

#### DESCRIPTION

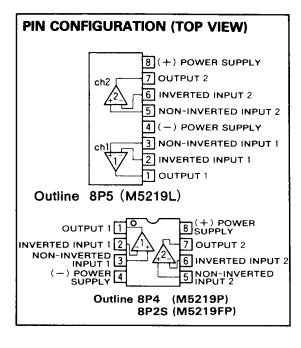
The M5219 is a semiconductor integrated circuit designed for a preamplifier in audio equipment of stereo and cassette tape decks.

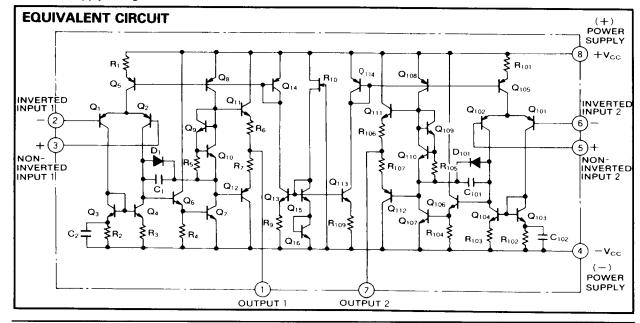
Two low-noise operational amplifier circuits displaying internal phase-compensated high gain and low distortion are contained in a 8-pin SIP, DIP or FP, suitable for application as an equalizer and tone control amplifier of stereo equipment and cassette tape decks.

The unit can also be used as a general-purpose amplifier in portable equipment such as a stereo cassette tape recorder of a single power supply type as it operates at a low supply voltage.

## FEATURES

- Low noise ……… V<sub>NI</sub>=0.9 μVrms typ.(Rg=2.2kΩ, RIAA) S/N=77dB typ. (Shorted input, IHF-A network) (RIAA, PHONO=2.5mVrms)
- High voltage  $V_{cc} = \pm 25V(50V)$
- High gain, low distortion Gvo=110dB, THD=0.001%(typ.)
- High slew rate  $SR = 6.5V/\mu s(typ.)$
- High load current, high power dissipation


.....I<sub>LP</sub>= $\pm$ 50mA, P<sub>d</sub>=800mW(SIP) P<sub>d</sub>=625mW(DIP), P<sub>d</sub>=440mW(FP)


#### **APPLICATION**

General-purpose preamplifier in stereo equipment, tape decks and radio stereo cassette recorders.

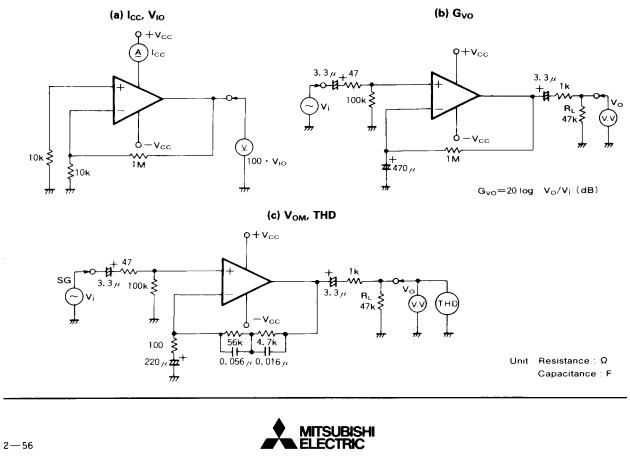
#### **RECOMMENDED OPERATING CONDITIONS**

Supply voltage range  $\pm 2 \sim \pm 22.5V$ Rated supply voltage  $\pm 22.5V$ 



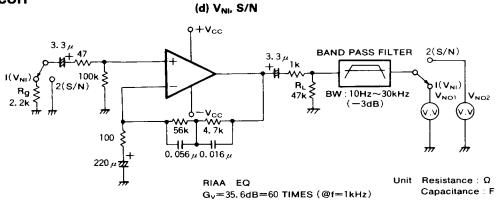





# **ABSOLUTE MAXIMUM RATINGS** ( $\tau_a=25$ °C, unless otherwise noted)

| Symbol                     | Parameter                  | Conditions Ratings              | Unit             |
|----------------------------|----------------------------|---------------------------------|------------------|
| V <sub>cc</sub>            | Supply voltage             | ±25(50)                         | V                |
| <u></u><br>І <sub>LP</sub> | Load current               | ±50                             | mA               |
| Vid                        | Differential input voltage | ±30                             | V                |
| Vic                        | Common input voltage       | ±22.5V                          | V                |
| Pd                         | Power dissipation          | 800(SIP)/625(DIP)/440(F         | <sup>o)</sup> mW |
| Kθ                         | Thermal derating           | Ta≥25°C 8(SIP)/6.25(DIP)/4.4(FI | ) <b>mW/℃</b>    |
| Topr                       | Ambient temperature        | -20~+75                         | °C               |
| Tstg                       | Storage temperature        | -55~+125                        | Ĉ                |

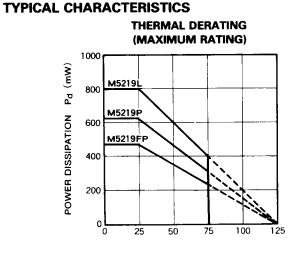
#### **ELECTRICAL CHARACTERISTICS** ( $\tau_a=25^{\circ}C$ , $v_{cc}=\pm22.5V$ )


| Symbol          | Parameter                    | Test conditions                              | Limits |       |      | Unit  |
|-----------------|------------------------------|----------------------------------------------|--------|-------|------|-------|
|                 |                              |                                              | Min    | Тур   | Max  | Unit  |
| Icc             | Circuit current              | V <sub>in</sub> =0                           |        | 3.5   | 7.0  | mA    |
| Vio             | Input offset voltage         | R <sub>s</sub> ≦10kΩ                         |        | 0.5   | 6.0  | mV    |
| I <sub>IB</sub> | Input bias current           |                                              |        | 0.3   |      | μA    |
| Gvo             | Open loop voltage gain       | $f=100Hz, R_{L}=47k\Omega, C_{NF}=470\mu F$  | 90     | 110   |      | dB    |
| Vom             | Maximum output voltage       | $f=1kHz, THD=0.1\%, R_L=47k\Omega, RIAA$     | 12.5   | 14.0  |      | Vrms  |
| THD             | Total harmonic distortion    | $f=1kHz, V_0=5Vrms, R_L=47k\Omega, RIAA$     |        | 0.001 | 0.03 | %     |
| VNI             | Input referred noise voltage | $R_g=2.2k\Omega$ , $BW=10Hz\sim30kHz$ , RIAA |        | 0.9   | 1.8  | μVrms |
| S/N             | Signal-to-noise ratio        | Shorted input (Rg=47Ω), IHF-A network        |        | 77    |      | dB    |
|                 |                              | PHONO=2.5mVrms, RIAA                         |        |       |      |       |

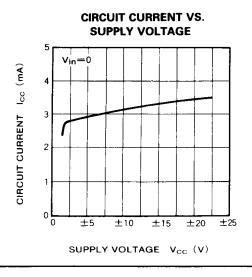
# **TEST CIRCUITS**

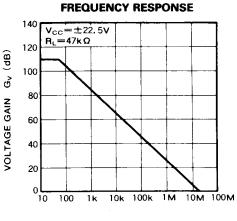


This Material Copyrighted By Its Respective Manufacturer


# **TEST CIRCUIT**



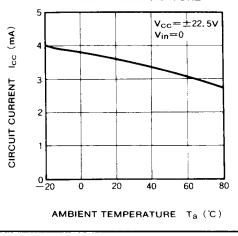

1.  $V_{NI} = V_{NO1} / 60(\mu V rms)$ 


2. S/N=20 log(2.5mVrms/( $V_{NO2}/60$ ) (dB)

An AC voltmeter V.V with a built-in IHF-A network filter should be used for measuring the S/N ratio.



AMBIENT TEMPERATURE T<sub>a</sub> (℃)



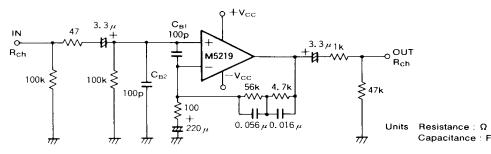



**VOLTAGE GAIN VS.** 

FREQUENCY f (Hz)

#### CIRCUIT CURRENT VS. AMBIENT TEMPERATURE



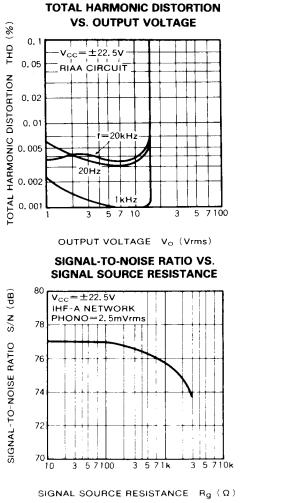



M5219L, P, FP

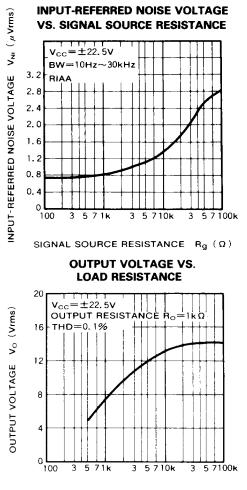
# DUAL LOW-NOISE OPERATIONAL AMPLIFIERS(DUAL POWER SUPPLY TYPE)

#### **APPLICATION EXAMPLES**

(1) Stereo equalizer amplifier circuit



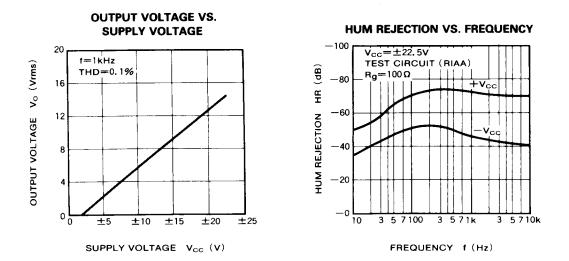

TYPICAL CHARACTERISTICS ( $v_{cc}=\pm 22.5v$ , RIAA)

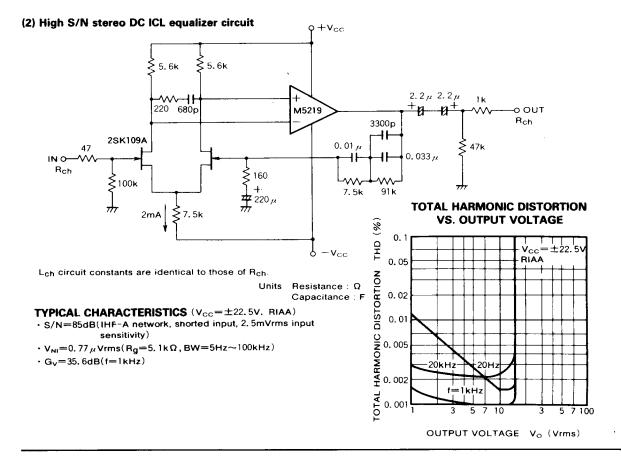

 $\cdot$  G<sub>V</sub>=35.6dB(f=1kHz)

 $\cdot V_{NI}=0.9 \mu Vrms(R_g=2.2 k \Omega, BW=10 Hz \sim 30 kHz)$ 

- S/N=77dB(IHF-A network, shorted input, 2.5mVrms input sensitivity)
- THD=0.001%(f=1kHz,  $V_0$ =5Vrms)




 $L_{ch}$  circuit constants are identical to those of  $R_{ch}$   $C_{B1}, C_{B2}$ : Capacitors for buzz prevention, use if required.  $R_{o}$ : Resistor used to prevent parasitic oscillation for capacitive loads and current limiting with shorted and other abnormal load conditions.



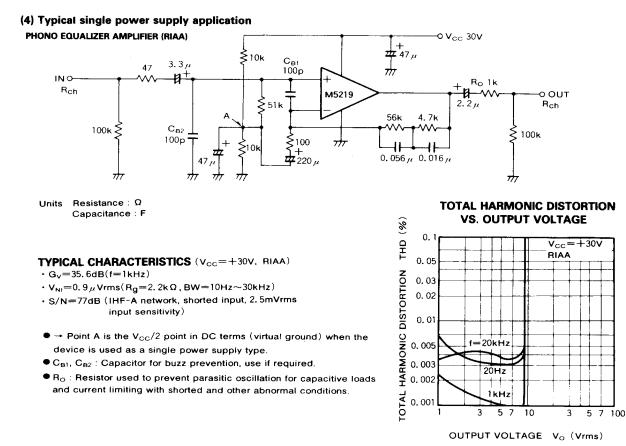

LOAD RESISTANCE  $R_L$  (  $\Omega$  )



2--58








# M5219L, P, FP

## DUAL LOW-NOISE OPERATIONAL AMPLIFIERS(DUAL POWER SUPPLY TYPE)

#### $+v_{\rm cc}$ 2.2 µ 10 µ IN O Ð + Rch M5219 -0 OUT **TOTAL HARMONIC DISTORTION** Rch **VS. OUTPUT VOLTAGE** (%) 270k Υ $v_{cc}$ ₩<u>1.2</u>м 0.1 THD $v_{cc} = \pm 15v$ 100k S **≶**10к NAB \*\*\* 0.05 8.2k Ş 430 HARMONIC DISTORTION 0.015 µ + 0.02 🛨 47 u $\overline{m}$ 100Hz 0.01 Units Resistance : Q Capacitance : F ) Ir H 0.005 Lch circuit constants are identical to those of Rch. 0.002 TYPICAL CHARACTERISTICS ( $v_{cc} = \pm 15v$ , NAB) TOTAL 0.001 $\cdot G_v = 29.9 dB(f = 1 kHz)$ 3 5 10 3 5 7 100 $\cdot V_{NI} = 1.4 \mu Vrms(R_g = 2.2 k\Omega, BW = 20 Hz \sim 15 kHz)$ (-117dBv) OUTPUT VOLTAGE Vo (Vrms)

#### (3) Tape deck equalizer amplifier circuit





2-60