

All-Band AM/FM Receiver and Audio Amplifier

Description

The U2510B is an integrated bipolar one-chip AM/FM radio circuit. It contains an FM front end with preamplifier, FM IF and demodulator, a complete AM

Features

- Superior FM strong signal behavior by using RF AGC
- Soft mute and HCC for decreasing interstation noise in FM mode
- Excellent AFC performance (level controlled, both polarities available)
- Level indicator (LED drive) for AM and FM

receiver, an AF amplifier and a mode switch for AM, FM and tape. This circuit is designed for clock radios and portable radio-cassette recorders.

- DC mode control: AM, FM and tape
- Wide supply-voltage range and low quiescent current
- High AF output power: 1 W
- Electronic volume control
- Electronic AF bandwidth control (treble and high cut)
- Output stage for headphone and speaker drive

Block Diagram

Figure 1. Block diagram

Rev. A3, 23-Feb-01

Order Information

Extended Type Number	Package	Remarks
U2510B-M	SDIP28	
U2510B-MT	SDIP28	$V_S < 6 V$ supply voltage

Pin Description

Pin	Symbol	Function
1	Mute	Mute voltage output, time constant (C_{23}), mute depth and threshold adjustable by load resistance (R_3)
2	FM-discr	FM discriminator filter connection, ceramic resonator or equivalent LC-circuit
3	CF	Audio negative feedback input. Blocking capacitor (C ₈) determines the audio amplifiers low-end cut-off frequency
4	Vol ctrl in	Input for volume control voltage

Pin	Symbol	Function			
5	AMOsc	AM oscillator tank circuit input, recommended			
		load impedance appro	ximately 2.5 k Ω		
6	FM–AFC	AFC diode connection	, coupling capacitor		
		(C ₁₉) determines the <i>P</i>	AFC characteristic		
7	EMOsa	EM assillaton tonly sin			
	FMOSC	load impedance appro	ximately $3 k\Omega$		
8	Vp. c	Regulated voltage out	put (2.4 V)		
0	• Rei EMtonk	EM PE tank circuit co	nnaction recommanded		
	Pivitalik	load impedance appro	ximately 3 k Ω		
10	AMtank	AM RF tank circuit co load impedance appro	nnection, recommended ximately 20 k Ω		
11	FM-AGC	FM AGC voltage outp	out, time constant (C_{20}).		
		Loading this pin by a i	resistor (to GND) will		
		increase the FM AGC	threshold, grounding		
		this pin will switch off	the FM AGC function		
12	FMin	FM RF input (commo	n-base preamplifier		
		transistor), recommend	ted (RF) source		
12	FE CND	The function of the second sec	tery 100 \$2		
13	FE-GND	FM front-end ground			
14	AM/FM IEout	AM/FM IF output (collector output of the IE procemplifier)			
15	Mada atal	(conector output of the IF preamphiler)			
15	switch	Pin	Eunction		
	Switch	open	FM		
		Ground	AM		
		$V_{\rm S} ({ m R}_4 = 10 \ { m k}\Omega)$	Tape		
16	AM-IFin	AM IF input, input impedance = $3.1 \text{ k}\Omega$			
17	FM-IFin	FM IF input, input impedance = 330Ω			
18	V _{Treble in}	Treble control voltage	input		
19	LED drive	Level indicator output			
		(open-collector output	, LED drive)		
20	IF-GND	IF ground			
21	AFC switch	AFC function control	input:		
		Pin	Function		
		open	AFC off		
		Ground	$ I_{OSC} > I_{in}$		
22	Vigging	VS	$10sc < 1_{in}$		
	VAGC/AFC	input impedance appro	α_{10} pximately 42 k Ω		
23	AM/FM	AM/FM detector outp	ut, the load capacitor		
	detect	(C_{11}) in conjunction w	vith the detector output		
		deemphasis as well as	the (modulation)		
		frequency response of	the AM detector		
24	AFin	Audio amplifier input,	input resistance		
		approximately 100 kG (C_9) determines the lo	 coupling capacitor w frequency response 		
25	Ripple in	Ripple filter connection	n. Load capacitance		
		(C_{12}) determines the f	requency response of the		
		supply-voltage ripple	rejection		
26	Vs	Supply voltage input			
27	AFout	Audio amplifier outpu	t		
28	AF-GND	Ground of the audio power stage			

Terminal Voltages

Test circuit: $V_{in} = 0$

			Voltage/V					
Pin		Symbol	, ,	$V_S = 3 V$			$V_{\rm S} = 6 V$	7
			AM	FM	TAPE	AM	FM	TAPE
1	Mute voltage ($R_3 = 0$)	V1		1.6	_	I	1.6	_
2	FM discriminator	V2	ļ	1.0	_	ļ	1.0	-
3	Negative feedback	V3	1.2	1.2	1.2	2.6	2.6	2.6
4	Volume control input $(S_4 = A)$	V4	2.4	2.4	2.4	2.4	2.4	2.4
5	AM oscillator	V5	2.4	_	_	2.4	_	-
6	FM AFC	V ₆	l	1.9	_	l	1.9	_
7	FM oscillator	V ₇	_	2.4	-	-	2.4	-
8	V _{Ref}	V ₈	2.4	2.4	2.4	2.4	2.4	2.4
9	FM RF tank	V9	-	2.4	2.4	-	2.4	-
10	AM input	V ₁₀	2.4	-	_	l	2.4	-
11	FM AGC	V ₁₁	-	0	-	-	0	-
12	FM input	V ₁₂		1.4	_	l	1.4	_
13	Front end ground	V ₁₃	-	_	-	-	_	-
14	AM/FM IF output	V ₁₄	2.9	2.7	_	5.9	5.7	-
15	Mode control switch	V ₁₅	0	-	2.9	0	_	5.7
16	AM IF input	V ₁₆	0	_	-	0	_	-
17	FM IF input	V ₁₇		0.7	-		0.7	-
18	Treble control input $(S_5 = A)$	V ₁₈	2.4	2.4	2.4	2.4	2.4	2.4
19	LED	V ₁₉						
20	IF ground	V ₂₀	0	0	0	0	0	0
21	AFC switch ($S_3 = off$)	V ₂₁	1.2	1.2	1.2	1.2	1.2	1.2
22	AGC (AM)/AFC (FM)	V ₂₂	1.5	1.2	-	1.5	1.2	-
23	Detector output	V ₂₃	1.5	1.2	-	1.5	1.2	-
24	AF input	V ₂₄	1.5	1.5	1.5	1.5	1.5	1.5
25	Ripple filter	V ₂₅	2.7	2.7	2.7	5.3	5.3	5.3
26	Supply voltage	V ₂₆	3.0	3.0	3.0	6.0	6.0	6.0
27	AF output	V ₂₇	1.2	1.2	1.2	2.6	2.6	2.6
28	AF ground	V ₂₈	0	0	0	0	0	0

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	Vs	13	V
Power dissipation	P _{tot}	900	mW
Ambient temperature range	T _{amb}	-20 to +75	°C

Electrical Characteristics

 $V_S = 6 V$, $T_{amb} = 25^{\circ}C$, test circuit (figure 16), unless otherwise specified

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage range		Vs	2.5		9 *	V
Oscillator stop voltage		Vs	2.2			V
Operating temperature range		Т	-20		+75	°C
Supply quiescent current	$V_{i1} = V_{i2} = V_4 = 0;$					
	$AM (S_2 = AM)$	IS		4.0		mA
	FM (S ₂ = FM)	I _S		6.5		mA
	TAPE ($S_2 = Tape$)	IS		2.2		mA
Regulated voltage	Pin 8	V _{Ref}		2.4		V
Audio amplifier V_{i3} (Pin 24), te AF measuring range: 30 Hz to 20	est point: V_0 (Pin 27) f = 1 kHz 0 kHz, S_2 = Tape, S_4 = A, S_5 =	z = A				
Input resistance	Pin 24	Rj		100		kΩ
Closed loop voltage gain	$GV_{af1} = 20 \log (V_0/V_{i3})$					
	$V_{i3} = 10 \text{ mV}$	GV _{af1}		40		dB
Output voltage	$V_{i3} = 100 \text{ mV}, S_4 = B$	Vo		0.7	3	mV
High-end cut-off frequency	f _c (-3 dB)	f _c		13		kHz
	$S_5 = B$	f _c		0.8		kHz
Supply-voltage rejection ratio	$SVRR = 20 \log (V_{hum}/V_o)$					
	$V_{hum} = 200 \text{ mV},$	GUDD				ID
	$f_{hum} = 200 \text{ Hz}, \text{ S}_4 = \text{B}$	SVRR		32		dB
Noise voltage	$S_4 = B, V_{i3} = 0$	Vn		300	1000	μV
AF output power	THD = 10 %, $R_L = 8 \Omega$			225		** *
	$V_{\rm S} = 4.5 \text{ V}$	P _o	400	225		mW
	$V_{S} = 0.0 V$ $V_{c} = 9.0 V$	P	400	1000		mW
Distortion	$P_0 = 50 \text{ mW}, R_1 = 8 \Omega$	d		0.6		%
FM section . V: $_{2} = 60 \text{ dBuV}$ f: $_{2}$	= 98 MHz fm = 1 kHz dev =	+ 22.5 kH	$z_{\rm fire} = 1$	07 MHz		
AF measuring range: 300 Hz to $\frac{1}{2}$	$20 \text{ kHz}, S_2 = \text{FM}, S_1 = \text{A}, S_6 =$	= B, test po	oint: V _D (P	in 23)		
FM front-end voltage gain	$GV_{FM} = 20 \log \left(V_{iIF} / V_{i2} \right)$					
	$S_1 = B, V_{i2} = 40 \text{ db}\mu V$	GV _{FM}		30		dB
Recovered audio voltage	Pin 23	VD af		85		mV
Detector output resistance	Pin 23	R _{Do}		7.5		kΩ
Detector output distortion	dev. = \pm 75 kHz					
	$V_{i2} = 60 \text{ dB}\mu V$	THD		0.5		%
	$V_{i2} = 105 \text{ dB}\mu\text{V}$	THD		0.8		%

* U2510B-M_T: max. 6 V

Electrical Characteristics (continued)

$V_{S} = 6 V T_{omb}$	$= 25^{\circ}$ C test	circuit (figure 16	5) unless	otherwise	specified
$v_{S} = 0 v$, r_{amb}	= 25 C, lesi	. chcun ((inguie it	J), umess	other wise	specified

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
AM rejection ratio	m = 30%	AM _{RR}		25		dB
RF sensitivity	(S+N)/N = 26 dB	V _{i2}		9		dBµV
	(S+N)/N = 46 dB	V _{i2}		22		dBµV
Limiting threshold (-3 dB)		V _{i2}		3		dBµV
Mute voltage	Test point: Mute					
	$V_{i2} = 0$	V _{mute}		1.8		V
	$V_{i2} = 60 \text{ dB}\mu \text{V}$	V _{mute}		0.4		V
Mute depth	Referred to V_0 at $V_{i2} = 0$					
	$S_6 = A$	MD		26		dB
	$S_6 = C$	MD		20		uв
AFC holding range	$f_{OSC} > f_{in}, S_3 = A, S_6 = A$	ЕПр		no AEC		
	$V_{12} \leq 10 \text{ dB}\mu \text{ V}$ $V_{22} = 20 \text{ dB}\mu \text{ V}$	FHR		+ 180		kHz
	$V_{12} = 80 \text{ dBuV}$	FHR		± 220		kHz
LED current	12	I _{LED}		5.5		mA
Oscillator voltage	$eZ_{load} = 2.5 \text{ k}\Omega$ Pin 7	V _{OSC}		180		mV
AM section $V_{i1} = 60 \text{ dB}\mu\text{V}$, $f_{i1} = AF$ measuring range: 300 Hz to 2	= 1.6 MHz, $f_m = 1$ kHz, $m = 3$ 20 kHz, $(S_2 = AM, S_1 = B, tes$	0%, f _{iIF} = 4 st point: V _I	455 kHz,			
AM front end voltage gain		GV _{AM}		25		dB
Recovered audio voltage		V _{D af1}		70		mV
Detector output resistance	Pin 23	R _{Do}		7.5		kΩ
Detector output distortion	$V_{i1} = 60 \text{ dB}\mu\text{V}$	THD		1		%
_	$V_{i1} = 105 \text{ dB}\mu V$	THD		3		%
RF sensitivity	(S+N)/N= 10 dB	V _{i1}		0		dBµV
	(S+N)/N=26 dB	V _{i1}		16		dBµV
	(S+N)/N=46 dB	V _{i1}		35		dBµV
AGC figure of merit referred	$V_{i1} = 105 \text{ dB}\mu\text{V}$, voltage					
to V _{D af}	$drop (V_{D af}) = -10 dB$	FOM		100		dB
IF input resistance	Pin 16	Zi		3.1		kΩ
LED current		I _{LED}		5.5		mA
Oscillator voltage	Pin 5	V _{OSC}		160		mV

U2510B

Figure 6. AF section: Max. output power

Figure 8. FM section: Mute voltage

Figure 9. AM section: Demodulator output level

Figure 10. Volume control range characteristics

Figure 11. AM/FM level indicator current

Figure 12. AM section: AGC voltage (at Pin 22)

Figure 13. FM section: Demodulator output level

Figure 15. AM section: Audio output level

Test Circuit

Figure 16. Test circuit

Application

General

The U2510B is a bipolar monolithic IC for use in radio sets, for example, headphone receivers, radio recorders and clock radios. The IC contains all AM, FM, AF and switching function blocks necessary to construct these kinds of radio receivers using only few components around the IC. In the design, special efforts were made to get good performance for all AM bands (short and long wave).

The implementation of enhanced functions (options) makes it possible to improve the radio's performance and to produce radios with interesting features. In this case few (external) parts have to be changed or added. By using all or some of the options offered by the U2510B different types or classes of radios can be designed to the customer's requirements with the same IC.

One of the general advantages of using the U2510B is the fact that all receiver functions (including the options) are integrated and tested on a system level. Therefore, two additional cost-savings are achieved by:

- 1. Shorter development time through less technical problems and
- 2. Higher reproductivity and low reject level in the set production line.

Another advantage, due to the technology of the U2510B, is the wide operating voltage range, especially the upper limit (13 V). This feature allows the use of soft power supply for line powered radios which can also reduce the set's total cost.

Rev. A3, 23-Feb-01

AIMEL WIRELESS & µC

Circuit Example

Figure 17 shows a circuit diagram for low end AM/AF radios using the U2510B. Figure 18 shows a circuit diagram of AM/AF radio for higher class designs using all possible options of the U2510B. The layout of the PC board, shown in figure 19, is suitable for both the circuit example shown in figure 17 and the circuit example shown in figure 18. The associated coil, varicon and filter specifications are listed in the table: COIL DATA and SPECIAL COMPONENT PARTS. The circuit diagram (figure 18), has the following options compared to the circuit diagram (figure 17) (the additional parts, which have to be provided, are listed in parentheses):

- a) Soft mute and high cut control in FM mode (1 cap.)
- b) Electronic treble control in AM, FM and TAPE mode (1 pot.)
- c) On-chip mode control for TAPE application
- d) RF AGC in FM mode (1 capacitor)
- e) AFC, adjustable to the correct polarity and slope (1 cap.)
- f) Tuning indication using LED as an indicator (1 LED, 1 cap.)

Option a) reduces the interstation noise by the two functions: soft mute and HCC. Both are controlled by the mute voltage (Pin 1). The soft mute reduces the loudness only, while the HCC reduces the high-end audio cut-off frequency of the audio preamplifier, when the signal level falls below a given threshold. This signal level threshold as well as the mute depth can be reduced by adding a resistor (R_3) or by increasing the FM front–end gain.

Option b) allows the treble control for all operating modes without the need of an additional capacitor. This concept leads to a smooth and correct treble control behavior which is an improvement compared to the controlled RC network normally used.

Option c) is very useful for application in radio cassette-recorders, for instance. In TAPE mode, the AM/FM receiver blocks are completely switched off and the signal from the tape recorder can be fed to the audio amplifier's input directly. This saves quiescent current and makes the TAPE switching easy. However, to minimize switching noise by the mode switch, the following switch sequence should be chosen: AM, FM, TAPE.

Option d) improves the strong signal behavior by protecting the FM mixer against overload. This is provided by the integrated broad-band-width RF AGC. If necessary, the AGC threshold can be decreased by a resistor, loading Pin 11 to GND (not shown).

Option e) improves the tuning behavior substantially. The special design of the on-chip AFC function means that common disadvantages such as asymmetrical slope, (chip-) temperature effects and unlimited holding range are avoided. As mentioned in the "Pinning Description Table", the AFC slope has to be inverted when the local oscillator (LO) frequency has to be below the receiving frequency. This can be achieved by connecting Pin 21 to the potential of Pin 8. In addition to the options described above, the following proposals are implemented in the circuit diagram (figure 18), too:

- An FM IFT is applied. This improves the channel selectivity and minimizes substantially the spurious responses caused by the FM ceramic filter (CF₂). With the choice of the winding ratio of this IFT, the FM front end gain can be matched to other values if necessary.
- In the FM RF input section, the low cost antenna filter (L₅, C₁₅) is replaced by a special band pass filter (PFWE8). Such a BPF protects the FM front end against the out-off-band interference signals (TV channels, etc.) which could disturb the FM reception.

Design Hints

The value of the power supply blocking capacitor C_{13} should not be below 470 µF. In addition, this capacitor should be placed near Pin 26. This will help to avoid unacceptable noise generated by noise-radiation from the audio amplifier via the bar-antenna. In designs, where the supply voltage goes below 2.5 V, the value of the blocking capacitor (C_7) should be chosen as 47 μ F or even higher. To achieve a high rejection of short wave reception in medium wave operation, the LO amplitude at Pin 5 should not exceed approximately 200 mV. This LO amplitude depends on the LO transformer's Q and its turns ratio. For the LO transformer type described in the "Coil Data Table", a resistor R_4 (2.2 k Ω for example) in parallel to the secondary side of the AM LO transformer T₂ is recommended. To minimize feedback effects in the RF/IF part in FM mode, the capacitor C6 should be placed as near to Pins 8 and 20 as possible.

As shown in the application circuit diagrams (figures 17 and 18), in FM mode ceramic filter devices are used for channel selection (CF₂) while for FM, demodulation in LC-discriminator circuit (T₄, C₂₄, C₂₅) is used instead of a ceramic discriminator device.

Such an LC discriminator circuit can be easily matched to the FM IF selectivity block by its alignment. The zerocrossing of the discriminator can be detected at the demodulator output (Pin 23). The zero-crossing voltage is equal to half of the regulated voltage at Pin 8.

The alignment of the LC-discriminator circuit should be done with little or no effect on the AFC function. This can be realized by:

- switching Pin 21 to open-circuit
- connecting Pin 1 to a voltage source of 2 V
- using a low signal level for alignment.

In general, ceramic discriminator devices can be used, too. In this case, the effect of unavoidable spreads in the frequency characteristics of these case ceramic devices in conjunction with the IC characteristic has to be considered. For example, mismatches of the characteristics between selectivity block and FM discriminator will lead to an increased signal-to-noise ratio at low signal level as well as to a higher demodulation distortion level or to an asymmetrical AFC.

Application Circuits

Figure 17. Application circuit (low cost)

Figure 18. Application circuit (upgraded) R_2 only if $V_S > 8 V$

Figure 19. PC-board

Coil Data and Special Component Part

Part	Stage	L or C ₀ between	Q ₀ between	W	Type Manufacturer		
T ₁	AM IFT	180 pF 1 to 3	90 1 to 3	0.07 1 to 2 111	0.07 2 to 3 35	0.07 4 to 6 7	7MC-7789N Toko 21K7-H5 Mitsumi
T ₂	AM OSC	270 μH 1 to 3	125 1 to 3	0.06 1 to 3 107	0.06 4 to 6 29		7TRS-8441 Toko L-5K7-H5 Mitsumi
T ₃	FM IFT (optional)	100 pF 1 to 3		0.09 1 to 2 3	0.09 2 to 3 7	0.09 4 to 6 2	mat.: 7P A119 AC Toko
T ₄	FM discrimi- nator	100 pF 1 to 3		0.09 1 to 3 10			mat.: 7P A119 AC Toko
L ₁	FM RF air coil 4 mm diam.			0.62 3.75			
L ₂	FM OSC air coil 4 mm diam.			0.62 3.75			
L ₄	FM antenna air coil 4 mm diam.			0.62 4.75			

L ₃	AM bar antenna	L: 630 µH total turns : 96	5 tap: 19
BPF1	(optional)	PFWE8 (88 to 108 MHz)	Soshin Electric Co.
CF ₁		SFU-455B BFCFL-455	Murata Toko
CF ₂		SFE10.7MA5 CFSK 107M1	Murata Toko
CF ₃	(optional)	CDA10.7MC1	Murata
C1	Variable capacitor	HD22124 AM/FM	Toko

Coil, bottom view

Air coil

Figure 20.

Ā

Package Information

Package SDIP28

13044

Ozone Depleting Substances Policy Statement

- It is the policy of Atmel Germany GmbH to
- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

Rev. A3, 23-Feb-01