FEATURES

- $128 \mathrm{~K} \times 8$ Static RAM with Chip Select Powerdown, Output Enable and Single or Dual Chip Selects
- High Speed - to 15 ns maximum
- Operational Power, -L Version

Active: 140 mA at 15 ns
Standby: 1 mA max

- Data Retention at 2 V for Battery

Backup Operation
Screened to MIL-STD-883, Class B or to SMD 5962-89598

- Package Styles Available:
- 32-pin Ceramic 400mil DIP(\#D12)
- 32-pin Ceramic LCC(\#K11)
-32-pin Ceramic SOJ(\#Y1)
-32-pin Quad Ceramic LCC(\#KA1)

Pin Configuration

32-pin Ceramic DIP
 32-pin Ceramic SOJ

C	1	32	Vcc
A16	2	31	A15
A14	3	30	CE_{2}
A12	4	29	$\overline{\mathrm{WE}}$
A7	5	28	A13
A6	6	27	A8
A5	7	26	A9
A4	8	25	A11
A3	9	24	$\overline{\text { OE }}$
A2	10	23	A10
A1	11	22	$\overline{\mathrm{CE}}$
Ao	12	21	DQ8
DQ1	13	20	DQ7
DQ2	14	19	DQ6
DQ3	15	18	DQ5
Vss	16	17	DQ4

32-pin Ceramic LCC

NC	1	32 -	Vcc
A16	2	31	A15
A14	$\square 3$	30	CE2
A12	$\square 4$	29	WE
A7	$\square 5$	28	A13
A6	$\square 6$	27	A8
A5	$\square 7$	26	A9
A4	$\square 8$	25	A11
A3	$\square 9$	24	$\overline{\mathrm{OE}}$
A2] 10	23	A10
A_{1}	$\square 11$	22	$\overline{\mathrm{CE}}$
Ao] 12	21	DQ8
DQ1	$\square 13$	20	DQ7
DQ2] 14	19	DQ6
DQ3	$\square 15$	18	DQ5
Vss	-16	17	DQ4

OVERVIEW

The L7C108 and L7C109 are high-performance, low-power CMOS static RAMs. The storage circuitry is organized as 131,072 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. The L7C108 has a single activelow Chip Enable. The L7C109 has two Chip Enables (one active-low). These devices are available in three speeds with maximum access times from 15 ns to 45 ns .

Inputs and outputs are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 140 mA (-L Version) at 15 ns. Data may be retained in inactive storage with a supply voltage as low as 2 V .

The L7C108 and L7C109 provide asynchronous (unclocked) operation with matching access and cycle times. The

Chip Enables and a three-state I/O bus with a separate Output Enable control simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins Ao through A16. For the L7C108, reading from a designated location is accomplished by presenting an address and driving $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}}$ LOW while WE remains HIGH. For the L7C109, $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}}$ must be LOW while CE_{2} and $\overline{\mathrm{WE}}$ are HIGH. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{CE}}_{1}$ or $\overline{\mathrm{OE}}$ is HIGH, or CE2 (L7C109) or WE is LOW. Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}_{1}$ and $\overline{W E}$ inputs are both LOW, and CE_{2} (L7C109) is HIGH. Any of these signals
may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C108 and L7C109 can withstand an injection current of up to 200 mA on any pin without damage.

L7C108-109 Block Diagram

Truth Table

Mode	$\overline{\mathrm{OE}}$	$\overline{\text { CE1 }}$	CE2*	$\overline{\text { WE }}$	DQ	POWER
Standby	X	\geq VIH	X	X	High - Z	Standby (Icce)
Standby	X	X	$\leq \mathrm{V}_{\mathrm{IL}}$	X	High - Z	Standby (ICC2)
Standby	X	$\geq \mathrm{Vcc}-0.2 \mathrm{~V}$	X	X	High - Z	Standby (ICC3)
Standby	X	X	$\leq \mathrm{GND}^{\text {+ }} 0.2 \mathrm{~V}$	X	High - Z	Standby (ICC3)
Read	L	L	H	H	Q	Active
Read	H	L	H	H	High - Z	Active
Write	X	L	H	L	D	Active

* Note: for L7C109 only

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)

> Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> Vcc supply voltage with respect to ground -0.5 V to +7.0 V
> Input signal with respect to ground -3.0 V to +7.0 V
> Signal applied to high impedance output. -3.0 V to +7.0 V
> Output current into low outputs
> .25 mA
> Latchup current $>200 \mathrm{~mA}$

Operating Conditions To meet specified electrical and switching characteristics

Mode
Active, Operation, Military
Data Retention, Military

Temperature Range (Ambient)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage

$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics Over Operating Conditions (Note 5)							
Symbol	Parameter	Test Condition	L7C108/109		L7C108/109-L		Unit
			Min	Max	Min	Max	
Vor	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{IOH}=-4 \mathrm{~mA}$	2.4		2.4		V
Vol	Output Low Voltage	$\mathrm{IOL}=8 \mathrm{~mA}$		0.4		0.4	V
V ${ }_{\text {H }}$	Input High Voltage		2.2	$\begin{aligned} & \text { Vcc } \\ & +0.5 \end{aligned}$	2.2	$\begin{aligned} & \text { Vcc } \\ & +0.3 \end{aligned}$	V
VIL	Input Low Voltage	(Note 3)	-0.5	0.8	-3.0	0.8	V
IIx	Input Leakage Current	GND \leq VIN \leq VCC	-10	+10	-10	+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	(Note 4)	-10	+10	-10	+10	$\mu \mathrm{A}$
IcC2	Vcc Current, TTL Standby	(Note 7)		25		25	mA
Icc3	Vcc Current, CMOS Standby	(Note 8)		10		5	mA
Icc4	Vcc Current, Data Retention	Vcc = 2 V (Notes 9, 10)		-		0.75	mA
Cin	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$		8		8	pF
Cout	Output Capacitance	$\text { Test Frequency = } 1 \mathrm{MHz} \text { (Note } 10 \text {) }$		8		8	pF

Symbol	Parameter	Test Condition	L7C108/109					L7C108/109-L					
			15	20	25	35	45	15	20	25	35	45	Unit
IcC1	Vcc Current, Active	(Note 6)	140	140	140	135	125	140	140	140	130	125	mA

SWITCHING CHARACTERISTICS Over Operating Range

Read Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C108/109									
		15/15-L		20/20-L		25/25-L		35/35-L		45/45-L	
		Min	Max								
tavav	Read Cycle Time	15		20		25		35		45	
tavqu	Address Valid to Output Valid (Notes 13, 14)		15		20		25		35		45
tavax	Address Change to Output Change	3		3		3		3		3	
telov	Chip Enable Low to Output Valid (Notes 13, 15)		15		20		25		35		45
telax	Chip Enable Low to Output Low Z (Notes 20, 21)	3		3		3		3		3	
tehaz	Chip Enable High to Output High Z (Notes 20, 21)		7		8		10		15		20
tglov	Output Enable Low to Output Valid		8		10		10		15		20
tglox	Output Enable Low to Output Low Z (Notes 20, 21)	0		0		0		0		0	
tGhaz	Output Enable High to Output High Z (Notes 20, 21)		6		6		10		15		20
tpu	Input Transition to Power Up (Notes 10, 19)	0		0		0		0		0	

Read Cycle - Address Controlled Notes 13, 14

Read Cycle - $\overline{\text { CE/ }} \overline{\mathrm{OE}}$ Controlled Notes 13, 15

L7C108

SWITCHING CHARACTERISTICS Over Operating Range

Symbol	Parameter	L7C108/109									
		15/15-L		20/20-L		25/25-L		35/35-L		45/45-L	
		Min	Max								
tpD	Operation Recovery Time (Notes 10, 19)		15		20		25		35		45
tcor	Chip Enable High to Data Retention (Note 10)	0		0		0		0		0	

Data Retention Notes 9, 10

Write Cycle Notes 5, 11, 12, 22, 23, 24 (ns)

Symbol	Parameter	L7C108/109									
		15/15-L		20/20-L		25/25-L		35/35-L		45/45-L	
		Min	Max								
tavav	Write Cycle Time	15		20		25		35		45	
telwh	Chip Enable Low to End of Write Cycle	12		12		20		25		35	
tavwL	Address Valid to Beginning of Write Cycle	0		0		0		0		0	
tavwh	Address Setup to End of Write Cycle	15		17		20		25		35	
twhax	Address Hold After End Of Write	0		0		0		0		0	
twLwh	Write Enable Pulse Width Low	12		15		20		30		40	
tovwh	Data Setup to End of Write Cycle	7		10		12		20		20	
twhDx	Data Hold to End of Write	0		0		0		0		0	
twhax	Write Enable High to Output Low Z (Notes 20, 21)	5		5		5		5		5	
twLQz	Write Enable Low to Output High Z (Notes 20, 21)		7		8		10		25		30

SWITCHING CHARACTERISTICS Over Operating Range

Write Cycle - CE Controlled Notes 16, 17, 18, 19

PACKAGE INFORMATION

PKG K: 32L Ceramic Dual LCC (MD-K11)

PACKAGE INFORMATION

PKG KA: 32L Ceramic Quad LCC (MD-KA1)

PACKAGE INFORMATION

PKG Y: 32L Ceramic SOJ (MD-Y1)

(Note: Case ' Y ' ships for Case ' 7 ' as compatible replacement)

PACKAGE INFORMATION

PKG D: 32L Ceramic DIP (MD-D12)

D Cross Refere	Table		
LOGIC Part \#	SMD Part \#	LOGIC Part \#	SMD Part \#
L7C109DMB45	5962-8959835MZA	L7C108DMB45	5962-8959827MZA
L7C109DMB35	5962-8959836MZA	L7C108DMB35	5962-8959828MZA
L7C109DMB25	5962-8959837MZA	L7C108DMB25	5962-8959829MZA
L7C109DMB20	5962-8959838MZA	L7C108DMB20	5962-8959839MZA
L7C109DMB15	5962-8959841MZA	L7C108DMB15	5962-8959844MZA
L7C109YMB45	5962-8959835M7A	L7C108YMB45	5962-8959827M7A
L7C109YMB35	5962-8959836M7A	L7C108YMB35	5962-8959828M7A
L7C109YMB25	5962-8959837M7A	L7C108YMB25	5962-8959829M7A
L7C109YMB20	5962-8959838M7A	L7C108YMB20	5962-8959839M7A
L7C109YMB15	5962-8959841M7A	L7C108YMB15	5962-8959844M7A
L7C109YMB45	5962-8959835MYA	L7C108YMB45	5962-8959827MYA
L7C109YMB35	5962-8959836MYA	L7C108YMB35	5962-8959828MYA
L7C109YMB25	5962-8959837MYA	L7C108YMB25	5962-8959829MYA
L7C109YMB20	5962-8959838MYA	L7C108YMB20	5962-8959839MYA
L7C109YMB15	5962-8959841MYA	L7C108YMB15	5962-8959844MYA
L7C109KAMB45	5962-8959835MMA		
L7C109KAMB35	5962-8959836MMA		
L7C109KAMB25	5962-8959837MMA		
L7C109KAMB20	5962-8959838MMA		
L7C109KAMB15	5962-8959841MMA		
L7C109KMB45	5962-8959835MUA		
L7C109KMB35	5962-8959836MUA		
L7C109KMB25	5962-8959837MUA		
L7C109KMB20	5962-8959838MUA		
L7C109KMB15	5962-8959841MUA		

L7C108

Cross Referen	Table		
LOGIC Part \#	SMD Part \#	LOGIC Part \#	SMD Part \#
L7C109DMB45L	5962-8959818MZA	L7C108YMB45L	5962-8959810M7A
L7C109DMB35L	5962-8959819MZA	L7C108YMB35L	5962-8959811M7A
L7C109DMB25L	5962-8959820MZA	L7C108YMB25L	5962-8959812M7A
L7C109DMB20L	5962-8959821MZA	L7C108YMB20L	5962-8959840M7A
L7C109YMB45L	5962-8959818M7A	L7C108YMB15L	5962-8959848M7A
L7C109YMB35L	5962-8959819M7A	L7C108YAMB45L	5962-8959810MYA
L7C109YMB25L	5962-8959820M7A	L7C108YMB35L	5962-8959811MYA
L7C109YMB20L	5962-8959821M7A	L7C108YMB25L	5962-8959812MYA
L7C109YMB45L	5962-8959818MYA	L7C108YMB20L	5962-8959840MYA
L7C109YMB35L	5962-8959819MYA	L7C108YMB15L	5962-8959848MYA
L7C109YMB25L	5962-8959820MYA		
L7C109YMB20L	5962-8959821MYA		
L7C109KAMB45L	5962-8959818MMA		
L7C109KAMB35L	5962-8959819MMA		
L7C109KAMB25L	5962-8959820MMA		
L7C109KAMB20L	5962-8959821MMA		
L7C109KMB45L	5962-8959818MUA		
L7C109KMB35L	5962-8959819MUA		
L7C109KMB25L	5962-8959820MUA		
L7C109KMB20L	5962-8959821MUA		
L7C109FMB20L	5962-8959821MTA		
L7C108DMB45L	5962-8959810MZA		
L7C108DMB35L	5962-8959811MZA		
L7C108DMB25L	5962-8959812MZA		
L7C108DMB20L	5962-8959840MZA		
L7C108DMB15L	5962-8959848MZA		

L7C108

ORDERING INFORMATION

LOW POWER OPTION:
L = Low Power
No Mark Means Standard Power

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2.0 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Tested with GND \leq Vout \leq Vcc. The device is disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{Vcc}, \mathrm{CE} 2=\mathrm{GND}$.
5. A series of normalized curves is available to supply the designer with typical DC and AC parametric information for Logic Devices Static RAMs. These curves may be used to determine device characteristics at various temperatures and voltage levels.
6. Tested with all address and data inputs changing at the maximum cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}, \mathrm{CE} 2$ $\geq \mathrm{VIH}, \overline{\mathrm{WE}} \geq \mathrm{VIH}$, with outputs disabled, $\overline{\mathrm{OE}} \geq \mathrm{VIH}$. Input pulse levels are 0 to 3.0 V .
7. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} 1 \geq \mathrm{V} \mathrm{H}, \mathrm{CE}_{2} \leq \mathrm{VIL}$.
8. Tested with outputs open and all address and data inputs stable. The device is continuously disabled, i.e. $\overline{\mathrm{CE}} 1=\mathrm{Vcc}, \mathrm{CE} 2=\mathrm{GND}$. Input levels are within 0.2 V of VCc or GND.
9. Data retention operation requires that Vcc never drop below 2.0V. $\overline{\mathrm{CE}} 1$ must be $\geq \mathrm{Vcc}-$ 0.2 V or CE 2 must be $\leq 0.2 \mathrm{~V}$. All other inputs must meet VIN \geq Vcc -0.2 V or VIN $\leq 0.2 \mathrm{~V}$ to ensure full powerdown. For low power version (if applicable), this requirement applies only to $\overline{\mathrm{CE}_{1}}$, CE 2 , and $\overline{\mathrm{WE}}$; there are no restrictions on data and address.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , output
loading for specified IOL and IoH plus 30 pF (Fig. 1a), and input pulse levels of 0 to 3.0 V (Fig. 2).
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. For example, tAVEW is specified as a minimum since the external system must supply at least that much time to meet the worstcase requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}} 1$ low, CE2 high).
15. All address lines are valid prior-to or coinci-dent-with the $\overline{\mathrm{CE}} 1$ and CE2 transition to active.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}} 1$ and CE 2 active and $\overline{\mathrm{WE}}$ low. All three signals must be active to initiate a write. Any signal can terminate a write by going inactive. The address, data, and control input setup and hold times should be referenced to the signal that becomes active last or becomes inactive first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with the latter of $\overline{\mathrm{CE}} 1$ and CE 2 going active, the output remains in a high impedance state.
18. If $\overline{C E}_{1}$ and $C E 2$ goes inactive before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Rising edge of CE2 ($\overline{\mathrm{CE}} 1$ active) or the falling edge of $\overline{C E} 1$ (CE2 active).
b. Falling edge of $\overline{W E}(\overline{C E} 1, C E 2$ active).
c. Transition on any address line ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2$, active).
d. Transition on any data line ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2$, and WE active).
The device automatically powers down from IcC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}, \mathrm{CE} 2$, or $\overline{\mathrm{WE}}$ must be inactive during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high inductance leads that cause supply bounce must be avoided by bringing the Vcc and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between Vcc and ground. To avoid signal reflections, proper terminations must be used.
 L7C108
PRELIMINARY INFORMATION L7C109

128K x 8 Static RAM

Revision History L7C108/L7C109

Revision	Engineer	Issue Date	Description Of Change
A	com	1018/2008	Initial Release
в	Jм	10/30/2008	Datasheet Format Revision
c	DH/JM	07/02/2009	Updated specs: 2. Added 10 ns speed and AC specs in the AC table Updated all DC power specs in DC table Corrected symbol names in AC and Timing diagrams Removed commercial temp offering Added an extended temp offering
D	DH	06/11/10	Revisions Removed $10 \& 12$ ns bins Removed 322 L FP (to be re-introduced wiht our silicon, if market warrants) Removed SOJ package variant "YA" Add notation for SMD $5962-89598$ that Package ' Y ' will be supplied as a " 7 " compatible package Increased ICC1, ICC2, and ICC4@2V for standard power Increased ICC2 and ICC4@2V for low power Removed appropriate DSCC and LOGIC part numbers from ordering tables and PN generato Modified LOGIC Devices " Y " Corrections to package dimensions for MD-K11 and MD-Y
E	JM	07/30/10	Updated mechanical drawings for all packages
F	DH	08/11/10	Revisions: 2. Updated order inf (quad LCC) and K (dual LCC) package variants from SMD cross reference table 4. Changed ICC2 conditions to match ICC3 conditions. Changed operating current to be calculated during the READ cycle.

LOGIC Devices Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. LOGIC Devices does not assume any liability arising out of the application or use of any product or circuit described herein. In no event shall any liability exceed the product purchase price. Products of LOGIC Devices are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with LOGIC Devices. Furthermore, LOGIC Devices does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.

