 100 : 1000$
- $T_A = -10^{\circ}C.. + 70^{\circ}C.$

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

990126/2

Dimensions LA 25-NP/SP14 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary 2 pins

0.635 x 0.635 mm Fastening & connection of secondary 3 pins Ø 1 mm

• Recommended PCB hole 1.2 mm

Remark

• I_s is positive when I_p flows from terminal + to terminal -.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.