fc series COMPACT CALCULATOR

DATA SHEET

The FC series compact calculator is a high cost-performance, flexible, and highly functional calculator which inputs 5 analog signals and 6 digital signals, digitally performs complex calculations such as arithmetic, square root extraction, time-factor calculations, etc., and then provides 5 analog and 6 digital outputs.

FEATURES

1. Highly functional calculator using a microprocessor A variety of calculating functions are coordinated into functional units called wafers. Complex calculations are thus performed flexibly and accurately through connection of the computational wafers.

2. International standards

This instrument is compact in size, conforming to international standards IEC. It operates on 24 V DC power to deliver 1 to 5V DC signals as recommended by IEC standards.
100V and 200V AC power are also available for convenience of operation.
3. Contents of calculation are changeable on the spot The contents of calculation can be specified on the spot using key operation on the front panel. And the contents are retained even at power failure due to utilization of a non-volatile memory.

FUNCTIONAL PRINCIPLE

SPECIFICATIONS

1. Computational functions

(1) Wafers

The wafer is a functional software package which realizes the computational functions needed for instrumentation control. A calculator which responds flexibly to the application purpose is realized through combination of these wafers having their own individual functions.

The PNM is capable of executing a total of either 24,48 or 64 wafers. The wafers given in the table below are standardequipped which enables selection according to the purpose of application.

- For computation: A variety of computations are feasible by combining the wafers in Table 1.

(2) Internal input/output terminals

Various internal terminals for connecting external analog input/outputs and digital input/outputs with wafers are provided.

(3) Constants

These can be freely defined as parameters for use in calculation. (32 constants with 24 wafers, 48 constants with 48 wafers, 64 constants with 64 wafers)

(4) Computation cycle

0.2 sec (24 wafer type)
0.4 sec (48 wafer type)
0.5 sec (64 wafer type)

Table 1 List of computational wafers

Wafer name	Kinds	Outline of functions
Logical computation	6	Performs logical computation such as AND, OR, NOT, EOR and a combination of these.
Arithmetic computation	5	Performs computation such as addition, subtraction, multiplication and division.
Temperature/pressure compensation	1	Performs temperature/pressure compensation using differential pressure, correcting pressure and/or proper temperature.
Linearize	3/6/8	Performs segmented line approximation using 15 segmented line functions (6 kinds with 48 wafers, 8 kinds with 64 wafers).
Flip-flop	1	RS flip-flop
Pulse width integration	1	Adds the input change amount at each basic cycle to the previous integrated value.
Selector	1	Compares two input values, and outputs the result of high/low judgment as HIGH output (higher one) or LOW output (lower one).
Changeover	1	A switch function which selects either input or output. An analog hold circuit can also be combined.
Timer	1	Outputs an on-delay/off-delay timer signal via input signal start according to the timer setting.
Square root computation	1	Subjects an input value to square root extraction and outputs the result. Also has a low input cutoff function.
Lead, lag	3	Subjects the input to lead or lag computation and outputs the result. Used for analog filter function and various compensations.
Limiter	1	Limits the input within the range of upper/lower limit setting and outputs the result. Also outputs an upper/lower limit alarm signal.
Absolute value sign inversion	1	Subjects the input to absolute value processing and outputs the result. Also judges the input value sign (positive, negative) and outputs the results.
Ramp function	2	Outputs a signal which changes in ramp-like form toward the target value within the set full-scale time. Includes two kinds for minute and hour unit.
Analog average	1	Subjects the input data to sequential integration, calculates the average for each average value calculation time and outputs the result.
Analog integration	1	Integrates the value obtained by multiplying the input data via a proportional constant, and outputs the result.
Pulse generation	1	Outputs a pulse at a set time interval.
Dead band	1	Adds dead band compensation to the input and outputs the result.
Pulse number counter	1	Detects the rise of a pulse and counts the number of pulses.
Pulse number output	1	Integrates the input signal, converts it to number of pulses and outputs the result.
Decoder	1	Decodes binary input of two bits and outputs it at 4 terminals.
Moving average	2	Calculates moving average for the input data and outputs the result.
Sample hold	1	Holds the input value according to sample time (0/1) and outputs it successively.
Dead time	9	Usable for dead time compensation control, etc. Data sampling is available in units of 1 second and 1 minute.
On-off	1	Outputs an on-off signal with hysteresis versus the input.
Alarm	1	Compares the input with the set value, and outputs the judgment result.
Position type pulse width change	1	Performs output processing for time-proportional PID control.

[^0]
2. Input signal

(1) Analog input signal Al_{1} :

One input selectable from the following

Voltage input signal	$\left.-\begin{aligned} & 1 \\ & 1_{1}^{+} \\ & 1 \\ & 1 \\ & 1 \end{aligned} \right\rvert\,$	1 to 5V DC	Input resistance: $1 \mathrm{M} \Omega$ or more; accuracy: $\pm 0.2 \% / F S\left({ }^{*}\right)$
Current input signal		4 to 20 mA DC	$24 \mathrm{~V} \pm 2 \mathrm{~V}$ DC can be supplied to transmitter when using AC source (approx. 35 mA); accuracy: $\pm 0.2 \% / F S$
Thermocouple input		Type $\mathrm{J}: 0$ to $600^{\circ} \mathrm{C}$ K:O to $1200^{\circ} \mathrm{C}$ $\mathrm{E}: 0$ to $800^{\circ} \mathrm{C}$ R: 0 to $1600^{\circ} \mathrm{C}$	10 mV DC span or more; cold junction compensation comprised accuracy: $\pm 0.5 \% / F S$
Resistance bulb input		$\begin{aligned} & \hline \text { Jpt100, } \\ & \text { Pt100 } \\ & -50 \text { to } 500^{\circ} \mathrm{C} \end{aligned}$	$50^{\circ} \mathrm{C}$ span or more; accuracy: $\pm 0.5 \% / F S$

Note: *FS: Full scale
(2) Analog input signal: 4 points

Analog input	Al2		
Analog input	Al3	1 to 5V DC	Input resistance: $1 \mathrm{M} \Omega$ or more Accuracy: $\pm 0.2 \% / F S$
Analog input	Al4		
Analog input	Al5		

(3) Digital input signal: 4 points

Digital input	DI1		
Digital input	DI2	Contact input (photo-coupler insulation)	ON/OV, OFF/24V (input current approx. 11mA/24V DC)
Digital input	DI3		
Digital input	DI4		

(4) Pulse width or pulse number input signal: One set
$\left.\begin{array}{l|l|l|l}\hline \begin{array}{l}\text { Pulse width } \\ \text { input signal }\end{array} & & & \begin{array}{l}\text { Contact input } \\ \text { PI }\end{array}\end{array} \begin{array}{l}\text { ON/OV, OFF/24V (input current } \\ \text { approx. } 11 \mathrm{~mA} / 24 \mathrm{~V} \text { DC) }\end{array}\right]$

3. Output signal

(1) Current output signal: One point

(2) Analog output signal: 4 points

Analog output	AO1		
Analog output	AO2	1 to 5V DC	Output resistance: 1Ω or less; accuracy: $\pm 0.2 \% / F S$
Analog output	AO3		
Analog output	AO4		

(3) Digital output signal: 6 points

Fault output	FLT		
Digital output	DO1		
Digital output	DO2	Open collector output	Output rating $30 \mathrm{~V} \times 0.1 \mathrm{~A} \mathrm{DC}$ (Photo-coupler insulation) max.
Digital output	DO3		
Digital output	DO4		
Digital output	DO5		

4. Internal uniform data conversion

(1) Analog data

Standard	Minimum	Maximum
0.00 to 100.00%	-327.6%	327.67%

(2) Digital data	
Input/output status	Data
ON (contact closed)	0.01%
OFF (contact open)	0.00%

5. Indication, setting, operating functions (1) Bargraph indication

	RV indicator	GV indicator
Indication type	LED (red)	LED (green)
No. of segments	$101+2$	$101+2$
Range	0 to 100% linear	0 to 100% linear
Resolution	$1 \% / \mathrm{FS}$	$1 \% / \mathrm{FS}$
Scale length	100 mm	100 mm
Indication mode	0 to 100% bargraph indication 0 to 100% reverse bargraph indication dot indication -50 to $+50 \%$ deviation indication	

(2) Run mode indication Indicating method:

LED (red); red, H/L
(3) Numerical indication, setting Indication method:

LED (red), name 3 digits+numerals 5 digits (including negative sign) Indication contents:

Indication contents such as constants, segmented line and wafers selectable by F/S , Δ and ∇ keys on the front.
Setting method: By operation of $F / S, \Delta, \Delta, \Delta$, and $\triangle T$ keys on the front.

6. Power failure processing function

Power failure detection:

Calculation stops at power failure detection.
During power failure:
Operating parameters retained by capacitor backup within 5 minutes. Constants, segmented line, wafers, parameters etc. are stored in non-volatile memory (lasts 10 years expected at ambient temperature below $50^{\circ} \mathrm{C}$).

At power recovery:

Initial or continuous start mode can be set within 5 minutes. Recovery from power failure lasting longer than 5 minutes is done by initial.

7. Self-diagnosis functions

Computing circuit fault:

H, L lamp simultaneously lit FLT contact output ON, computation stops
Input/output signal fault, run output disconnection:
H, L lamp simultaneously lit; FLT contact output ON, computation and output processing for other than run output continue.
Fault contents indication:
Cause of fault is numerically indicated on front-panel numerical indicator

8. Transmission function

(1) Transmission items

Monitor items: PNM \rightarrow host
Fault information, constants, analog input/ output, digital input/output, etc.
Setting, operation items:

$$
\begin{aligned}
& \text { Host } \rightarrow \text { PNM } \\
& \text { Constants, etc. }
\end{aligned}
$$

(2) Transmission setting inhibit:

Parameter setting enable/inhibit can be designated by transmission from the host. Designation is done by keys on the front panel.
(3) Transmission interface
(a) T-link: Private interface

Transmission speed: 500 Kbps
No. of units connectable: 32 max.
Transmission distance: 1 km max.
Transmission form: Multi-drop
Control method: I/O transmission and message
(b) RS-422A/485: Universal interface

Transmission speed: 2400, 4800, 9600 or 19200 bps configurable
No. of units connectable: 31 max.
Transmission distance: 1 km max.
Transmission form: Multi-drop
Control method: Polling/selecting
(c) CC data line: Private interface Transmission speed: 19.2 Kbps (fixed)
No. of units connectable: 15 max.
Transmission distance: 500m max.
Transmission form: Multi-drop
Control method: Polling/selecting

9. Other functions

Data protective function by pass code

10. Usage conditions

Power supply: Selectable from three types 24 V DC (20 to 30 V DC), 100 V AC (85 to $132 \mathrm{~V} \mathrm{AC} / 47$ to 63 Hz), 200 V AC (187 to $264 \mathrm{~V} \mathrm{AC/47} \mathrm{to} 63 \mathrm{~Hz}$)
Power consumption: Approx. 12W (DC), approx. 20VA (AC)
Dielectric strength:
1500V AC for 1 minute
Insulation resistance: $100 \mathrm{M} \Omega$ or more at 500 V DC

Ambient temperature: 0 to $50^{\circ} \mathrm{C}$
Ambient humidity:
90\% RH or less
Enclosure: Steel case
Casing protective structure:
Front section: IP65 (IEC 529)
Rating plate (Name plate): $100(\mathrm{H}) \times 70(\mathrm{~W})$, white acrylic resin
Dimensions: $\quad 144(H) \times 72(W) \times 391$ (D) mm, IEC (DIN) standard
Mass \{weight\}: Approx. 2.9 kg

Mounting method:
Indoor panel mounting, vertical mounting standard, can be tilted within following angle

Finish color: Front panel; Munsell N1.5 Casing; Munsell N1.5
Scope of delivery: Calculator and mounting bracket Item to be ordered separately:

Communication cable (type PNZ)

CODE SYMBOLS

| P\|N|M|2 | Y | $5-0$ | | Description |
| :---: | :---: | :---: | :---: | :---: |
| | | | | Measured input signal
 1 to 5V DC
 4 to 20 mA DC
 J thermocouple
 K thermocouple
 10 mV DC span or
 E thermocouple more, with cold junc-
 R thermocouple
 tion compensation
 Resistance bulb, JPt 100
 3 wire type, $50^{\circ} \mathrm{C}$ span or more
 Resitance bulb, Pt100,
 3 wire type, $50^{\circ} \mathrm{C}$ span or more |
| | | | | Power supply
 24 V DC (20 to 30V DC)
 100 V AC (85 to $132 \mathrm{~V} \mathrm{AC/47}$ to 63 Hz)
 200 V AC (187 to 264 V AC/47 to 63 Hz) |
| | | | | Transmission function
 None
 T-link
 RS-422A
 RS-485
 CC data line |
| | | | | Wafer connection/no. of wafers executable
 None/24 wafers
 Provided/24 wafers
 None/48 wafers
 Provided/48 wafers
 None/64 wafers
 Provided/64 wafers |

Note: Resistance bulb symbol is as follows; JPt100.....JIS C 1604-1981 Pt100......IEC Pub 751-1983

OUTLINE DIAGRAM (Unit:mm)

Panel cutout

When mounting n units

CONNECTION DIAGRAM

Block terminals (M4 screw)

AO (analog output) Al, AO (common bus)	AO 1	51	71	Al 2		
	AO 2	52	72	Al		
	AO 3	53	73	Al 4		
	AO 4	54	74	Al 5		
	SC	55	75			
PowersupplyoutputDO(digital output)DO(digital output)Instrument powersupply (24V DC)24V powerfor DI, DO	MI+	56	76	SC		
	MI-	57	77	DO 2		
	DO 4	58	78	DI		
	DO 5	59	79	D 2		
	${ }^{-} \mathrm{PC}^{*}$	60	80	DI		
	- PCD	61	81	VP*		
Ground !	G	62	82	VPD		

Note: The symbol in case of AC instrument power is VPO, PCO. The output is approx. 24V DC (0.1A max.)

Analog output 1 terminal connection specifications

Transmission connector

*Before using this product, be sure to read its instruction manual in advance.

Fuji Electric Systems Co.,Ltd.

Head Office

6-17, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
http://www.fesys.co.jp/eng

Sales Div.

International Sales Dept.

No.1, Fuji-machi, Hino-city, Tokyo, 191-8502 Japan
Phone: 81-42-585-6201, 6202 Fax: 81-42-585-6187
http: //www.fic-net.jp/eng

[^0]: Various applications are feasible by combining encoder, saw-tooth wave generating and sine wave generating wafers.

