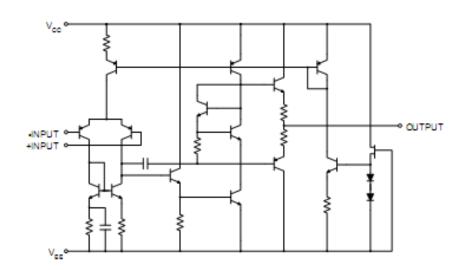
Description

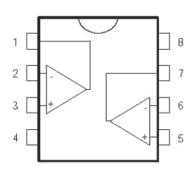
The AMS4558 consists of two low noise, high performance operational amplifiers. It is specially suitable for applications in differential-in, differential-out as well as in industrial measurement tools and applications where gain and phase matched channels are mandatory.

The IC features monolithic silicon chip,

internal frequency compensation, low noise, low distortion, wide operating voltage range, high gain and high bandwidth. The AMS4558 can operate under dual power supply voltage up to $\pm 18V$ or single power supply up to 36V.


Features

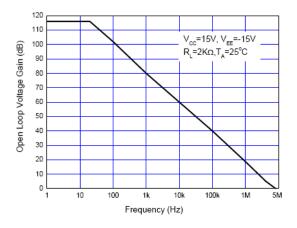
- ♦ Operating voltage: \pm 3V \sim \pm 18V.
- ♦ Large DC voltage gain: 100 dB
- ♦ Low input noise voltage: 1µVRMS
- ♦ Wide gain bandwidth product: 5 MHz
- ♦ Slew rate: 2V/µs
- ♦ Package outline: DIP8, SOIC8

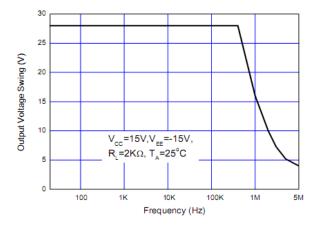

Applications

- ♦ Audio AC-3 decoded system.
- ♦ Audio amplifier

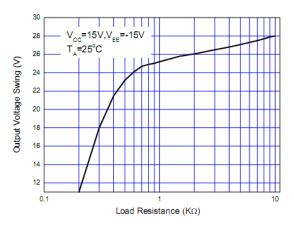
Functional Diagram

Symbol	Pin NO.	Description		
OUT1	1	Output 1		
IN1-	2	Inverting input1		
IN1+	3	Non- Inverting input1		
V-	4	VEE		
IN2+	5	Non- Inverting input2		
IN2-	6	Inverting input2		
OUT2	7	Output 2		
V+	8	VCC		

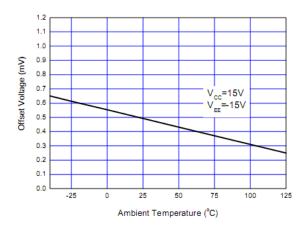

Absolute Maximum Ratings


Parameter	Symbol	l Value		Unit
Power Supply Voltage	VCC	+18		V
	VEE -18			
Differential Input Voltage	V _{ID}	±30		V
Input Voltage	V _{IC}	±15		V
Power Dissipation	P _D	DIP 500		mW
		SOIC	250	
Operating Temperature Range	T _{OP}	- 40 to 85		°C
Storage Temperature Range	T _{STG}	-60 to 150		°C

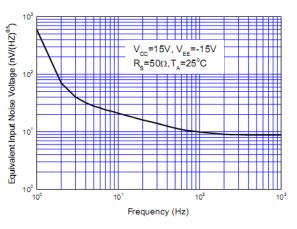
Electrical Characteristics (Vcc=+15V,VEE =-15V,TA =25 $^{\circ}$ C unless otherwise specified)


Parameter	Conditions	Min	Тур	Max	Unit
Input Offset Voltage	Rs≤10KΩ	-	2	6	mV
Input bias Current		-	60	500	nA
Input Offset Current		-	5	200	nA
Supply Current		-	3.5	5.8	mA
Large Signal Voltage Gain	$R_L^{\geq} 2K\Omega$,Vo=±10V	85	100	-	dB
Common Mode Rejection Ratio	Rs≤10KΩ	70	90	-	dB
Power Supply Rejection Ratio	Rs≦10KΩ	70	90	-	dB
Output Voltage Swing	R_{L}^{\geq} 2K Ω	±10	±13	-	V
	R_L^{\geq} 10K Ω	±12	±14	-	
Output Sink Current	V-=1V,V+=0V,Vo=2V		40		mA
Output Source Current	V-=1V,V+=0V,Vo=2V		40		mA
Slew Rate		-	2	-	V/µS
Equivalent Input Noise Voltage	RIAA,Rs=1K ^Ω ,30kHz LPF	-	1	-	μVRMS
Gain Bandwidth Product	f=10KHz	-	5	-	MHz

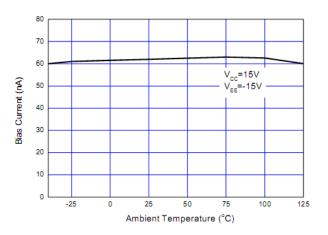
Typical Performance Characteristics



Open Loop Voltage Gain vs. Frequency

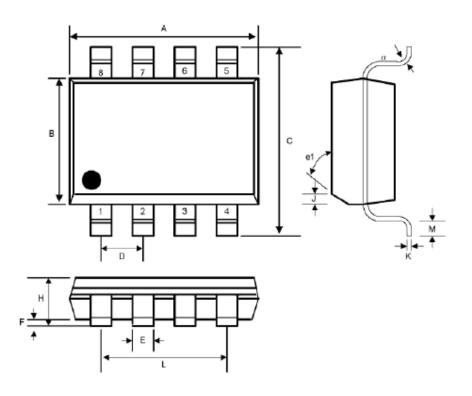


Maximum Output Voltage Swing vs. Load Resistance



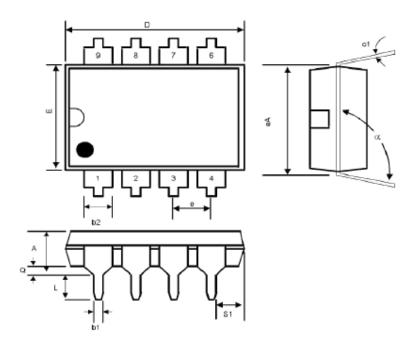
Input Offset Voltage vs. Temperature

Maximum Output Voltage Swing vs. Frequency



Equivalent Input Noise Voltage vs. Frequency

Input Bias Current vs. Temperature


SOP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	NOTES
A	0.188	0.197	4.80	5.00	•
В	0.149	0.158	3.80	4.00	•
C	0.228	0.244	5.80	6.20	-
D	0.050 BSC		1.27 BSC		-
E	0.013	0.020	0.33	0.51	•
F	0.004	0.010	0.10	0.25	-
Н	0.053	0.069	1.35	1.75	•
J	0.011	0.019	0.28	0.48	
K	0.007	0.010	0.19	0.25	-
М	0.016	0.050	0.40	1.27	
L	0.150 REF		3.81 REF		-
e1	45 ⁰		45°		-
а	00 80		00	80	•

Downloaded from **Elcodis.com** electronic components distributor

DIP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIN	NOTES	
	MIN	MAX	MIN	MAX	NOTES
A	-	0.200	-	5.08	÷
b1	0.014	0.023	0.36	0.58	-
b2	0.045	0.065	1.14	1.65	-
c1	0.008	0.015	0.20	0.38	-
D	0.355	0.400	9.02	10.16	-
E	0.220	0.310	5.59	7.87	-
e	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		
L	0.125	0.200	3.18	5.08	+
Q	0.015	0.060	0.38	1.52	÷
s1	0.005	-	0.13	-	-
α	90 ⁰	1050	90 ⁰	1050	

Page 6 of 7

Disclaimer:

- AMS reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using AMS products
 in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
 standards strictly and take essential measures to avoid situations in which a malfunction or failure of such AMS products
 could cause loss of body injury or damage to property.
- AMS will supply the best possible product for customers!