## 1500 to 5400-Watt Front-End Power Solutions


(1500 or 1800 Watts)

Front-Ends are available using either a front-mounted AC receptacle (FNP models) or a rear-mounted AC connector (FXP models).
$I^{2} C$ Management Software: All FNP/FXP front-ends can be controlled via Power-One's GUI-driven $I^{2} \mathrm{C}$ Management software and an $I^{2} \mathrm{C}$-to-USB interface (P/N HZZ02002G). An $I^{2} C$ Programming Manual describes the complete range of parameters that can be programmed to the FNP and FXP1500/1800 front-ends. This manual is available by searching on "FNP1500" at www.power-one.com.


## Description

The FNP/FXP-1500/1800 are power-factor-corrected (PFC) front-ends which (depending on model type) provide a 12 VDC or 48 VDC ( 1500 or 1800 watt) output, and can be used in hot-swap redundant systems. Their very small dimensions allow configuration of up to three units in a 1 U rack. The FNP front-ends have a front-mounted AC receptacle and the FXP front-ends have a rear-mounted AC connector. The highly-efficient thermal design with internal-fan cooling permits their use over wide temperature ranges and provides very-high reliability.
Status information is provided with front panel LEDs, logic signals, and via an $I^{2} \mathrm{C}$ management interface. In addition, the $I^{2} \mathrm{C}$ bus can enable the power supply, set high fan speed, adjust the output voltage, and set the output current limit. The FNP and FXP-1500/1800's meet international safety standards and display the CE-Mark for the European Low Voltage Directive (LVD).

Power-shelf solutions provide rectification, system management, and power distribution, while maintaining high reliability and offering flexibility for future expansion. The power shelves can be configured with up to three hot-swappable 1500 or 1800 -watt AC-DC front-ends.

Changing the Shape of Power
Model Selection

| Model | Input voltage VAC auto selected ${ }^{1}$ | Output 1 |  | Output 2 |  | Rated power W | Compatible Shelf ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & V_{\text {o1 nom }} \\ & \text { VDC } \\ & \hline \end{aligned}$ | $\begin{aligned} & I_{01 \text { max }} \\ & \text { ADC } \\ & \hline \end{aligned}$ | $\begin{aligned} & V_{\text {o2 nom }} \\ & \text { VDC } \\ & \hline \end{aligned}$ | $I_{02 \text { max }}$ |  |  |
| $\begin{gathered} \text { FNP1500-12G } \\ \& \\ \text { FXP1500-12G } \end{gathered}$ | $\begin{gathered} 108-264 \\ 85-105 \end{gathered}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{gathered} 129 @ 11.64 \mathrm{~V} \\ 101.8 @ 11.78 \mathrm{~A} \end{gathered}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1512 \\ & 1212 \end{aligned}$ | $\begin{gathered} \text { FNR-3-12G \& } \\ \text { FXR-3-12G } \end{gathered}$ |
| $\begin{gathered} \text { FNP1500-48G } \\ \& \\ \text { FXP1500-48G } \end{gathered}$ | $\begin{gathered} 105-264 \\ 85-105 \end{gathered}$ | $\begin{aligned} & 48 \\ & 48 \end{aligned}$ | $\begin{aligned} & 32.2 \\ & 25.4 \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1512 \\ & 1212 \end{aligned}$ | FNR-3-48G \& FXR-3-48G |
| $\begin{gathered} \hline \text { FNP1800-48G } \\ \& \\ \text { FXP1800-48G } \end{gathered}$ | $\begin{gathered} 180-264 \\ 105-180 \\ 85-105 \end{gathered}$ | $\begin{aligned} & 48 \\ & 48 \\ & 48 \end{aligned}$ | $\begin{aligned} & 39.2 \\ & 32.2 \\ & 25.4 \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1812 \\ & 1512 \\ & 1212 \end{aligned}$ | $\begin{gathered} \text { FNR-3-48G \& } \\ \text { FXR-3-48G } \end{gathered}$ |

${ }^{1}$ The available output power is automatically adjusted depending on the input voltage.
${ }^{2} 1 \mathrm{U}$ standard racks are available from Power-One. See the Rack (Power Shelf) section of this data sheet for configurations and details.

## Absolute Maximum Ratings

Stress in excess of the absolute maximum ratings may cause performance degradation, adversely effect long-term reliability, or cause permanent damage to the converter.

| Parameter | Conditions/Description | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Input voltage | Continuous Transient, 60 ms max. |  | $\begin{aligned} & 264 \\ & 300 \\ & \hline \end{aligned}$ | VAC <br> VAC |
| Operating ambient temperature | $V_{\mathrm{i} \text { min }}-V_{\mathrm{i} \text { max }}, I_{\mathrm{onom}}$, cooling by internal fan <br> @ 100 \% load <br> @ 50 \% load | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 50 \\ & 70 \end{aligned}$ | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$ |
| Storage temperature | Non-Operating | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

## Environmental, Mechanical, \& Reliability Specifications

| Parameter | Conditions/Description | Min | Nom | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Altitude | Operating |  |  | 10 k |  |
|  | Non-Operating | ASL Ft. |  |  |  |
| ASL Ft. |  |  |  |  |  |$|$

## Safety Specifications

Maximum electric strength testing is performed in the factory according to EN 550116, IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Power-One will not honor any warranty claims resulting from electric strength field tests.

| Parameter | Conditions/description | Min | Nom | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Agency approvals | UL60950, (UL) CSA 60950 (cUL), |  |  |  |  |
|  | EN 60950(TUU), CE Mark for LVD |  |  |  |  |

${ }^{1}$ Subassemblies are pre-tested with 4.2 kVDC in accordance with EN50116 and IEC/EN60950.

## EMC Specifications

| Parameter | Description | Criterion |
| :--- | :---: | :---: |
| Electrostatic discharge | IEC/EN 61000-4-2, level 4 | Performance criterion B |
| Electromagnetic field | IEC/EN 61000-4-3, level 3 | Performance criterion A |
| Electrical fast transients/burst | IEC/EN 61000-4-4, level 3 | Performance criterion B |
| Surge | IEC/EN 61000-4-5, level 3 | Performance criterion B |
| Voltage dips and interruptions | IEC/EN 61000-4-11 | Performance criterion B or better |
| RF conducted immunity | IEC/EN 61000-4-6 | 10 VAC, AM 80 \%, 1 kHz <br> Performance criterion A |
| Emissions conducted | CISPR 22/EN 55022/EN 61204 | Class B |
| Emissions radiated | CISPR 22/EN 55022/EN 61204 | Class A |
| Harmonics | IEC/EN 61000-3-2 | Class B |
| Voltage fluctuation and flicker | IEC/EN 61000-3-3 | Pass |
| Voltage sag | SEMI F47-0200 (High Line 230V) | Pass |

## Input Specifications

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

| Parameter | Conditions/description | Min | Nom | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input voltage |  | 85 | 230 | 264 | VAC |
| Input frequency |  | 47 | 50/60 | 63 | Hz |
| Turn-on input voltage | Ramping up | 79 | - | 85 | VAC |
| Turn-off input voltage | Ramping down | 70 | - | 78 | VAC |
| Inrush current limitation | 115/230 VAC acc. ETS 300 132-1 $<100 \mathrm{~ms}$ |  |  | 50 | $\mathrm{A}_{\mathrm{pk}}$ |
| Hold-up time | After last AC line peak , $V_{\mathrm{i}}=230 \mathrm{VAC}, P_{\text {onom }}$ | 20 |  |  | ms |
| Power factor | $V_{\text {i nom }}, I_{\text {o nom }}$ | 0.95 |  |  | W/VA |
| Efficiency | $V_{\mathrm{i}}=230 \mathrm{VAC}, I_{\text {o nom }}, T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | $89{ }^{1}$ | 90 |  | \% |
| Max input current |  |  |  | 20 | $\mathrm{A}_{\text {rms }}$ |
| Input connector | 16A - 20 A / 250 VAC; according to IEC320 C19 |  |  |  |  |

${ }^{1} 87 \%$ for FNP1500-12

## Input Connector Description (FXP1500/1800)

| Protection Earth | P1 | PE |
| :--- | :---: | :---: |
| Phase | P2 | L |
| Neutral | P3 | N |

Output Specifications, 12Vout Models
Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

| Parameter |  | Conditions/Description | Min | Nom | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal output voltage |  | $I_{0}=64.5 \mathrm{~A}$ |  | 12 |  | VDC |
| Output voltage set point accuracy |  | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{VAC}, I_{01}=65.5 \mathrm{~A}, T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ \text { (Factory setting) } \end{gathered}$ | $\begin{aligned} & 11.93 \\ & -0.42 \end{aligned}$ | 12 | $\begin{array}{r} 12.05 \\ +0.42 \\ \hline \end{array}$ | VDC \% $V_{01 \text { nom }}$ |
| Output voltage trimming |  | Adjustable via $I^{2} C\left(V_{01 \text { set }}\right)$ <br> Adjustable via Margin pin (R input) | $\begin{gathered} 7 \\ 6.2 \end{gathered}$ | 12 | $\begin{gathered} 13 \\ V_{01 \text { set }} \end{gathered}$ | $\begin{aligned} & \text { VDC } \\ & \text { VDC } \end{aligned}$ |
| Nominal current output 1 | FNP1500-12G | $I_{01 \text { nom }} @ V_{i}=108$ VAC - 264 VAC, $P_{o} 1.5 \mathrm{~kW}$ <br> $l_{\mathrm{o} 1 \mathrm{nom}} @ V_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC}, P_{o} 1.2 \mathrm{~kW}$ |  | $\begin{aligned} & 129.0 \\ & 101.8 \end{aligned}$ | 129.0 | $\begin{aligned} & \text { ADC } \\ & \text { ADC } \end{aligned}$ |
| Current limit output 1 | FNP1500-12G | $\begin{aligned} & I_{01 \text { max }}^{@} V_{\mathrm{i}}=108 \mathrm{VAC}-264 \mathrm{VAC} \text { droop hiccup } \\ & I_{01 \text { max }}^{@} V_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC} \text { droop hiccup } \end{aligned}$ |  | $\begin{gathered} 147.4 \\ 120 . .2 \end{gathered}$ |  | $\begin{aligned} & \text { ADC } \\ & \text { ADC } \end{aligned}$ |
| Nominal current output 2 |  | $I_{\text {o2 nom }}$ @ Vi $=85 \mathrm{VAC}-265 \mathrm{VAC}, P_{0} 12 \mathrm{~W}$ |  | 1.0 | 1.0 | ADC |
| Current limit output 2 |  | $I_{02 \text { max }} @ V_{i}=85 \mathrm{VAC}-265 \mathrm{VAC}$ |  | 1.5 |  | ADC |
| Static line regulation output 1 |  | $V_{\text {i min }}-V_{\text {i max }}, 50 \% I_{\text {onom }}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ | -0.5 |  | 0.5 | \% $V_{\text {onom }}$ |
| Static load regulation output 1 (droop characteristic) | FNP1500-12G | $V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{onom}}$ <br> Full load to no load [0.. 129 A ] at $V_{o}$ set $=12 \mathrm{~V}$ $\mathrm{d} \mathrm{V}_{\mathrm{o} 1}$ over the setting range [7 to 13 V ] | $\begin{aligned} & 11.64 \\ & -0.36 \end{aligned}$ | $\begin{gathered} -5.58 \\ 12 \end{gathered}$ | $\begin{array}{r} 12.36 \\ +0.36 \end{array}$ | mV/A <br> VDC <br> VDC |
| Static load regulation output 2 (droop characteristic) |  | Full load to no load @ Vi = $85 \mathrm{VAC}-265 \mathrm{VAC}$ |  | 0.4 |  | VDC |
| Dynamic <br> load <br> regulation |  | Load change $50 \% \leftrightarrow 100 \% I_{\text {o nom }}, \mathrm{dl}_{0} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$ Voltage deviation (droop + over- or undershoot) |  |  |  |  |
|  | FNP1500-12G |  | -2 |  | 2 | \% $V_{\text {onom }}$ |
|  | FNP1500-12G | Max. recovery time to within $1 \%$ of $V_{01}$ nom |  |  | 400 | $\mu \mathrm{s}$ |
| Current <br> Share |  | Difference in current between two units for $V_{01}$ above 10 \% load. |  |  |  |  |
|  | FNP1500-12G |  |  | 12.9 |  | ADC |
| Start-up time |  | Time required for output within regulation after initial application of AC-input ( $V_{\mathrm{inom}}, I_{o}$ nom $)$ <br> after removal of inhibit ( $V_{\text {inom }}, I_{\text {o nom }}$ ) |  | 100 | 1.5 | $\begin{gathered} \mathrm{s} \\ \mathrm{~ms} \end{gathered}$ |
| Output voltage ripple and noise (Filter 10nF/10 $\mu \mathrm{F}$ ) |  | $V_{\text {inom }}, I_{\text {o nom, }} 20 \mathrm{MHz}$ bandwidth $\begin{aligned} & V_{01} \\ & V_{02} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 120 \\ & 120 \\ & \hline \end{aligned}$ | $\begin{aligned} & m V_{p p} \\ & m V_{p p} \end{aligned}$ |
| Remote sense |  | Total compensation for cable losses |  |  | 500 | mV |

Output Specifications, 48Vout Models
Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

| Parameter |  | Conditions/Description | Min | Nom | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal output voltage Vo1 |  | $I_{0}=16.1 \mathrm{~A}$ |  | 48 |  | VDC |
| Nominal output voltage Vo2 |  | $I_{0}=0.5 \mathrm{~A}$ |  | 12 |  | VDC |
| Output voltage set point accuracy |  | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{VAC}, I_{01}=16.1 \mathrm{~A}, T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (47.8-48.2 \mathrm{VDC}) \end{gathered}$ | -0.5 |  | +0.5 | \% $V_{01 \text { nom }}$ |
| Output voltage trimming (via $\mathrm{I}^{2} \mathrm{C}$ or with external resistor) |  | Adjustable (44.16 to 51.84 VDC) | -8 |  | +8 | \% $V_{\text {o1 nom }}$ |
| Nominal current output 1 | FNP/FXP1500-48G | $I_{01 \text { nom }} @ V_{i}=105$ VAC - 264 VAC, $P_{o} 1.5 \mathrm{~kW}$ <br> $I_{01 \text { nom }} @ V_{i}=85 \mathrm{VAC}-105 \mathrm{VAC}, P_{o} 1.2 \mathrm{~kW}$ |  | $\begin{aligned} & 32.2 \\ & 25.4 \end{aligned}$ |  | $\begin{aligned} & \mathrm{ADC} \\ & \mathrm{ADC} \end{aligned}$ |
|  | FNP/FXP1800-48G | $\begin{array}{ll} I_{01 \text { nom }} @ V_{i}=180 \mathrm{VAC}-264 \mathrm{VAC}, & P_{o} 1.8 \mathrm{~kW} \\ I_{01 \text { nom }} @ & V_{\mathrm{i}}=105 \mathrm{VAC}-180 \mathrm{VAC}, \\ I_{0} 1.5 \mathrm{~kW} \\ I_{01 \text { nom }} @ & V_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC}, \\ \hline & P_{o} 1.2 \mathrm{~kW} \end{array}$ |  | $\begin{aligned} & 39.2 \\ & 32.2 \\ & 25.4 \end{aligned}$ | 39.2 | $\begin{aligned} & \text { ADC } \\ & \text { ADC } \\ & \text { ADC } \end{aligned}$ |
| Current limit output 1 | FNP/FXP1500-48G | $I_{01 \max } @ V_{i}=105 \mathrm{VAC}-264 \mathrm{VAC}$ $I_{01 \max } @ V_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC}$ droop hiccup droop hiccup |  | $\begin{gathered} 36.8 \\ 30 \end{gathered}$ |  | $\begin{aligned} & \text { ADC } \\ & \text { ADC } \end{aligned}$ |
|  | FNP/FXP1800-48G | $I_{01 \text { max }} @ V_{\mathrm{i}}=180 \mathrm{VAC}-264 \mathrm{VAC}$ droop hiccup <br> $I_{01 \text { max }} @ V_{\mathrm{i}}=105 \mathrm{VAC}-180 \mathrm{VAC}$ droop hiccup <br> $I_{01 \max } @ V_{\mathrm{i}}=85 \mathrm{VAC}-105 \mathrm{VAC}$ droop hiccup |  | $\begin{gathered} 43.8 \\ 36.8 \\ 30 \end{gathered}$ |  | $\begin{aligned} & \text { ADC } \\ & \text { ADC } \\ & \text { ADC } \end{aligned}$ |
| Nominal current output 2 |  | $I_{\text {o2 nom }}$ @ $\mathrm{Vi}=85 \mathrm{VAC}-264 \mathrm{VAC}, P_{\circ} 12 \mathrm{~W}$ |  | 1.0 | 1.0 | ADC |
| Current limit output 2 |  | $I_{02 \text { max }} @ V_{\mathrm{i}}=85 \mathrm{VAC}-264$ VAC |  | 1.5 |  | ADC |
| Static line regulation output 1 |  | $V_{\text {i min }}-V_{\text {imax }}, 50 \% I_{\text {onom }}$ | -0.5 |  | 0.5 | \% $V_{\text {onom }}$ |
| Static load regulation output 1 (droop characteristic) | FNP1500-48G | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{o} \text { nom }} \\ V_{\mathrm{o}} \text { : full load (32.2 ADC) to no load } \end{gathered}$ | 46.54 | $\begin{gathered} 90.1 \\ 48 \end{gathered}$ | 49.44 | mV/A <br> VDC |
|  | FXP1500-48G | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{o} \text { nom }} \\ V_{\mathrm{o}} \text { : full load (32.2 ADC) to no load } \end{gathered}$ | 46.65 | $\begin{gathered} \hline 83.5 \\ 48 \\ \hline \end{gathered}$ | 49.34 | mV/A VDC |
|  | FNP1800-48G | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{o} \text { nom }} \\ V_{\mathrm{o}} \text { : full load (32.2 ADC) to no load } \end{gathered}$ | 45.91 | $\begin{gathered} 90.1 \\ 48 \end{gathered}$ | 49.44 | mV/A <br> VDC |
|  | FXP1800-48G | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{onom}} \\ V_{\mathrm{o}}: \text { full load (32.2 ADC) to no load } \end{gathered}$ | 46.07 | $\begin{gathered} 83.5 \\ 48 \end{gathered}$ | 49.34 | mV/A <br> VDC |
| Static load regulation output 2 (droop characteristic) |  | $\begin{gathered} V_{\mathrm{i}}=230 \mathrm{~V}, 5-100 \% I_{\mathrm{o} \text { nom }} \\ V_{\mathrm{o}} \text { : full load (32.2 ADC) to no load } \end{gathered}$ |  | 0.4 |  | VDC |
| Dynamic <br> load <br> regulation |  | Load change $50 \% \leftrightarrow 100 \% I_{\text {o nom }}, \mathrm{dl}_{0} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$ Voltage deviation (droop + over- or undershoot) |  |  |  | $\% V_{\text {onom }}$ |
|  | FNP/FXP1500-48G |  | -5 |  | 5 | \% $V_{\text {onom }}$ |
|  | FNP/FXP1800-48G |  | -5.7 |  | 5.7 | $\% V_{\text {onom }}$ |
|  | All models | Max. recovery time to within $1 \%$ of $V_{01 \text { nom }}$ |  |  | 400 | $\mu \mathrm{S}$ |
| Current Share |  | Difference in current between two units for $V_{01}$ above 10 \% load. |  |  |  |  |
|  | FNP1500-48G |  |  |  | 3.2 | ADC |
|  | FXP1500-48G |  |  |  | 5.7 | ADC |
|  | FNP/FXP1800-48G |  |  |  | 8 | ADC |
| Start-up time |  | Time required for output within regulation after initial application of AC-input ( $V_{i \text { nom }}, I_{\text {o nom }}$ ) after removal of inhibit <br> ( $\left.V_{\text {i nom }}, I_{\text {o nom }}\right)$ |  | 100 | 1.5 | $\begin{gathered} \mathrm{s} \\ \mathrm{~ms} \end{gathered}$ |
| Output voltage ripple and noise (Filter $10 \mathrm{nF} / 10 \mu \mathrm{~F}$ ) |  | $\begin{gathered} V_{\text {i nom }}, I_{\text {onom }}, \\ 20 \mathrm{MHz} \text { bandwidth } \\ V_{01} \\ V_{\mathrm{o} 2} \end{gathered}$ |  |  | $\begin{aligned} & 480 \\ & 120 \end{aligned}$ | $\begin{aligned} & \mathrm{mV}_{\mathrm{pp}} \\ & \mathrm{mV} \mathrm{~V}_{\mathrm{pp}} \end{aligned}$ |
| Remote sense |  | Total compensation for cable losses |  |  | 500 | mV |

## Protection

| Parameter | Conditions/Description | Min | Nom | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input fuse | Not user accessible | 25A, fast blow |  |  |  |
| Inrush current limitation |  | With NTCs |  |  |  |
| Output |  | No-load -, short circuit - and overload proof |  |  |  |
| Overvoltage protection latching ${ }^{1}$ | Tracking Absolute | 115 |  | $\begin{aligned} & 122 \\ & 59.5 \end{aligned}$ | $\% V_{\text {onom }}$ $\mathrm{V}$ |
| Overtemperature protection | Automatic power shutdown at $T_{\text {c }}$ |  | 95 |  | ${ }^{\circ} \mathrm{C}$ |

${ }^{1}$ Remove input voltage to reset.

## Control

Specification is valid for input voltage, load, and temperature ranges, unless otherwise stated.

| Parameter | Conditions/Description |
| :---: | :---: |
| Status Indication | LEDs: DC OK (green), AC OK (green); fan fail and overtemperature (amber) |
| $1^{2} \mathrm{C}$ digital bus | Monitors alarm functions and sets parameters |
| PS present pin | Contact closure to logic ground ( internal pull-down resistor of $1 \mathrm{k} \Omega$ ) |
| PS remote shutdown / Inhibit pin | TTL compatible signal, inhibited when open contact, high or at TTL logic "1" Signal referenced to logic return (LRTN) |
| Power supply OK ( $\left.\mathrm{l}^{2} \mathrm{C}\right)^{*}$ | AC OK \& DC OK \& no overcurrent \& no overtemperature \& fans working |
| DC current fail ( $\left.{ }^{2} \mathrm{C}\right)^{*}$ | Overcurrent on $I_{01}$ |
| AC fail / Power down warning $\left(I^{2} C \& O C\right)^{*}$ | Provides a warning that the input power has failed at least 5 ms before the output falls out of regulation ( $<90 \% \mathrm{~V}_{01 \text { set }}$ ). <br> Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). AC fail will go high or open during power fail condition and will go low when input is within the operating range. A Power Fail warning will turn off the green AC OK LED. |
| DC fail / Output voltage fault $\left(I^{2} C \& O C\right)^{*}$ | Internal undervoltage and overvoltage supervision of $V_{01}$. Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). DC fail will go high or open if $V_{01}$ is $<90 \%$ or $>110 \%$ of $V_{01 \text { set }}$, measured in front of the ORing FETs. A green LED on the front panel indicates normal operation. The LED will flash if in parallel operation $V_{01}$ is ok, but the unit is disabled. |
| Temperature warning ( $\mathrm{I}^{2} \mathrm{C}$ \& OC$)^{1}$ | $I^{2} \mathrm{C}$ critical temperature warning: Indicates that the operating temperature has reached [ $T_{\text {shut-down }}-10 \mathrm{~K}$ ] <br> $I^{2} \mathrm{C}$ \& $O C$ overtemperature warning: Indicates if the unit is in overtemperature shutdown. Open collector signal with 20 mA pull-down capability, referenced to logic return (LRTN). The OC-output will go low 100 ms before an overtemperature condition shuts down the unit. An amber LED on the front panel indicates overtemperature or fan fail. |
| DC voltage monitoring ( $\left.\mathrm{I}^{2} \mathrm{C}\right)^{1}$ | Monitors the voltage $V_{01}$ at the output connector. Accuracy $\pm 0.45 \mathrm{~V}$ over setting range, temperature and load. |
| DC current monitoring ( $\left.\mathrm{I}^{2} \mathrm{C}\right)^{1}$ | Monitors the output current $I_{01}$ : Accuracy $\pm 0.4 \mathrm{~A}$ over the load range. |
| DC voltage trimming $\left(I^{2} \mathrm{C}\right.$ or external resistor) ${ }^{1}$ | Output voltage trimming $V_{01}: \pm 8 \%$ of $V_{0 \text { set }}$ <br> Setting accuracy over $\mathrm{I}^{2} \mathrm{C}: \pm 50 \mathrm{mV}$ at Vo nom, $\pm 150 \mathrm{mV}$ over setting range |
| Fan speed control ( $\left.{ }^{2} \mathrm{C}\right)^{1}$ | Two fan speed levels automatically set depending on the internal temperature. The fan speed can be set to full speed or automatic control. |
| Fan OK ( ${ }^{2} \mathrm{C}$ \& OC) ${ }^{1}$ | Indicates if the fans are operating or have failed. |
| Synch. startup pin | Overcurrent signal which can be used for synchronous startup of units in parallel or to recover from an overload condition. (See application note). |

${ }^{1}$ Provided over the $I^{2} \mathrm{C}$ interface or as an open collector signal on the output connector (OC).
For detailed Information on $I^{2} C$, please see document "FNP1500-I2C-controlling.pdf" or use the Power-One $I^{2} C$ Management Interface document.

Output Connector Pinning and Signal Specification (12V Models)

| Output Connector Description | Pin <br> Location | Type | Low level High level | U max I max |
| :---: | :---: | :---: | :---: | :---: |
| Overtemperature / Fan Fail | U1 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} \hline<0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} \hline 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| AC Fail / Power down warning | U2 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} \hline 0.4 \mathrm{~V} \text { @ } 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| Power Supply Present | U3 | Resistor (1 k $)^{\text {) connected to logic GND }}$ | Open Pull up | $\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$ |
| DC Fail / Output voltage fault | U4 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| Internal ground | U5 | Internal ground ( $\mathrm{V}_{01}$ - line before the output filter). Do not connect the internal grounds in systems with several units. | - | - |
| ADDR0, $I^{2} \mathrm{C}$ address bus | T1 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR1, $I^{2} \mathrm{C}$ address bus | T2 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR2, $I^{2} \mathrm{C}$ address bus | T3 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR3, $I^{2} \mathrm{C}$ address bus | T4 | DIP switch or wire to internal ground, Internally pull up to 5 V ( $10 \mathrm{k} \Omega$ ). | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR4, $I^{2} \mathrm{C}$ address bus | T5 | DIP switch or wire to internal ground, Internally pull up to 5 V (10 k $\Omega$ ). | Switch closed Switch open | $5 \mathrm{~V}$ |
| DATA, $I^{2} \mathrm{C}$ data line | S1 | $I^{2} \mathrm{C}$ compatible signal referenced to logic GND | 5 V or 3.3 V logic | - |
| CLOCK, ${ }^{2}$ C clock line | S2 | $I^{2} \mathrm{C}$ compatible signal referenced to logic GND | 5 V or 3.3 V logic | - |
| $V_{02}+$ output | S3 | Auxiliary power pin, insulated from main output | - | - |
| $V_{\text {o2 }}$ - output | S4 | Auxiliary ground pin, insulated from main output | - | - |
| Logic ground | S5 | Internally connected over $10 \Omega$ to Auxiliary GND. Wire separately form Auxiliary - and main output GND to minimize noise on signals and $\mathrm{I}^{2} \mathrm{C}$. Leave open if not used. | - | - |
| Output inhibit | R1 | PS active when pulled low (DC-DC stage off when left open) Referenced to logic GND | $\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \hline 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$ |
| $V$ sense + | R2 | Open or connected to $V_{01}+$ at the load (Internally connected to $V_{01}+$ over $100 \Omega$ ) |  | $\begin{gathered} \mathrm{dU}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$ |
| V sense - | R3 | Open or connected to $V_{01}$ - at the load (Internally connected to $V_{01}$ - over $100 \Omega$ ) |  | $\begin{gathered} \mathrm{dU}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$ |
| Output margin | R4 | Open or connected over resistor to internal ground. Do not connect the margin pins in systems with several units. |  | $3 \mathrm{VDC}$ |
| Synch. Startup | R5 | Open or connected to synch startup circuit, referenced to $\mathrm{V}_{01}$ - at the output connector |  | $\begin{aligned} & 12 \mathrm{~V} \\ & 3 \mathrm{~mA} \end{aligned}$ |
| $V_{01}+$ output | $\begin{gathered} \text { P2, P4, P6, } \\ \text { P8, P10, P12 } \end{gathered}$ | Main output + pins | - | - |
| $V_{01}$ - output | $\begin{aligned} & \text { P1, P3, P5, } \\ & \text { P7, P9, P11 } \end{aligned}$ | Main output - pins | - | - |

Output Connector Pinning and Signal Specification (48V Models)

| Output Connector Description | Pin Location | Type | Low level High level | $V_{\text {max }}$ 1 max |
| :---: | :---: | :---: | :---: | :---: |
| Overtemperature / Fan Fail | U1 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| AC Fail/ <br> Power down warning | U2 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} <0.4 \mathrm{~V} @ 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| Power Supply Present | U3 | Resistor ( $1 \mathrm{k} \Omega$ ) connected to logic GND | Open Pull up | $\begin{gathered} 10 \mathrm{~V} \\ 10 \mathrm{~mA} \end{gathered}$ |
| DC Fail / Output voltage fault | U4 | OC-output, protected by 16 V Zener diode and a $10 \Omega$ resistor in series, referenced to logic GND | $\begin{gathered} <0.4 \mathrm{~V} \text { @ } 20 \mathrm{~mA} \\ \text { Pull up } \end{gathered}$ | $\begin{gathered} 15 \mathrm{~V} \\ 20 \mathrm{~mA} \end{gathered}$ |
| Internal ground | U5 | Internal ground ( $\mathrm{V}_{01}-$ line before the output filter). Do not connect the internal grounds in systems with several units. | - | - |
| ADDRO, $\mathrm{I}^{2} \mathrm{C}$ address bus | T1 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR1, $\mathrm{I}^{2} \mathrm{C}$ address bus | T2 | DIP switch or wire to internal ground, Internally pull up to 5 V ( $10 \mathrm{k} \Omega$ ). | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR2, $I^{2} \mathrm{C}$ address bus | T3 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR3, $I^{2} \mathrm{C}$ address bus | T4 | DIP switch or wire to internal ground, Internally pull up to $5 \mathrm{~V}(10 \mathrm{k} \Omega)$. | Switch closed Switch open | $5 \mathrm{~V}$ |
| ADDR4, $I^{2} \mathrm{C}$ address bus | T5 | DIP switch or wire to internal ground, Internally pull up to 5 V ( $10 \mathrm{k} \Omega$ ). | Switch closed Switch open | $5 \mathrm{~V}$ |
| DATA, $I^{2} \mathrm{C}$ data line | S1 | $I^{2} \mathrm{C}$ compatible signal referenced to logic GND | 5 V or 3.3 V logic | - |
| CLOCK, ${ }^{2} \mathrm{C}$ clock line | S2 | $I^{2} \mathrm{C}$ compatible signal referenced to logic GND | 5 V or 3.3 V logic | - |
| Auxiliary power +12 V | S3 | $\mathrm{V}_{\text {o2 }}+$ output, insulated from main output | - | - |
| Auxiliary power ground | S4 | $\mathrm{V}_{\mathrm{o} 2}$ - output, insulated from main output | - | - |
| Logic ground | S5 | Internally connected over $10 \Omega$ to Auxiliary GND. Wire separately form Auxiliary - and main output GND to minimize noise on signals and $I^{2} C$. Leave open if not used. | - | - |
| Output inhibit | R1 | PS active when pulled low (DC-DC stage off when left open) Referenced to logic GND | $\begin{aligned} & <0.8 \mathrm{~V} \\ & >2.0 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 10 \mathrm{~V} \\ 3.5 \mathrm{~mA} \end{gathered}$ |
| $\checkmark$ sense + | R2 | Open or connected to $V_{01}+$ at the load (Internally connected to $V_{01}+$ over $100 \Omega$ ) |  | $\begin{gathered} \mathrm{dV}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$ |
| V sense - | R3 | Open or connected to $V_{01}$ - at the load (Internally connected to $V_{01}$ - over $100 \Omega$ ) |  | $\begin{gathered} \mathrm{dV}<3 \mathrm{~V}_{\mathrm{pp}} \\ 30 \mathrm{~mA} \end{gathered}$ |
| Output margin | R4 | Open or connected to internal ground $\left(+8 \% V_{01}\right)$ or $V_{\text {senset }}\left(-8 \% V_{01}\right)$ Do not connect the margin pins in systems with several units. |  | $60 \mathrm{~V}$ |
| Synch. Startup | R5 | Open or connected to synch startup circuit, referenced to $\mathrm{V}_{01}$ - at the output connector |  | $\begin{gathered} 12 \mathrm{~V} \\ 2 \mathrm{~mA} \end{gathered}$ |
| $V_{01}$ - | P1, P3, P5 | Main output - pins | - | - |
| $V_{01}+$ | P2, P4, P6 | Main output + pins | - | - |

## Fulcrum:

The handle has been designed to allow easy plug-in and -out in a rack system. The handle (lever) fits into a counter piece (fulcrum) which is fixed to the bottom of the rack. During the plug, the fulcrum holds the unit down and guides it towards the output connector. The Power-One part number of the fulcrum and its associated mounting accessories is: HZZ01223.

## Mechanical Data

| FNP1500/1800 Mechanical Data (H, W, D) | $1.6^{\prime \prime}(40.6 \mathrm{~mm}) \times 5.6^{\prime \prime}(142.2 \mathrm{~mm}) \times 11^{\prime \prime}(279.4 \mathrm{~mm})$ |
| :---: | :---: |
| FXP1500/1800 Mechanical Data (H, W, D) | $1.6^{\prime \prime}(40.6 \mathrm{~mm}) \times 5.6^{\prime \prime}(142.2 \mathrm{~mm}) \times 12^{\prime \prime}(304.8 \mathrm{~mm})$ |



Note: FNP1500/1800's have only 11" (279.4 mm) depth


Input Connector FCI part no. 51939-126LF

Output Connector Descriptions (12V Models)
Rear View


Connector: FCI (51732-026 LF)


Female ledge connector: Manufacturer: FCl
Right Angle type: Part No. FCI (manufacturer): 51762-11202000AA LF; Power-One Part No.: ZES260-G Vertical type: Part No. FCI (manufacturer): 51742-11202000AA LF; Power-One Part No.: ZES282-G Information on availability of FCl connectors under http://www.stkcheck.com/evs/fcielectronics/fcisearch.asp
IEC AC power cord with C19 connector VDE 16A: Interpower Components Ltd. 70009110250 IEC AC power cord with C19 connector UL 20A: Interpower Components Ltd. 70025110250


Rear View


Female ledge connector: Manufacturer: FCl
Right Angle type: Part No. FCI (manufacturer): 51762-106020000AA LF; Power-One Part No.: ZES258-G
Vertical type: Part No. FCI (manufacturer): 51742-106020000AA LF; Power-One Part No.: ZES271-G
Locate information on availability of FCl connectors at http://www.stkcheck.com/evs/fcielectronics/fcisearch.asp

FXP1500/1800 (48V Model) Input and Output Connector Descriptions


Rear View


Output con.: FCI (51732-020 LF)


Input con.: FCI (51939-126 LF)

Female ledge connector: Manufacturer: FCI
Output connector Part No.: 51762-106020000AA LF (Horizontal)
Output connector Part No.: 51742-106020000AA LF (Vertical)
Input connector Part No.: 51915-056LF (Horizontal)
Input connector Part No.: 51940-099LF (Vertical)
Locate information on availability of FCl connectors at http://www.stkcheck.com/evs/fcielectronics/fcisearch.asp

## Paralleling Front-Ends:

For parallel use in minimal configuration systems, only the inhibit pins must be shorted to logic GND. All other pins can be left open. The power supplies will share the output current automatically (droop current share).
For parallel applications without $I^{2} C$ bus, but the use of all other features, it is recommended to connect all logic GND's on a backplane together, to connect all $\mathrm{V}_{\mathrm{o} 2}-$, all $\mathrm{V}_{\mathrm{o} 2}+$ and to leave the internal GND's open.
The sense wires can be left open or connected to a common load point, the synch-start pin can be left open or connected to a synch-start circuit, the inhibit pins can be connected together or used individually. All ${ }^{2} \mathrm{C}$ signals ( $\mathrm{T} 1-\mathrm{T} 5, \mathrm{~S} 1$, and S 2 ) can be left open.
Use of a small foil capacitor $>3 \mu \mathrm{~F}$ directly at the power outputs of each unit is recommended in order to prevent voltage drops at the hot plug. For additional information on paralleling see the following Rack (Power Shelf) section.

## Racks

(FNR-3-12G, FXR-3-12G, FNR-3-48G, and FXR-3-48G Power Shelves)
Each rack (power shelf) is 1 U high with backplane and designed for up to three front-end models in parallel or in $\mathrm{n}+1$ operation. Each power shelf has:

- Massive copper bus bars for low-loss current distribution.
- Output terminals with two M4-screws on each power tab.
- Two fast-on contacts for system earthing.
- Address coding over five pole DIP switch on each unit, 37-pin D-Sub connector with $I^{2}$ C-lines, monitoring signals and support functions.
- Provides a start-up synchronization circuit and EMV filters.


FNR-3-12G and FNR-3-48G Power Shelf Front View


FXR-3-12G and FXR-3-48G Power Shelf Front View

## Overall Mechanical Dimensions (FNR-3-12G and FNR-3-48G Power Shelves)

| FNR-3 Mechanical Data (W, H, D) | $17.7^{\prime \prime}(449.6 \mathrm{~mm}) \times 1.7^{\prime \prime}(43.1 \mathrm{~mm}) \times 13^{\prime \prime}(330.2 \mathrm{~mm})$ |
| :--- | :--- |
| FXR-3 Mechanical Data (W, H, D) | $17.7^{\prime \prime}(449.6 \mathrm{~mm}) \times 1.7^{\prime \prime}(43.1 \mathrm{~mm}) \times 14^{\prime \prime}(355.6 \mathrm{~mm})$ |

## Output Connector Descriptions (FNR-3-12G and FNR-3-48G)



| Location | Description |
| :--- | :--- |
| A | 5-Bit DIP switch for I ${ }^{2} \mathrm{C}$ addressing of PSU 1 |
| B | Earth connection |
| C | Earth connection |
| D | Earth connection |
| E | Output 1 minus |
| F | Output 1 plus |
| G | 5-Bit DIP switch for I ${ }^{2} \mathrm{C}$ addressing of PSU 2 |
| H | 37-pin SUB-D connector, controlling and auxiliary power (output 2) |
| I | 5-Bit DIP switch for I ${ }^{2} \mathrm{C}$ addressing of PSU 3 |

## Output Connector Descriptions (FXR-3-12G and FXR-3-48G)



| Location | Description |
| :--- | :--- |
| A | Earth connection |
| B | 5-bit DIP switch for I ${ }^{2}$ C addressing of PSU \#3 |
| C | Mains connector of PSU \#3 |
| D | Output 1 Minus |
| E | Output 1 Plus |
| F | 5-bit DIP switch for I ${ }^{2}$ C addressing of PSU \#2 |
| G | Mains connector of PSU \#2 |
| H | 37-pin SUB-D connector, control, sense, check and Auxiliary power (Output 2) |
| I | 5-bit DIP switch for I ${ }^{2}$ C addressing of PSU \#1 |
| J | Mains connector of PSU \#1 |



Mechanical Data (FNR-3-12G and FNR-3-48G Power Shelves)
(To Be Supplied)

Mechanical Data (FXR-3-12G and FXR-3-48G Power Shelves)

## Accessories:

Center Angular Brackets are set in the middle for shelf mounting:


Center Angular Bracket sets can be ordered: Power-One part no.: HZZ01222 Note: Each Center Angular Bracket set contains 2 brackets and 8 screws.

## Fulcrums:

Individual fulcrum sets can be also ordered: Power-One part no.: HZZ01223.
Note: Each HZZ01223 set contain 2 fulcrums, 2 supports, and mounting accessories.

$I^{2} C$ to USB Interface HZZ02002G:


An I ${ }^{2}$ C to RS232 Interface can be ordered from Power-One. The interface part number to order is HZZ02002G. All FNP/FXP front-ends can be controlled via Power-One's GUI-driven $I^{2} \mathrm{C}$ Management software and the $I^{2} \mathrm{C}$-to-USB interface. An $I^{2} C$ Programming Manual describes the complete range of parameters that can be programmed to the FNP and FXP1500/1800 front-ends. This manual is available by searching on "FNP1500" at www.power-one.com.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

