S DESCRIPTION

The AMS1069 is a monolithic synchronous buck regulator. The device integrates two MOSFETs, and provides 2A of continuous load current over a wide input voltage of 4.75V to 18V. Current mode control provides fast transient response and cycle-by-cycle current limit.

An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to 1µA.

This device, available in an SOP8/ESOP8 package, provides a very compact solution with minimal external components.

FEATURES

2A Output Current Wide 4.75V to 18V Operating Input Range Integrated Power MOSFET Switches Output Adjustable from 0.905V to 15V Up to 93% Efficiency Programmable Soft-Start Stable with Low ESR Ceramic Output Capacitors Fixed 380KHz Frequency Cycle-by-Cycle Over Current Protection Input Under Voltage Lockout

APPLICATIONS

Distributed Power Systems Networking Systems FPGA, DSP, ASIC Power Supplies Green Electronics/ Appliances Notebook Computers

$$V_{OUT} = 0.905 \times \frac{R1 + R2}{R2}$$

R2 can be as high as $100k\Omega,$ but a typical value is $10k\Omega.$

TYPICAL APPLICATION

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{IN}	–0.3V to +20V
Switch Node Voltage V	/ _{SW} 21V
Boost Voltage V _{BS}	\dots V _{SW} – 0.3V to V _{SW} + 6V
All Other Pins	–0.3V to +6V
Junction Temperature.	150°C
Lead Temperature	260°C
Storage Temperature	–65°C to +150°C

Recommended Operating (Conditions ⁽²⁾
Input Voltage V _{IN}	4.75V to 18V
Output Voltage VOUT	0.905V to 15V
Ambient Operating Temperature	. –40°C to +85°C

ELECTRICAL CHARACTERISTICS $V_{IN} = 12V, T_A = +25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Мах	Units
Shutdown Supply Current		V _{EN} = 0V		1	3.0	μA
Supply Current		V _{EN} = 2.0V; V _{FB} = 1.0V		1.3	1.5	mA
Feedback Voltage	V_{FB}	$4.75V \leq V_{IN} \leq 18V$	0.885	0.905	0.925	V
Feedback Overvoltage Threshold				1.1		V
Error Amplifier Voltage Gain	A_{EA}			400		V/V
Error Amplifier Transconductance	G_{EA}	ΔI_{C} = ±10 μ A		700		μA/V
High-Side Switch On Resistance	R _{DS(ON)1}			-		mΩ
Low-Side Switch On Resistance	R _{DS(ON)2}			-		mΩ
High-Side Switch Leakage Current		V_{EN} = 0V, V_{SW} = 0V			10	μA
Upper Switch Current Limit		Minimum Duty Cycle		3.2		А
Lower Switch Current Limit		From Drain to Source		1.0		Α
COMP to Current Sense Transconductance	G _{CS}			3.5		A/V
Oscillation Frequency	F _{osc1}			380		KHz
Short Circuit Oscillation Frequency	F _{osc2}	V _{FB} = 0V		100		KHz
Maximum Duty Cycle	D _{MAX}	V _{FB} = 1.0V		90		%
Minimum On Time				220		ns
EN Shutdown Threshold Voltage		V _{EN} Rising	1.1	1.5	2.0	V
EN Shutdown Threshold Voltage Hysteresis				210		mV
EN Lockout Threshold Voltage			2.2	2.5	2.7	V
EN Lockout Hysterisis				210		mV

ELECTRICAL CHARACTERISTICS (continued) $V_{IN} = 12V$, $T_A = +25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Under Voltage Lockout Threshold		V _{IN} Rising		4.30		V
Input Under Voltage Lockout Threshold Hysteresis				210		mV
Soft-Start Current		V _{SS} = 0V		6		μA
Soft-Start Period		C _{SS} = 0.1µF		15		ms
Thermal Shutdown				160		°C

PIN FUNCTIONS

Pin #	Name	Description
1	BS	High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a 10nF or greater capacitor from SW to BS to power the high side switch.
2	IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75V to 18V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.
4	GND	Ground.
5	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.905V.
6	COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100k\Omega$ resistor for automatic startup.
8	SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1μ F capacitor sets the soft-start period to 15ms. To disable the soft-start feature, leave SS unconnected.

Functional Block Diagram

S PACKAGE INFORMATION

SOP8

NOTE: ALL DIMENSIONS ARE IN INCHS