DESCRIPTION

The AMS1069 is a monolithic synchronous buck regulator. The device integrates two MOSFETs, and provides 2A of continuous load current over a wide input voltage of 4.75 V to 18V. Current mode control provides fast transient response and cycle-by-cycle current limit.

An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to $1 \mu \mathrm{~A}$.

This device, available in an SOP8/ESOP8 package, provides a very compact solution with minimal external components.

FEATURES

2A Output Current
Wide 4.75 V to 18 V Operating Input Range Integrated Power MOSFET Switches
Output Adjustable from 0.905 V to 15 V
Up to 93\% Efficiency
Programmable Soft-Start
Stable with Low ESR Ceramic Output Capacitors
Fixed 380KHz Frequency
Cycle-by-Cycle Over Current Protection Input Under Voltage Lockout

APPLICATIONS

Distributed Power Systems
Networking Systems
FPGA, DSP, ASIC Power Supplies
Green Electronics/ Appliances
Notebook Computers

TYPICAL APPLICATION

R2 can be as high as $100 \mathrm{k} \Omega$, but a typical value is $10 \mathrm{k} \Omega$.

PACKAGE REFERENCE

TOP VIEW		
BS	\bigcirc	8 ss
IN		7 EN
sw		6 сомP
GND		5 FB
Part Number	Package	Temperature
AMS1069	SOP8	-40° to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS
Supply Voltage V_{IN} -0.3 V to +20 V
Switch Node Voltage V_{sw} 21V
Boost Voltage $\mathrm{V}_{\mathrm{BS}} \ldots \mathrm{V}_{\mathrm{Sw}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{sw}}+6 \mathrm{~V}$
All Other Pins -0.3 V to +6 V
Junction Temperature $150^{\circ} \mathrm{C}$
Lead Temperature $260^{\circ} \mathrm{C}$
Storage Temperature

\qquad
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Recommended Operating Conditions (2)
Input Voltage V_{IN}. 4.75 V to 18 V
Output Voltage $\mathrm{V}_{\text {Out }}$ 0.905 V to 15 V
Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Shutdown Supply Current		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$,	3.0	$\mu \mathrm{A}$
Supply Current		$\mathrm{V}_{\text {EN }}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$		1.3	1.5	mA
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 18 \mathrm{~V}$	0.885	0.905	0.925	V
Feedback Overvoltage Threshold				1.1		V
Error Amplifier Voltage Gain	$\mathrm{A}_{E A}$			400		V/V
Error Amplifier Transconductance	$\mathrm{G}_{\text {EA }}$	$\Delta \mathrm{l}_{\mathrm{C}}= \pm 10 \mu \mathrm{~A}$		700		$\mu \mathrm{A} / \mathrm{V}$
High-Side Switch On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}$			-		$\mathrm{m} \Omega$
Low-Side Switch On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$			-		$\mathrm{m} \Omega$
High-Side Switch Leakage Current		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Upper Switch Current Limit		Minimum Duty Cycle		3.2		A
Lower Switch Current Limit		From Drain to Source		1.0		A
COMP to Current Sense Transconductance	G_{cs}			3.5		A/V
Oscillation Frequency	$\mathrm{F}_{\text {osc1 }}$			380		KHz
Short Circuit Oscillation Frequency	$\mathrm{F}_{\text {osc2 }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		100		KHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{FB}}=1.0 \mathrm{~V}$		90		\%
Minimum On Time				220		ns
EN Shutdown Threshold Voltage		$\mathrm{V}_{\text {EN }}$ Rising	1.1	1.5	2.0	V
EN Shutdown Threshold Voltage Hysteresis				210		mV
EN Lockout Threshold Voltage			2.2	2.5	2.7	V
EN Lockout Hysterisis				210		mV

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Input Under Voltage Lockout Threshold		$\mathrm{V}_{\mathbb{N}}$ Rising		4.30		V
Input Under Voltage Lockout Threshold Hysteresis				210		mV
Soft-Start Current		$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$		6		$\mu \mathrm{~A}$
Soft-Start Period	$\mathrm{C}_{\mathrm{SS}}=0.1 \mu \mathrm{~F}$		15		ms	
Thermal Shutdown			160		${ }^{\circ} \mathrm{C}$	

PIN FUNCTIONS

Pin \#	Name	Description
1	BS	High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 10 nF or greater capacitor from SW to BS to power the high side switch.
2	IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75 V to 18 V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to $B S$ to power the high-side switch.
4	GND	Ground.
5	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.905 V .
6	COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100 \mathrm{k} \Omega$ resistor for automatic startup.
8	SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A $0.1 \mu \mathrm{~F}$ capacitor sets the soft-start period to 15 ms . To disable the soft-start feature, leave SS unconnected.

Functional Block Diagram

PACKAGE INFORMATION

SOP8

NOTE:
all dimensions are in inchs

