FEATURES

- Unipolar input range (0 to +10V)
- 2 MHz sampling rate
- 4096-to-1 dynamic range (72.2dB)
- Low noise, $600 \mu \mathrm{Vrms}$ ($1 / 4$ of an LSB)
- Outstanding differential nonlinearity error (± 0.45 LSB max.)
- Small, 24-pin ceramic DDIP
- Low power, 1.75 Watts
- Operates from $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies
- Edge-triggered, no pipeline delay
- Low cost

GENERAL DESCRIPTION

The functionally complete, easy-to-use ADS-CCD1202 is a 12-bit, 2MHz Sampling A/D Converter whose performance and production testing have been optimized for use in CCD applications. This device delivers the lowest noise ($600 \mu \mathrm{Vrms}$) and the best differential linearity error (± 0.45 LSB maximum) of any commercially available 12-bit A/D in its speed class. It can respond to full scale input steps (from empty to full well) with less than a single count of error, and its input is immune to overvoltages that may occur due to blooming.

Packaged in an industry-standard, 24-pin, ceramic DDIP, the ADS-CCD1202 requires $\pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$) and +5 V supplies and typically consumes 1.75 (1.45) Watts. The device is 100% production tested for all critical performance parameters and is fully specified over both the 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$ operating temperature ranges.
For those applications using correlated double sampling, the ADS-CCD1202 can be supplied without its internal samplehold amplifier and achieve conversion rates up to 2.5 MHz .

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 (LSB)	24	$-12 \mathrm{~V} /-15 \mathrm{~V}$ SUPPLY
2	BIT 11	23	GROUND
3	BIT 10	22	$+12 \mathrm{~V} /+15 \mathrm{~V}$ SUPPLY
4	BIT 9	21	+10 R REFERENCE OUT
5	BIT 8	20	ANALOG INPUT
6	BIT7	19	GROUND
7	BIT 6	18	NO CONNECT
8	BIT 5	17	NO CONNECT
9	BIT 4	16	START CONVERT
10	BIT 3	15	EOC
11	BIT 2	14	GROUND
12	BIT 1 (MSB)	13	+5V SUPPLY

DATEL will also entertain discussions about including the CDS circuit internal to the ADS-CCD1202. Contact us for details.

Figure 1. ADS-CCD1202 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts
-12V/-15V Supply (Pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	-0.3 to + Vod +0.3	Volts
Analog Input (Pin 20)	-5 to +14	Volts
Lead Temp. (10 seconds)	+300	${ }^{\circ} \mathrm{C}$

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case ADS-CCD1202MC ADS-CCD1202MM				
	0	-	+70	${ }^{\circ} \mathrm{C}$
	-55	-	+125	${ }^{\circ} \mathrm{C}$
Thermal Impedance				
$\theta j \mathrm{c}$	-	5	-	${ }^{\circ} \mathrm{C} /$ Watt
θ ca	-	24	-	${ }^{\circ} \mathrm{C} /$ Watt
Storage Temperature Range	-65	-	+150	${ }^{\circ} \mathrm{C}$
PackageType Weight		metal-s 42 oun	d ceram 12 gra	

FUNCTIONAL SPECIFICATIONS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{VcC}= \pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$), $+\mathrm{VDD}=+5 \mathrm{~V}, 1.2 \mathrm{MHz}$ sampling rate, and a minimum 1 minute warmup (1) unless otherwise specified.)

	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			
ANALOG INPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Input Voltage Range (2) Input Resistance Input Capacitance	$\overline{-99}$	$\begin{gathered} 0 \text { to }+10 \\ 1 \\ 7 \end{gathered}$	$\begin{gathered} - \\ 1.01 \\ 15 \end{gathered}$	$\overline{0.99}$	$\begin{gathered} 0 \text { to }+10 \\ 1 \\ 7 \end{gathered}$	$\begin{gathered} - \\ 1.01 \\ 15 \end{gathered}$	$\overline{0.99}$	$\begin{gathered} 0 \text { to }+10 \\ 1 \\ 7 \end{gathered}$	$\begin{gathered} - \\ 1.01 \\ 15 \end{gathered}$	Volts k Ω pF
DIGITAL INPUTS										
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Start Convert Positive Pulse Width (3)	$\begin{aligned} & +2 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & \frac{-}{200} \end{aligned}$	$\begin{gathered} - \\ +0.8 \\ +20 \\ -20 \\ - \end{gathered}$	+2	$\begin{aligned} & - \\ & \frac{-}{200} \end{aligned}$	$\begin{gathered} - \\ +0.8 \\ +20 \\ -20 \\ -20 \end{gathered}$	+2 - - -	$\begin{aligned} & - \\ & \frac{-}{200} \end{aligned}$	$\begin{gathered} - \\ +0.8 \\ +20 \\ -20 \\ - \end{gathered}$	Volts Volts $\mu \mathrm{A}$ $\mu \mathrm{A}$ ns
STATIC PERFORMANCE										
Resolution Integral Nonlinearity (fin = 10kHz) Differential Nonlinearity (fin = 10kHz) Full Scale Absolute Accuracy Offset Error (Tech Note 2) Gain Error (Tech Note 2) No Missing Codes (fin $=10 \mathrm{kHz}$)	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & 12 \end{aligned}$	$\begin{gathered} 12 \\ \pm 0.5 \\ +0.25 \\ +0.1 \\ \pm 0.15 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} - \\ - \\ \pm 0.45 \\ \pm 0.3 \\ \pm 0.3 \\ \pm 0.4 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & 12 \end{aligned}$	$\begin{gathered} 12 \\ \pm 0.5 \\ \pm 0.25 \\ \pm 0.2 \\ \pm 0.2 \\ \pm 0.4 \end{gathered}$	$\begin{gathered} - \\ - \\ \pm 0.45 \\ \pm 0.5 \\ \pm 0.5 \\ \pm 0.8 \\ - \end{gathered}$	$\frac{-}{-}$	$\begin{gathered} 12 \\ \pm 1 \\ \pm 0.35 \\ \pm 0.3 \\ \pm 0.5 \\ \pm 0.5 \end{gathered}$	$\begin{gathered} \pm 0.75 \\ \pm 0.8 \\ \pm 1.2 \\ \pm 1.4 \end{gathered}$	Bits LSB LSB \%FSR \%FSR \% Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5 dB) dc to 500 kHz 500 kHz to 1 MHz Total Harmonic Distortion (-0.5 dB) dc to 500 kHz 500 kHz to 1 MHz Signal-to-Noise Ratio (w/o distortion, -0.5 dB) dc to 500 kHz 500 kHz to 1 MHz Signal-to-Noise Ratio (4) (8 distortion, -0.5 dB) dc to 500 kHz 500 kHz to 1 MHz Two-tone Intermodulation Distortion $\begin{aligned} & (\mathrm{fin}=200 \mathrm{kHz}, 500 \mathrm{kHz} \\ & \mathrm{fs}=2 \mathrm{MHz},-0.5 \mathrm{~dB}) \end{aligned}$ Noise Input Bandwidth (-3dB) Small Signal (-20dB input) Large Signal(-0.5 dB input) Feedthrough Rejection (fin = 1MHz) Slew Rate Aperture Delay Time Aperture Uncertainty S/H Acquisition Time (to $\pm 0.01 \%$ FSR, 10 V step) Overvoltage Recovery Time (5) A/D Conversion Rate	- - 71 71 70 68	$\begin{gathered} -80 \\ -77 \\ -76 \\ -75 \\ \\ 72 \\ 72 \\ \\ \\ 71 \\ 71 \\ \\ \\ \hline 83 \\ 600 \\ 9 \\ 8 \\ \hline \end{gathered}$	-75 -71 -73 -70 -	- - - - 71 71 70 68 - 150 -	$\begin{gathered} -80 \\ -77 \\ -76 \\ -75 \\ \\ 72 \\ 72 \\ \\ 71 \\ 71 \\ 71 \\ \\ -82 \\ 600 \\ 9 \\ 9 \\ 8 \\ \hline 82 \\ \pm 200 \\ \pm 20 \\ 5 \\ \hline 190 \\ 400 \end{gathered}$	-75 -71 -73 -70 -	- - 71 70 68 65	-76 -73 -74 -71 72 72 70 69 -81 600 9 8 82 ± 200 ± 20 5 190 400	-72 -66 -70 -65 -	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \\ \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \\ \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \\ \text { dB } \end{gathered}$

	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			UNITS
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Internal Reference Voltage Drift External Current	$+9.95$	$\begin{gathered} +10.0 \\ \pm 5 \\ - \end{gathered}$	$\begin{gathered} +10.05 \\ -1.5 \end{gathered}$	+9.95 -	+10.0 ± 5 -	$\begin{gathered} +10.05 \\ - \\ 1.5 \end{gathered}$	+9.95 -	+10.0 ± 5 -	$\begin{gathered} +10.05 \\ - \\ \hline 1.5 \end{gathered}$	Volts ppm $/{ }^{\circ} \mathrm{C}$ mA
DIGITAL OUTPUTS										
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Delay, Falling Edge of EOC to Output Data Valid	+2.4	- - - - -	$\begin{gathered} - \\ +0.4 \\ -4 \\ +4 \\ 35 \end{gathered}$	+2.4	- - - - -	- +0.4 -4 +4 35	+2.4	- - - - -	- +0.4 -4 +4 35	Volts Volts mA mA ns
Output Coding	Straight Binary									
POWER REQUIREMENTS, $\pm 15 \mathrm{~V}$										
Power Supply Range +15V Supply -15V Supply +5 V Supply Power Supply Current +15V Supply -15V Supply +5 V Supply Power Dissipation Power Supply Rejection	+14.5 -14.5 +4.75	$\begin{aligned} & +15.0 \\ & -15.0 \\ & +5.0 \\ & +43 \\ & -48 \\ & +82 \\ & 1.75 \end{aligned}$	$\begin{aligned} & +15.5 \\ & -15.5 \\ & +5.25 \\ & \\ & +55 \\ & -55 \\ & +95 \\ & +.95 \\ & \pm 0.01 \end{aligned}$	+14.5 -14.5 +4.75	+15.0 -5.0 +5.0 +43 -48 +82 1.75	$\begin{aligned} & +15.5 \\ & -15.5 \\ & +5.25 \\ & \\ & +55 \\ & -55 \\ & +95 \\ & 1.95 \\ & \pm 0.01 \end{aligned}$	+14.5 -14.5 +4.75	+15.0 -15.0 +5.0 +43 -48 +82 1.75	$\begin{aligned} & +15.5 \\ & -15.5 \\ & +5.25 \\ & \\ & +55 \\ & -55 \\ & +95 \\ & 1.95 \\ & \pm 0.01 \end{aligned}$	$\begin{gathered} \text { Volts } \\ \text { Volts } \\ \text { Volts } \\ \\ \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \text { Watts } \\ \% \mathrm{FSR} / \% \mathrm{~V} \end{gathered}$
POWER REQUIREMENTS, $\pm 12 \mathrm{~V}$										
```Power Supply Range +12V Supply -12V Supply +5 V Supply Power Supply Current +12V Supply -12V Supply +5 V Supply Power Dissipation Power Supply Rejection```	$\begin{aligned} & +11.5 \\ & -11.5 \\ & +4.75 \end{aligned}$	$\begin{gathered} +12.0 \\ -12.0 \\ +5.0 \\ +43 \\ -48 \\ +82 \\ 1.45 \\ - \end{gathered}$	$\begin{aligned} & +12.5 \\ & -12.5 \\ & +5.25 \\ & +55 \\ & +55 \\ & +55 \\ & +1.65 \\ & \pm 0.01 \end{aligned}$	+11.5 -11.5 +4.75	$\begin{aligned} & +12.0 \\ & -12.0 \\ & +5.0 \\ & +43 \\ & +48 \\ & +82 \\ & 1.45 \end{aligned}$	$\begin{aligned} & +12.5 \\ & -12.5 \\ & +5.25 \\ & \\ & +55 \\ & -55 \\ & +95 \\ & 1.65 \\ & \pm 0.01 \end{aligned}$	+11.5 -11.5 +4.75	$\begin{gathered} +12.0 \\ -12.0 \\ +5.0 \\ +43 \\ +48 \\ +82 \\ +1.45 \\ - \end{gathered}$	$\begin{aligned} & +12.5 \\ & -12.5 \\ & +5.25 \\ & \\ & +55 \\ & -55 \\ & +95 \\ & 1.65 \\ & \pm 0.01 \end{aligned}$	$\begin{gathered} \text { Volts } \\ \text { Volts } \\ \text { Volts } \\ \\ \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \text { Watts } \\ \text { \%FSR/\%V } \end{gathered}$
Footnotes:   (1) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time.   (2) Contact DATEL for availability of other input voltage ranges.				(4) Effective bits is equal to:$(\text { (SNR }+ \text { Distortion })-1.76+\left[20 \log \frac{\text { Full Scale Amplitude }}{\text { Actual Input Amplitude }}\right]$						

## TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-CCD1202 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19, and 23) directly to a large analog ground plane beneath the package.
Bypass all power supplies, as well as the REFERENCE OUTPUT (pin 21), to ground with $4.7 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-CCD1202 as possible.
2. ADS-CCD1202 achieves its specified accuracies without external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gaincalibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
3. When operating the ADS-CCD1202 from $\pm 12 \mathrm{~V}$ supplies, do not drive external circuitry with the REFERENCE OUTPUT (pin 21). The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
4. A passive bandpass filter is used at the input of the $A / D$ for all production testing.
5. Applying a start pulse while a conversion is in progress ( $\overline{\mathrm{EOC}}=$ logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

Table 1. Zero and Gain Adjust

Input Voltage   Range	Zero Adjust   +1/2 LSB	Gain Adjust   +FS $\mathbf{- 1} \mathbf{1} / \mathbf{2}$ LSB
0 to +10 V	+1.2207 mV	+9.99634 V

## CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)
Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-CCD1202's initial accuracy errors and may not be able to compensate for additional system errors.


Figure 2. ADS-CCD1202 Calibration Circuit
All fixed resistors in Figure 2 should be metal-film types, and multi-turn potentiometers should have TCR's of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to minimize drift with temperature. In many applications, the CCD will require an offset-adjust (black balance) circuit near its output and also a gain stage, presumably with adjust capabilities, to match the output voltage of the CCD to the input range of the AID. If one is performing a "system I/O calibration" (from light in to digital out), these circuits can be used to compensate for the relatively small initial offset and gain errors of the A/D. This would eliminate the need for the circuit shown in Figure 2.


Figure 3. Typical ADS-CCD1202 Connection Diagram

A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-CCD1202, offset adjusting is normally accomplished at the point where all output bits are 0 's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+1 / 2$ LSB (+1.2207mV).

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0 . This transition ideally occurs when the analog input is at +full scale minus $11 / 2$ LSB's (+9.99634V).

## Offset Adjust Procedure

1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200 kHz conversion rate will reduce flicker.
2. Apply +1.2207 mV to the ANALOG INPUT (pin 20).
3. Adjust the offset potentiometer until the output bits are 0000000000000 and the LSB flickers between 0 and 1.

## Gain Adjust Procedure

1. Apply +9.99634 V to the ANALOG INPUT (pin 20).
2. Adjust the gain potentiometer until all output bits are 1 's and the LSB flickers between 1 and 0 .

Table 2. ADS-CCD1202 Output Coding

Input Voltage   ( $\mathbf{0}$ to $+\mathbf{1 0 V}$ )	Unipolar   Scale	Digital Output   MSB LSB
+9.9976	$+\mathrm{FS}-1 \mathrm{LSB}$	111111111111
+7.5000	$+3 / 4 \mathrm{FS}$	110000000000
+5.0000	$+1 / 2 \mathrm{FS}$	100000000000
+2.5000	$+1 / 4 \mathrm{FS}$	010000000000
+0.0024	+1 LSB	000000000001
0	0	000000000000

## THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. All room-temperature ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.
These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed," and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically $35 \%$ ) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters,"or contact DATEL directly, for additional information.


Figure 4. ADS-CCD1202 Timing Diagram

## TIMING

The ADSCCD-1202 is an edge triggered device. A conversion is initiated by the rising edge of the start convert pulse and no additional external timing signals are required. The device does
not employ "pipeline" delays to increase its throughput rate. It does not require multiple start convert pulses to bring valid digital data to its output pins.



Figure 6. ADS-CCD1202 FFT
(fin $=975 \mathrm{kHz}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{MHz}, \mathrm{Vin}=-0.5 \mathrm{~dB}, 4,096$ points)


Figure 7. ADS-CCD1202 Grounded Input Histogram


Figure 8. ADS-CCD1202 Histogram and Differential Nonlinearity

MECHANICAL DIMENSIONS INCHES (mm)


ORDERING INFORMATION

	OPERATING		Accessories	
MODEL NUMBER	TEMP. RANGE	ANALOG INPUT	ADS-BCCD1202	Evaluation Board (without ADS-CCD1202)
ADS-CCD1202MC	0 to $+70^{\circ} \mathrm{C}$	Unipolar (0 to +10 V )	HS-24	Receptacles for pc board mounting can be ordered through
ADS-CCD1202MM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar ( 0 to +10 V )	Amp Inc., part number 3-331272-8 (component lead socket),	
Contact DATEL for availability of surface-mount packaging or	Amp	24 required.		
high-reliability screening.				


DS-0288A
10/96

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444
DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 DATEL GmbH Munchen, Germany Tel: 89-544334-0
DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025

