FC SERIES COMPACT CONTROLLER S (STEP OUTPUT TYPE)

DATA SHEET

Compact controller S (fixed function type) is a compact single-loop controller using a microprocessor

It accepts uniform signals, and signals from a thermocouple and resistance bulbs as input, and includes sufficient control and computation functions which permit composition of a flexible system for PID control, square-root extraction, non-linear control, etc.

FEATURES

1. PID auto turing function

Optimum PID parameter can be obtained for processing.
2. High reliability

LED's (red and green) are used for the bar graph indicator and for parameter indication (red). A non-volatile memory retains the control and computation parameters even if power should be interrupted.
3. All operations are performed from the front of the panel Operations such as parameter setting, auto/manual changeover are performed from the front of the panel.
4. Transmission function

Incorporation of transmission function permits setting of concentrated monitoring data at the host system.

FUNCTIONAL DIAGRAM

Fuji Electric Systems Co.,Ltd.

SPECIFICATIONS

1. Control functions

PID control: Proportional band (P); 1.0 to 3276.7\% Integration time (I); 0.1 to 3276.7 sec Derivative time (D); 0.0 to 900.0 sec PID auto tuning function
Additional function:
Segmented line approximation; 15 segmented lines
Square-root extraction; with low input cut function
Filter; filter time constant 0.0 to 900.0 sec Non-linear control
Output change rate limiter; 0.0 to 100.0%
Alarm functions:

PV high/low limit alarm	Select any 1 of 3 types at left PV change rate alarm Front panel LED (H, L) ON, DV high/low limit alarm

Control cycle: 0.1 sec

2. Input signal
(1) PV input signal:

One point select from the following inputs.

Voltage input signal	$\begin{gathered} I_{+}^{+} \\ \mathrm{I}_{0} \\ \mathrm{I}_{-} \end{gathered}$	1 to 5V DC	Input resistance, $1 \mathrm{M} \Omega$ or more Allow. error, $\pm 0.2 \% / F S$
Current input signal		4 to 20 mA DC	24 V DC power is supplied to transmitter with AC power used. Allow. error, $\pm 0.2 \% / F S$
Thermocouple input		Type $\mathrm{J}: 0$ to $600^{\circ} \mathrm{C}$ $\mathrm{K}: 0$ to $1200^{\circ} \mathrm{C}$ $\mathrm{E}: 0$ to $800^{\circ} \mathrm{C}$ $\mathrm{R}: 0$ to $1600^{\circ} \mathrm{C}$	10 mV DC span, or more Self-contained basic contact compensating function Allow. error $\pm 0.5 \% / F S$
Resistance bulb input		JPt100/Pt100 -50 to $500^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$ span or more Allow. error $\pm 0.5 \% \mathrm{~F} / \mathrm{S}$

(2) Analog input signal: 1 point

External set point	CAS	1 to 5V DC	Input resistance, $1 \mathrm{M} \Omega$ or more Allow. error $\pm 0.2 \% / F S$

(3) Digital input signal: 3 points

Manual mode command	SMV	Contact in- put (photo- coupler	ON/OV, OFF/24V (input current, approx. $11 \mathrm{~mA} / 24 \mathrm{~V}$
PV tracking command	DI1		
Remote acknouwledge signal	DI3	insulation) DC)	

(4) Pulse width or pulse number input signal: any 1 set

Pulse width input signal			ON/OV, OFF/24V (input current, approx.
Pulse number input signal	PI_{+}	Contact input (photo-coupler insulation)	$11 \mathrm{~mA} / 24 \mathrm{~V}$ DC)
ON/OV, OFF/24V (approx. $11 \mathrm{~mA} / 24 \mathrm{~V}$ DC), max. input frequency 500 Hz			

(5) Valve position input

Voltage input signal	W_{0}	1 to 5 V DC	Input resistance, $1 \mathrm{M} \Omega$ or more Allow. error, $\pm 0.5 \% / \mathrm{FS}$
Resistance input signal	W_{+} W_{0} $\mathrm{~W}_{-}$	50 to 1000Ω width (Note 2)	3-wire system Potentiometer Allow. error, $\pm 0.5 \% / F S$

Notes: (1) FS: Full scale
(2) Basic value is 10 to 100 to 10Ω. Others should be specified.

3. Output signal

(1) Control output signal: 1 set

Pulse width	PO_{+}	Open-collector output	Output rating,
	PO_{-}	(photo-coupler insulation)	$30 \mathrm{~V} \times 0.1 \mathrm{~A} \mathrm{DC} \mathrm{max}$.

(2) Analog output signal: 3 points

Compensated PV value signal	KPV	1 to 5V DC	Output resistance, 1Ω or less Allow. error, $\pm 0.2 \% / F S$
Set point transmission signal	SV		
Value position (voltage)	A01		

(3) Digital output signal: 6 points

Fault output	FLT	Open-collector output (photocoupler insulation)	Output rating, $30 \mathrm{~V} \times 0.1 \mathrm{~A}$ DC, max.
Manual mode output	M		
High alarm output	H		
Low alarm output	L		
Local mode output	DO1		
Remote request signal	DO2		

4. Indication, setting and operating functions

(1) Bar graph indication

Indication system	PV indicator	SV indicator	MV indicator
Indication	LED (red)	LED (green)	LED (red)
Indication segment	$101+2$	$101+2$	$51+2$
Indication range	0 to 100\% linear	0 to 100\% linear	0 to 100\%, linear
Indication resolution	$1 \% / \mathrm{FS}$	$1 \% / \mathrm{FS}$	$2 \% / \mathrm{FS}$
Scale Iength	100 mm	100 mm	50 mm
Indication mode	0 to 100\% bar graph indication, 0 to 100\% reverse bar graph indication, dot indication, -50 to +50\% deviation indication		

(2) Operation mode indication Indication method:

LED (red and green)
Red: M, SCC
Green: A, R
(3) Numerical indication, setting Indication method:

LED (red), name in 3 digits + number in 5 digits (Negative sign included) Indication contents:

Process variable (engineering unit), set point (engineering unit), alarm high/low values, PID parameters, etc.
Indication contents are select by using
$F / S, \triangle, \nabla$, keys
Setting method: By using of $F / S, \triangle, \nabla, D$, ST keys on front panel
(4) SV setting function

Fixed value setting method:
By using \triangle, ∇ pushbuttons on front panel
Setting speed, about 40 sec/FS
Remote setting method:
By external set point signal (voltage or pulse width input)
(5) MV operating function

Manual operating method:
By using \triangle, ∇ buttons on front of the panel
(6) Operation mode changeover

By using R/A/M button on front panel

$R \rightarrow A$ changeover	Balanceless bumpless	
$A \rightarrow R$ changeover	Voltage signal	Balance bumpless
	Pulse width input	Balanceless bumpless
A or $R \rightarrow M$ changeover	Balanceless bumpless	

5. Power failure processing functions

Power failure detection:

Control stoppage at power failure detection
During power failure:
Operating parameters backed up by capacitor when power faulure occurs wthin 5 minutes
Initial set point and manipulated output values, PID parameters, etc. are stored in nonvolatile memory (lasts for 10 years or longer at ambient temperature of $50^{\circ} \mathrm{C}$ or less).
Power failure recovery time:
Initial or continuous start set for power failure within 5 minutes.
Recovery from power failure lasting longer
than 5 minutes is done by initial.

* Operation mode at initial set.

M: Manual mode
A: Auto mode
R: Remote mode
SCC: SCC mode

6. Self-diagnosis function

Computation/control circuit abnormality:

FLT indicator lights, FLT contact output
turns "ON", and computation and control stop.
Manipulated output can be controlled manually at FLT (soft manual).
Input/output signal abnormality, manipulated output disconnection: FLT indicator lights, control stops and manipulated output is held. Computation processing and output processing other than for manipulated output continue.
Fault contents indication:
Cause of fault is indicated numerically on numerical indicator on front of the panel.

7. Transmission functions

(1) Transmission items

Supervisory items:
From PNC to host
Process variable, set point, manipulated output, deviation, operation mode, alarm information, PID parameters, various limiter values, constants, segmented line, analog input/output, digital input/output, etc.
Setting operation items:
From host to PNC
Set point, manipulated output, operation mode, PID parameters, various limiter values, constants, segmented line, etc.
(2) Transmission setting inhibit:

Parameter setting enable/inhibit can be designated by transmission from the host. Designation is made by using $F / S, \triangle, \nabla$, D, ST keys on the front of the panel.
(3) Transmission interface:

CC data line or RS422 interface select

1) CC data line: Connected with transmission controller (PMN)
Interface: \quad PMN and PNA; CC data line (PMN and host RS-232C)

Transmission speed:
19.2 KBPS

No. of units to be connected:
15 max.
Transmission distance:
500m max.
Transmission form:
Multi-drop
Code format:
12 bit binary
2) RS-422: Universal interface

Transmission speed:
2400, 4800, 9600, 19200BPS, select-
able
No. of units connectable:
31 max.
Code format: Stop bit 1 or 2 bit
Parity bit ... Even, odd or none

8. Other functions

Data protection function by use of pass code

9. Operating conditions

Power supply: Select from the following 3 types
24 V DC (20 to 30V)
100 V AC (85 to $132 \mathrm{~V} / 47$ to 63 Hz AC)
200V AC (187 to $264 \mathrm{~V} / 47$ to 63 Hz AC)
Power consumption:
Approx. 12W (DC)
Approx. 20VA (AC)
Dielectric strength:
1500 V AC, 1 min .
Insulation resistance:
500 V DC, $100 \mathrm{M} \Omega$ or more

Ambient temperature:

0 to $50^{\circ} \mathrm{C}$
Ambient humidity:
90\% RH or less
Enclosure: Steel case
Enclosure class: Front IP65 (IEC 529)
Name plate: $\quad 100(\mathrm{H}) \times 70(\mathrm{~W})$, white acryl
Dimensions: $\quad 144(H) \times 72(W) \times 391$ (D) mm, IEC
(DIN) standards
Mass \{weight\}: Approx. 2.9 kg
Mounting method:
Flush on indoor panel, vertical mounting is standard practice.
Mounting on tilted surface possible (angle $\alpha)$

Finish color: Munsell N1.5 for the both of front and case.
Range of delivery:Controller and mounting bracket Items prepared separately:

Transmission cable (Type PNZ)

CODE SYMBOLS

		5.	O\|A	Description
				Process variable input signal 1 to 5V DC 4 to 20 mA DC J thermocouple K thermocouple E thermocouple R thermocouple ing function Resistance bulb, JPt100, 3-wire system, $50^{\circ} \mathrm{C}$ span or more Resistance bulb, Pt100, 3-wire system, $50^{\circ} \mathrm{C}$ span or more
	$\begin{aligned} & A \\ & B \end{aligned}$			Setting method A-M type R-A-M type
		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$		```Power supply 24 V DC (20 to 30 V DC) 100 V AC (85 to \(132 \mathrm{~V} / 47\) to 63 Hz AC) 200 V AC (187 to \(264 \mathrm{~V} / 47\) to 63 Hz AC)```
			$\left.\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned} \right\rvert\,$	Valve position input Voltage input (1 to 5V DC) Resistance input (50 to 1000Ω span) (Note 1)
			$\left\lvert\, \begin{array}{l\|l} \mathrm{R} \\ \mathrm{C} \end{array}\right.$	Transmission function RS-422 CC data line (communication controller required)
				PID auto turing function Provided

Notes: (1) Standard resistance is 10 to 100 to
10Ω. Others should be specified.
(2) Symbols of resistance bulbs are as follows.
JPt100 JIS C 1604-1981
Pt100 IEC Pub751-1983
(JPt/Pt changeover is possible with
front key.)

OUTLINE DIAGRAM (Unit:mm)

CONNECTION DIAGRAM

Block terminals (M4 screws)

Note: * Symbols for AC power supply are VPO, PCO.
Output is 24 V DC (0.1 A max.) approx.

Process value input terminal connections

Transmission connector

\triangle Caution on Safety
*Before using this product, be sure to read its instruction manual in advance.

Fuji Electric Systems Co.,Ltd.

Head Office

6-17, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
http://www.fesys.co.jp/eng

Sales Div.

International Sales Dept.

No.1, Fuji-machi, Hino-city, Tokyo, 191-8502 Japan
Phone: 81-42-585-6201, 6202 Fax: 81-42-585-6187
http: //www.fic-net.jp/eng

