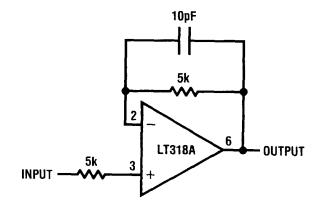


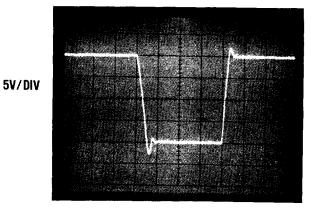
High Speed Operational Amplifier

FEATURES

- Guaranteed 1.0mV Max. Input Offset Voltage
- Guaranteed 100,000 Min. Gain
- Guaranteed 50V/µs Slew Rate
- Guaranteed 20nA Max. Input Offset Current
- 15MHz Bandwidth
- Unity Gain Stable


APPLICATIONS

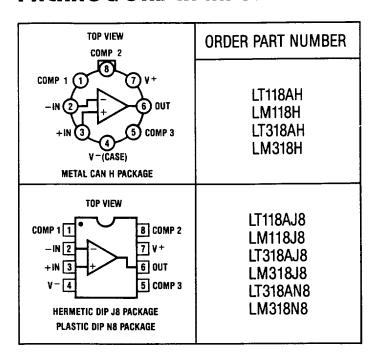
- Wideband Amplifiers
- High Frequency Absolute Value Circuits
- D/A Converter Amplifiers
- Fast Integrators


DESCRIPTION

The LT118A is an improved version of the industry standard LM118. The LT118A features lower input offset voltage, lower input offset currents, higher gain and higher common mode and power supply rejection. Because of these enhancements, the LT118A will improve the accuracy of most applications. Unlike many wideband amplifiers, the LT118A is unity gain stable and has a slew rate of $50V/\mu s$. When used in inverting amplifier applications, feedforward compensation can be used to achieve slew rates in excess of $150V/\mu s$. Linear Technology Corporation's advanced processing techniques make the LT118A an ideal choice for high speed applications.

Voltage Follower

Voltage Follower Pulse Response


TIME $\rightarrow 0.5 \mu s/DIV$.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ± 20 V
Differential Input Current (Note 1) ± 10mA
Input Voltage (Note 2) $\pm 20V$
Output Short Circuit Duration Indefinite
Operating Temperature Range
LT118A/LM118
LT318A/LM318 0°C to 70°C
Storage Temperature Range
All Devices
Lead Temperature (Soldering, 10 sec.) 300°C

PACKAGE/ORDER INFORMATION

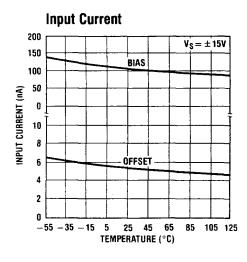
ELECTRICAL CHARACTERISTICS (Note 3)

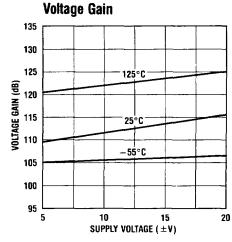
SYMBOL	PARAMETER	CONDITIONS		MIN	LT118A TYP	MAX	MIN	LM118 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		0.5 1	1 2		2	4 6	mV mV
I _{os}	Input Offset Current		•		6 10	20 30		6	50 100	nA nA
1 _B	Input Bias Current		•		120	250 500		120	250 500	nA nA
R _{IN}	Input Resistance			1	3		1	3		МΩ
A _V	Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	•	100 100	500		50 25	200		V/mV V/mV
SR	Slew Rate	$V_S = \pm 15V, A_V = 1$		50	70		50	70		V/μS
GBW	Gain Bandwidth Product	$V_S = \pm 15V$			15			15		MHz
	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2k\Omega$	•	± 12	± 13		± 12	± 13		٧
	Input Voltage Range	V _S = ± 15V	•	± 11.5			±11.5			٧
Is	Supply Current	T _A = 125°C			5 4.5	8 7		5 4.5	8 7	mA mA
CMRR	Common Mode Rejection Ratio		•	86	100		80	100		dB
PSRR	Power Supply Rejection Ratio		•	86	100		70	80		dB

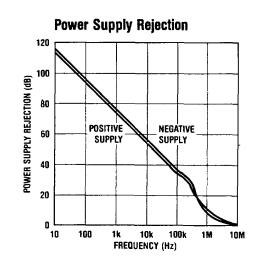
ELECTRICAL CHARACTERISTICS (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	LT318A TYP	MAX	MIN	LM318 TYP	MAX	UNITS
V _{os}	Input Offset Voltage		•		0.5	1 2		4	10 15	mV mV
los	Input Offset Current		•		10	20 30		30	200 750	nA nA
1 _B	Input Bias Current		•		150	250 500		150	500 750	nA nA
R _{IN}	Input Resistance			0.5	3		0.5	3		МΩ
A _V	Large Signal Voltage Gain	$V_S = \pm 15V$, $V_{OUT} = \pm 10V$, $R_L \ge 2k\Omega$	•	100 100	500		25 20	200		V/mV V/mV
SR	Slew Rate	$V_S = \pm 15V, A_V = 1$		50	70		50	70		V/µs
GBW	Gain Bandwidth Product	$V_S = \pm 15V$			15			15		MHz
	Output Voltage Swing	$V_S = \pm 15V$, $R_L = 2k\Omega$	•	± 12	± 13		± 12	± 13		V
	Input Voltage Range	$V_S = \pm 15V$	•	± 11.5			± 11.5			v
Is	Supply Current				5	10		5	10	mA
CMRR	Common Mode Rejection Ratio		•	86	100		70	100		dB
PSRR	Power Supply Rejection Ratio		•	86	100		65	80		dB

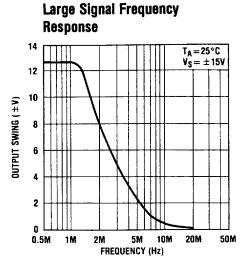
The • denotes those specifications which apply over the full operating temperature range.

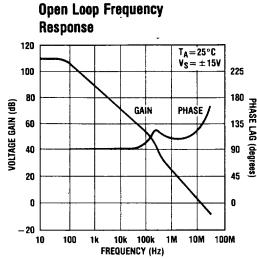

The shaded electrical specifications indicate those parameters which have been improved or guaranteed test limits provided for the first time.

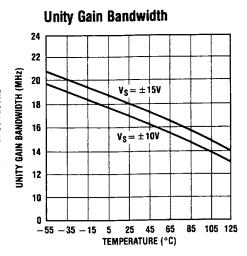

Note 1: The inputs are shunted with back-to-back zeners for overvoltage protection. Excessive current will flow if a differential voltage greater than 5V is applied to the inputs.

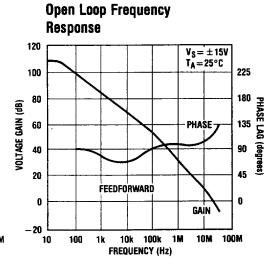

Note 2: For supply voltages less than $\pm 15V$, the maximum input voltage is equal to the supply voltage.

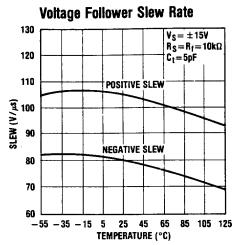
Note 3: These specifications apply for $\pm 5V \le V_S \le \pm 20V$. The power supplies must be bypassed with a $0.1\mu F$ or greater disc capacitor within 4 inches of the device.

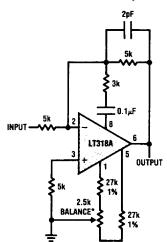

TYPICAL PERFORMANCE CHARACTERISTICS

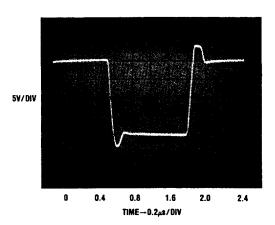




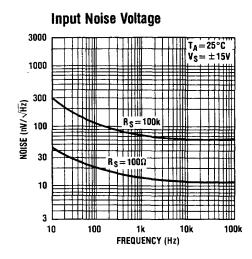


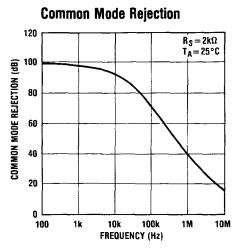

TYPICAL PERFORMANCE CHARACTERISTICS

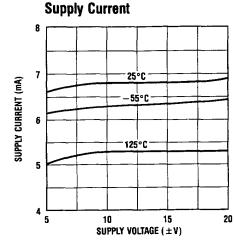


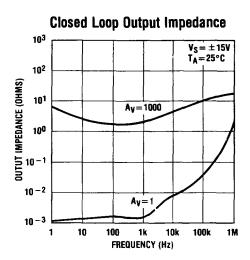


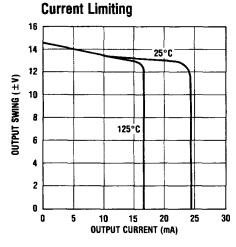
Feedforward Compensation for Slew Rates of $150 V/\mu s$

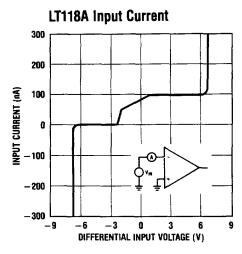

*BALANCE CIRCUIT NECESSARY FOR INCREASED SLEW RATE

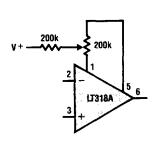

Pulse Response of Feedforward Inverter

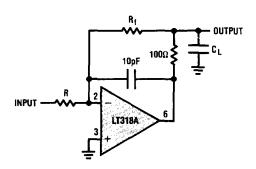


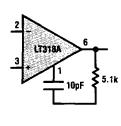



TYPICAL PERFORMANCE CHARACTERISTICS

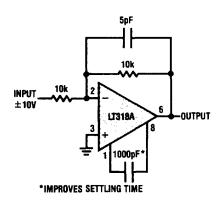




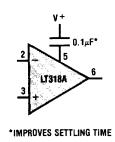



Offset Balancing

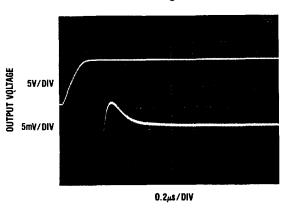
Isolating Large Capacitive Loads

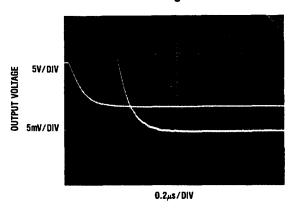


Overcompensation for Increased Stability



SETTLING TIME CIRCUITS

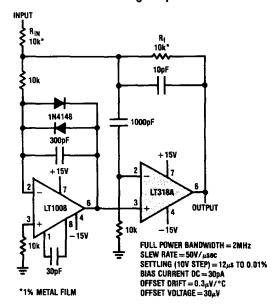

Settling Time Test Circuit

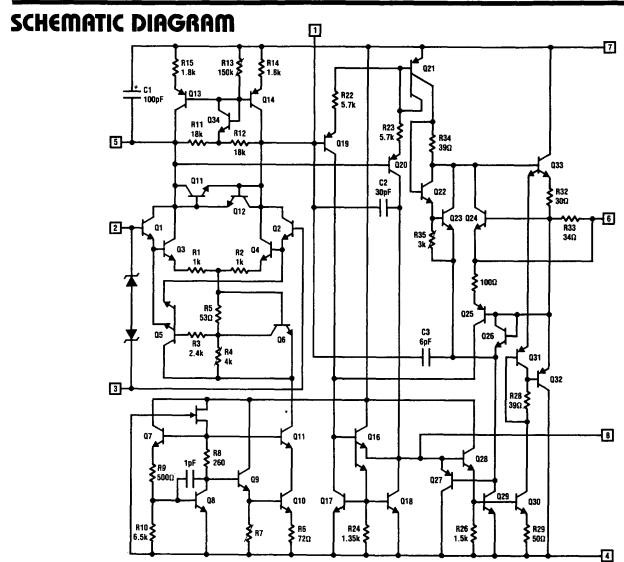

Alternate Compensation for Improved Settling Time

Settling Time

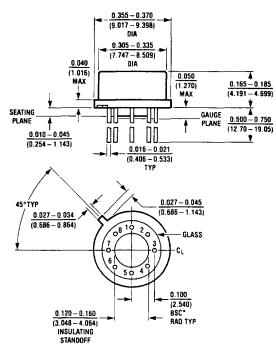
Settling Time

APPLICATIONS INFORMATION

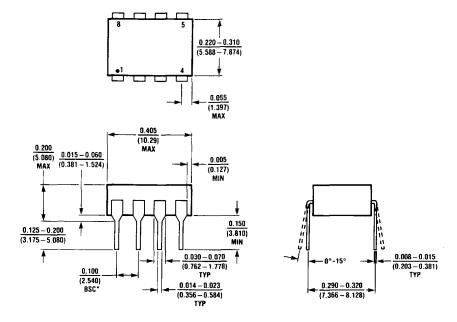

Because of their wider bandwidth, the LT118A and LM118 operational amplfiers require more application care than most general purpose low frequency amplifiers. One of the most critical requirements is that power supplies should be bypassed with a $0.1\mu F$ (or larger) disc ceramic capacitor within an inch of the device. Also, stray capacitance at either the input or output can cause oscillation. While input capacitance can be compensated by placing a capacitor across the feedback resistor, load capacitance must be minimized or isolated as shown. Even the 50pF input capacitance of a 1X scope probe can alter the response of the device.


Settling time, an important parameter in many high speed amplifier applications, is difficult to measure and optimize. Settling time is very "application dependent" and is influenced by external components, layout and the amplifier. In general, the settling time to 0.01% can be minimized by using a circuit similar to that shown. In addition to the compensation network shown, a capacitor is needed across the feedback resistor to minimize ringing.

Power supply bypassing can also affect settling time. The amplifier has low power supply rejection ratio at high frequencies, so transients and ringing on the supply leads can appear at the output. Large $(22\mu F)$ solid tantalum capacitors are preferred to minimize supply aberrations.

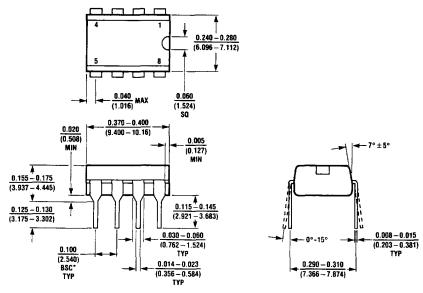

Precision Inverting Amplifier

PACKAGE DESCRIPTION


H Package Metal Can

NOTE: DIMENSIONS IN INCHES

ſ	T _i max	θ_{ja}	$\theta_{ m jc}$
L	150°C	150°C/W	45°C/W


J8 Package 8 Lead Hermetic DIP

NOTE: DIMENSIONS IN INCHES UNLESS OTHERWISE NOTED *LEADS WITHIN 0.007 OF TRUE POSITION (TP) AT GAUGE PLANE

T _j max	$\theta_{\mathbf{j}\mathbf{a}}$
150°C	100°C/W

N8 Package 8 Lead Plastic

NOTE: DIMENSIONS IN INCHES UNLESS OTHERWISE NOTED *LEADS WITHIN 0.007 OF TRUE POSITION (TP) AT GAUGE PLANE

T _j max	θ_{ja}				
100°C	130°C/W				